Lemon Peel and Juice: Metabolomic Differentiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Metabolomic Profile of Lemons
2.3. Multivariate Statistical Analysis
2.4. Metabolic Pathway and Network Analysis
3. Results and Discussion
3.1. Metabolomic Profile of Lemon Fruits
3.2. Lemon Peel Samples
3.2.1. Multivariate Analysis
3.2.2. Debiased Sparse Partial Correlation (DSPC)
3.3. Lemon Juice Samples
3.3.1. Multivariate Analysis
3.3.2. Debiased Sparse Partial Correlation (DSPC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talon, M.; Gmitter, F.G. Citrus Genomics. Int. J. Plant Genom. 2008, 2008, e528361. [Google Scholar] [CrossRef] [PubMed]
- The Food and Agriculture Organization of the United Nations. Food and Agriculture Data; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus Limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Quaggio, J.A.; Mattos, D.; Cantarella, H.; Almeida, E.L.E.; Cardoso, S.A.B. Lemon Yield and Fruit Quality Affected by NPK Fertilization. Sci. Hortic. 2002, 96, 151–162. [Google Scholar] [CrossRef]
- Aguilar-Hernández, M.G.; Núñez-Gómez, D.; Forner-Giner, M.Á.; Hernández, F.; Pastor-Pérez, J.J.; Legua, P. Quality Parameters of Spanish Lemons with Commercial Interest. Foods 2021, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Nicolas, J.J.; Núñez-Gómez, D.; Lidón, V.; Martínez-Font, R.; Melgarejo, P.; Hernández, F.; Legua, P. Physico-Chemical Attributes of Lemon Fruits as Affected by Growing Substrate and Rootstock. Foods 2022, 11, 2487. [Google Scholar] [CrossRef]
- Saini, M.K.; Capalash, N.; Kaur, C.; Singh, S.P. Comprehensive Metabolic Profiling to Decipher the Influence of Rootstocks on Fruit Juice Metabolome of Kinnow (C. Nobilis × C. Deliciosa). Sci. Hortic. 2019, 257, 108673. [Google Scholar] [CrossRef]
- Perez De Souza, L.; Alseekh, S.; Brotman, Y.; Fernie, A.R. Network-Based Strategies in Metabolomics Data Analysis and Interpretation: From Molecular Networking to Biological Interpretation. Expert Rev. Proteom. 2020, 17, 243–255. [Google Scholar] [CrossRef]
- Diola, V.; Menezes Daloso de, D.; Antunes, W.C. Metabolomics. In Omics in Plant Breeding; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 81–101. ISBN 978-1-118-82097-1. [Google Scholar]
- Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted Profiling: Quantitative Analysis of 1H NMR Metabolomics Data. Anal. Chem. 2006, 78, 4430–4442. [Google Scholar] [CrossRef]
- Serkova, N.J.; Niemann, C.U. Pattern Recognition and Biomarker Validation Using Quantitative 1H-NMR-Based Metabolomics. Expert Rev. Mol. Diagn. 2006, 6, 717–731. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis: An Overview. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 904–907. ISBN 978-3-642-04898-2. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P. Multivariate Data Analysis Applied to Spectroscopy: Potential Application to Juice and Fruit Quality. Food Res. Int. 2011, 44, 1888–1896. [Google Scholar] [CrossRef]
- Melgarejo, P.; Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Hernández, F.; Martínez-Font, R.; Lidón, V.; García-Sánchez, F.; Legua, P. Metabolomic Profile of Citrus Limon Leaves (‘Verna’ Variety) by 1H-NMR and Multivariate Analysis Technique. Agronomy 2022, 12, 1060. [Google Scholar] [CrossRef]
- Hernández, F.; Martínez-Nicolás, J.J.; Melgarejo, P.; Núñez-Gómez, D.; Lidón, V.; Martínez-Font, R.; Legua, P. Life Cycle Assessment (LCA) of Substrate Mixes Containing Port Sediments for Sustainable ‘Verna’ Lemon Production. Foods 2022, 11, 3053. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Gómez, D.; Melgarejo, P.; Martínez-Nicolás, J.J.; Hernández, F.; Martínez-Font, R.; Lidón, V.; Legua, P. Impact on the Soil Microbiota of Marine Sediment Content as an Agricultural Substrate: Metagenomic 16S RRNA Analyzes. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Reyes-Gracia, A.; Alberto Alvarado, J.; Pérez-Cuapio, R.; Juárez, H. Comparison from Lemon Juice and N-Dipentene ZnO Nanoparticles Green Synthesis: Influence of Byproducts in Morphology and Size. Mater. Sci. Eng. B 2023, 290, 116335. [Google Scholar] [CrossRef]
- Othman, H.I.A.; Alkatib, H.H.; Zaid, A.; Sasidharan, S.; Rahiman, S.S.F.; Lee, T.P.; Dimitrovski, G.; Althakafy, J.T.; Wong, Y.F. Phytochemical Composition, Antioxidant and Antiproliferative Activities of Citrus Hystrix, Citrus Limon, Citrus Pyriformis, and Citrus Microcarpa Leaf Essential Oils against Human Cervical Cancer Cell Line. Plants 2023, 12, 134. [Google Scholar] [CrossRef]
- Rosa, A.; Petretto, G.L.; Maldini, M.; Tirillini, B.; Chessa, M.; Pintore, G.; Sarais, G. Chemical Characterization, Antioxidant and Cytotoxic Activity of Hydroalcoholic Extract from the Albedo and Flavedo of Citrus Limon Var. Pompia Camarda. Food Meas. 2023, 17, 627–635. [Google Scholar] [CrossRef]
- Serna-Escolano, V.; Dobón-Suárez, A.; Giménez, M.J.; Zapata, P.J.; Gutiérrez-Pozo, M. Effect of Fertigation on the Physicochemical Quality and Antioxidant System of ‘Fino’ Lemons during Postharvest Storage. Agriculture 2023, 13, 766. [Google Scholar] [CrossRef]
- Yu, L.; Liao, Z.; Zhao, Y.; Zeng, X.; Yang, B.; Bai, W. Metabolomic Analyses of Dry Lemon Slice during Storage by NMR. Food Front. 2020, 1, 180–191. [Google Scholar] [CrossRef]
- Muccilli, V.; Vitale, A.; Sheng, L.; Gentile, A.; Cardullo, N.; Tringali, C.; Oliveri, C.; La Rosa, R.; Di Guardo, M.; La Malfa, S.; et al. Substantial Equivalence of a Transgenic Lemon Fruit Showing Postharvest Fungal Pathogens Resistance. J. Agric. Food Chem. 2020, 68, 3806–3816. [Google Scholar] [CrossRef]
- Masciandaro, G.; Di Biase, A.; Macci, C.; Peruzzi, E.; Iannelli, R.; Doni, S. Phytoremediation of Dredged Marine Sediment: Monitoring of Chemical and Biochemical Processes Contributing to Sediment Reclamation. J. Environ. Manag. 2014, 134, 166–174. [Google Scholar] [CrossRef]
- Melgarejo, P.; Legua, P.; Pérez-Sarmiento, F.; Martínez-Font, R.; José Martínez-Nicolás, J.; Hernández, F. Effect of a New Remediated Substrate on Fruit Quality and Bioactive Compounds in Two Strawberry Cultivars. J. Food Nutr. Res. 2017, 5, 579–586. [Google Scholar]
- Tozzi, F.; Del Bubba, M.; Petrucci, W.A.; Pecchioli, S.; Macci, C.; Hernández García, F.; Martínez Nicolás, J.J.; Giordani, E. Use of a Remediated Dredged Marine Sediment as a Substrate for Food Crop Cultivation: Sediment Characterization and Assessment of Fruit Safety and Quality Using Strawberry (Fragaria x Ananassa Duch.) as Model Species of Contamination Transfer. Chemosphere 2020, 238, 124651. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Nicolás, J.J.; Legua, P.; Núñez-Gómez, D.; Martínez-Font, R.; Hernández, F.; Giordani, E.; Melgarejo, P. Potential of Dredged Bioremediated Marine Sediment for Strawberry Cultivation. Sci. Rep. 2020, 10, 19878. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, F.; Pecchioli, S.; Renella, G.; Melgarejo, P.; Legua, P.; Macci, C.; Doni, S.; Masciandaro, G.; Giordani, E.; Lenzi, A. Remediated Marine Sediment as Growing Medium for Lettuce Production: Assessment of Agronomic Performance and Food Safety in a Pilot Experiment. J. Sci. Food Agric. 2019, 99, 5624–5630. [Google Scholar] [CrossRef]
- European Union. Commission Delegated Regulation (EU) 2019/428 of 12 July 2018 amending Implementing Regulation (EU) No 543/2011 as Regards Marketing Standards in the Fruit and Vegetables Sector. Available online: http://data.europa.eu/eli/reg_del/2019/428/oj (accessed on 20 March 2023).
- van der Sar, S.; Kim, H.K.; Meissner, A.; Verpoorte, R.; Choi, Y.H. Nuclear Magnetic Resonance Spectroscopy for Plant Metabolite Profiling. In The Handbook of Plant Metabolomics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 57–76. ISBN 978-3-527-66988-2. [Google Scholar]
- Martínez-Nicolás, J.J.; Hernández, F.; Núñez-Gómez, D.; García-Sánchez, F.; Martínez-Font, R.; Legua, P.; Melgarejo, P. Metabolomic Approach to Study the ‘Purple Queen’ Pomegranate Cultivar Response to Alternative Culture Media and Phenological Stages. Foods 2023, 12, 352. [Google Scholar] [CrossRef] [PubMed]
- Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef]
- Broadhurst, D.I.; Kell, D.B. Statistical Strategies for Avoiding False Discoveries in Metabolomics and Related Experiments. Metabolomics 2006, 2, 171–196. [Google Scholar] [CrossRef]
- Shojaie, A. Differential Network Analysis: A Statistical Perspective. WIREs Comput. Stat. 2021, 13, e1508. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Reuss, L.; Feng, S.; Hung, W.-L.; Yu, Q.; Gmitter, F.G.; Wang, Y. Analysis of Flavor and Other Metabolites in Lemon Juice (Citrus Limon) from Huanglongbing-Affected Trees Grafted on Different Rootstocks. J. Food Drug Anal. 2020, 28, 261–272. [Google Scholar] [CrossRef]
- Corsaro, C.; Mallamace, D.; Vasi, S.; Ferrantelli, V.; Dugo, G.; Cicero, N. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet. J. Anal. Methods Chem. 2015, 2015, e175696. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, W.; Xu, Y.; Chen, L.; Cao, J.; Jiang, W. An Advance on Nutritional Profile, Phytochemical Profile, Nutraceutical Properties, and Potential Industrial Applications of Lemon Peels: A Comprehensive Review. Trends Food Sci. Technol. 2022, 124, 219–236. [Google Scholar] [CrossRef]
- Amin, A.A.; Gharib, F.A.E.; El-Awadi, M.; Rashad, E.-S.M. Physiological Response of Onion Plants to Foliar Application of Putrescine and Glutamine. Sci. Hortic. 2011, 129, 353–360. [Google Scholar] [CrossRef]
- Bortolotti, C.; Cordeiro, A.; Alcázar, R.; Borrell, A.; Culiañez-Macià, F.A.; Tiburcio, A.F.; Altabella, T. Localization of Arginine Decarboxylase in Tobacco Plants. Physiol. Plant. 2004, 120, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Nasibi, F.; Yaghoobi, M.M.; Kalantari, K.M. Effect of Exogenous Arginine on Alleviation of Oxidative Damage in Tomato Plant Underwater Stress. J. Plant Interact. 2011, 6, 291–296. [Google Scholar] [CrossRef]
- Jung, E.; Zamir, L.; Jensen, R. Chloroplasts of Higher Plants Synthesize L-Phenylalanine via L-Arogenate. Proc. Natl. Acad. Sci. USA 1986, 83, 7231–7235. [Google Scholar] [CrossRef]
- Lea, P.j.; Sodek, L.; Parry, M.a.j.; Shewry, P.r.; Halford, N.g. Asparagine in Plants. Ann. Appl. Biol. 2007, 150, 1–26. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Bykova, N.V.; Kleczkowski, L.A. Origins and Metabolism of Formate in Higher Plants. Plant Physiol. Biochem. 1999, 37, 503–513. [Google Scholar] [CrossRef]
- Forde, B.G.; Lea, P.J. Glutamate in Plants: Metabolism, Regulation, and Signalling. J. Exp. Bot. 2007, 58, 2339–2358. [Google Scholar] [CrossRef]
- Pandiyan, P.; Soni, A.; Elumalai, P. Effects of Lemon and Pomelo Peel Extracts on Quality and Melanosis of Indian White Prawn during Chilled Storage. J. Food Process. Preserv. 2022, 46, e15952. [Google Scholar] [CrossRef]
- Koch, K. Sucrose Metabolism: Regulatory Mechanisms and Pivotal Roles in Sugar Sensing and Plant Development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of Sugars under Abiotic Stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Liong, C.-Y.; Jemain, A.A. Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of High-Dimensional (HD) Data: A Review of Contemporary Practice Strategies and Knowledge Gaps. Analyst 2018, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- Jankova, J.; van der Geer, S. Confidence Intervals for High-Dimensional Inverse Covariance Estimation. Electron. J. Statitist. 2015, 9, 1205–1229. [Google Scholar] [CrossRef]
- Wilkinson, L.; Friendly, M. The History of the Cluster Heat Map. Am. Stat. 2009, 63, 179–184. [Google Scholar] [CrossRef]
- Basu, S.; Duren, W.; Evans, C.R.; Burant, C.F.; Michailidis, G.; Karnovsky, A. Sparse Network Modeling and Metscape-Based Visualization Methods for the Analysis of Large-Scale Metabolomics Data. Bioinformatics 2017, 33, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Pancoro, A.; Karima, E.; Apriyanto, A.; Effendi, Y. 1H NMR Metabolomics Analysis of Oil Palm Stem Tissue Infected by Ganoderma Boninense Based on Field Severity Indices. Sci. Rep. 2022, 12, 21087. [Google Scholar] [CrossRef]
- Tasseva, G.; Richard, L.; Zachowski, A. Regulation of Phosphatidylcholine Biosynthesis under Salt Stress Involves Choline Kinases in Arabidopsis Thaliana. FEBS Lett. 2004, 566, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.; Savka, M.A.; Hudson, A.O. The Synthesis and Role of β-Alanine in Plants. Front. Plant Sci. 2019, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.A.; Arruda, P.; Turner, W.L.; Lea, P.J. The Biosynthesis and Metabolism of the Aspartate Derived Amino Acids in Higher Plants. Phytochemistry 1997, 46, 395–419. [Google Scholar] [CrossRef]
- Shaik, B.B.; Seboletswe, P.; Mohite, S.B.; Katari, N.K.; Bala, M.D.; Karpoormath, R.; Singh, P. Lemon Juice: A Versatile Biocatalyst and Green Solvent in Organic Transformations. ChemistrySelect 2022, 7, e202103701. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.; Boskou, D.; Kiosseoglou, V. Stabilization of Olive Oil—Lemon Juice Emulsion with Polysaccharides. Food Chem. 2005, 90, 627–634. [Google Scholar] [CrossRef]
- Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-Check: Validation of Diagnostic Statistics for PLS-DA Models in Metabolomics Studies. Metabolomics 2012, 8, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yang, N.; Zhu, C.; Gan, L. Exogenously Applied Poly-γ-Glutamic Acid Alleviates Salt Stress in Wheat Seedlings by Modulating Ion Balance and the Antioxidant System. Environ. Sci. Pollut. Res. 2017, 24, 6592–6598. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, I.; Palla, G.; Marchelli, R.; Dossena, A.; Puelli, S.; Salvadori, C. D-Alanine in Fruit Juices: A Molecular Marker of Bacterial Activity, Heat Treatments and Shelf-Life. J. Food Sci. 1994, 59, 152–154. [Google Scholar] [CrossRef]
Rootstock | Culture Media | Acronym | |
---|---|---|---|
Peat Content (%) | Port Sediment Content (%) | ||
Citrus macrophylla | 75 | 25 | 25 M |
50 | 50 | 50 M | |
25 | 75 | 75 M | |
Citrus aurantium | 75 | 25 | 25 A |
50 | 50 | 50 A | |
25 | 75 | 75 A | |
Citrus aurantium/Citrus sinensis | 75 | 25 | 25 AS |
50 | 50 | 50 AS | |
25 | 75 | 75 AS |
Metabolites | Samples | |
---|---|---|
Peel | Juice | |
Amino acids (mM) | ||
GABA | 0.44 | 1.31 |
Alanine | 0.64 | 2.30 |
Arginine | ND | 0.39 |
Asparagine | 7.13 | ND |
Aspartate | 0.27 | 23.55 |
Glutamate | 0.25 | ND |
Glutamine | 0.43 | 1.68 |
Isoleucine | 0.02 | 0.05 |
Leucine | 0.02 | 0.04 |
Phenylalanine | ND | 0.08 |
Proline | 3.05 | 4.47 |
Valine | 0.03 | 0.13 |
Organic acids (mM) | ||
Ascorbate | 0.75 | 2.01 |
Citrate | 3.03 | 327.46 |
Format | 0.02 | ND |
Lactate | 0.06 | 0.17 |
Malate | 0.67 | ND |
Sugars (mM) | ||
Fructose | 17.15 | 32.41 |
Glucose | 36.64 | 28.10 |
Myo-inositol | 2.68 | 2.01 |
Sucrose | 10.92 | 7.91 |
Other metabolites (mM) | ||
Choline | 0.26 | 0.11 |
Ethanol | ND | 0.75 |
Trigonelline | ND | 0.08 |
Compound | f-Value | p-Value | −log 10 (p) | FDR | Tukey’s HSD |
---|---|---|---|---|---|
Rootstock | |||||
Proline | 7.598 | 0.0027773 | 2.5564 | 0.032998 | 2-1; 3-1 |
Glucose | 7.2669 | 0.0034074 | 2.4676 | 0.032998 | 3-1; 3-2 |
Fructose | 6.1678 | 0.006895 | 2.1615 | 0.032998 | 3-1; 3-2 |
Lactate | 5.8468 | 0.0085401 | 2.0685 | 0.032998 | 2-1; 3-1 |
Myo-inositol | 5.7254 | 0.0092688 | 2033 | 0.032998 | 2-1; 3-1 |
Choline | 5.6285 | 0.0098993 | 2.0044 | 0.032998 | 3-1; 3-2 |
Aspartate | 5.1105 | 0.014158 | 1849 | 0.040453 | 3-1 |
Culture media | |||||
Glutamate | 7.7853 | 0.002477 | 2.6059 | 0.04955 | 4–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melgarejo, P.; Núñez-Gómez, D.; Hernández, F.; Martínez-Font, R.; Lidón Noguera, V.; Martínez-Nicolás, J.J.; Legua, P. Lemon Peel and Juice: Metabolomic Differentiation. Horticulturae 2023, 9, 510. https://doi.org/10.3390/horticulturae9040510
Melgarejo P, Núñez-Gómez D, Hernández F, Martínez-Font R, Lidón Noguera V, Martínez-Nicolás JJ, Legua P. Lemon Peel and Juice: Metabolomic Differentiation. Horticulturae. 2023; 9(4):510. https://doi.org/10.3390/horticulturae9040510
Chicago/Turabian StyleMelgarejo, Pablo, Dámaris Núñez-Gómez, Francisca Hernández, Rafael Martínez-Font, Vicente Lidón Noguera, Juan José Martínez-Nicolás, and Pilar Legua. 2023. "Lemon Peel and Juice: Metabolomic Differentiation" Horticulturae 9, no. 4: 510. https://doi.org/10.3390/horticulturae9040510
APA StyleMelgarejo, P., Núñez-Gómez, D., Hernández, F., Martínez-Font, R., Lidón Noguera, V., Martínez-Nicolás, J. J., & Legua, P. (2023). Lemon Peel and Juice: Metabolomic Differentiation. Horticulturae, 9(4), 510. https://doi.org/10.3390/horticulturae9040510