Finite Length Effects on Switching Mechanisms in Chains of Magnetic Particles
Abstract
:1. Introduction
2. The Models
2.1. Different Shapes with the Same Shape Anisotropy
2.2. Point-Dipole Reduced Model
3. Results
3.1. Infinite Systems
3.2. Finite Chains
3.2.1. System of Seven Macrospins
3.2.2. System of Eight Macrospins
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aiempanakit, M.; Jearnkulprasert, N.; Panyajirawut, P. Patterning of Nanoparticle Arrays by Self-assembly Lithography. Mater. Today Proc. 2017, 4, 6009–6014. [Google Scholar] [CrossRef]
- Hua, F.; Shi, J.; Lvov, Y.; Cui, T. Patterning of Layer-by-Layer Self-Assembled Multiple Types of Nanoparticle Thin Films by Lithographic Technique. Nano Lett. 2002, 2, 1219–1222. [Google Scholar] [CrossRef]
- Ormonde, A.D.; Hicks, E.C.M.; Castillo, J.; van Duyne, R.P. Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV−Visible Extinction Spectroscopy. Langmuir 2004, 20, 6927–6931. [Google Scholar] [CrossRef] [PubMed]
- Pease, R.F.; Chou, S.Y. Lithography and Other Patterning Techniques for Future Electronics. Proc. IEEE 2008, 96, 248–270. [Google Scholar] [CrossRef]
- Martín, J.I.; Nogués, J.; Liu, K.; Vicent, J.L.; Schuller, I.K. Ordered magnetic nanostructures: Fabrication and properties. J. Magn. Magn. Mater. 2003, 256, 449–501. [Google Scholar] [CrossRef]
- Chappert, C. Planar Patterned Magnetic Media Obtained by Ion Irradiation. Science 1998, 280, 1919–1922. [Google Scholar] [CrossRef]
- Menéndez, E.; Liedke, M.O.; Fassbender, J.; Gemming, T.; Weber, A.; Heyderman, L.J.; Rao, K.V.; Deevi, S.C.; Suriñach, S.; Baró, M.D.; et al. Direct Magnetic Patterning due to the Generation of Ferromagnetism by Selective Ion Irradiation of Paramagnetic FeAl Alloys. Small 2008, 5, 229–234. [Google Scholar] [CrossRef]
- Fassbender, J.; Grenzer, J.; Roshchupkina, O.; Choi, Y.; Jiang, J.S.; Bader, S.D. The effect of ion irradiation and annealing on exchange spring magnets. J. Appl. Phys. 2009, 105, 023902. [Google Scholar] [CrossRef]
- Devolder, T.; Chappert, C.; Chen, Y.; Cambril, E.; Bernas, H.; Jamet, J.P.; Ferré, J. Sub-50 nm planar magnetic nanostructures fabricated by ion irradiation. Appl. Phys. Lett. 1999, 74, 3383–3385. [Google Scholar] [CrossRef]
- Heyderman, L.J.; Stamps, R.L. Artificial ferroic systems: Novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter. 2013, 25, 363201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitterer, C. Borides in Thin Film Technology. J. Solid State Chem. 1997, 133, 279–291. [Google Scholar] [CrossRef]
- Mu, C.; Jing, J.; Dong, J.; Wang, W.; Xu, J.; Nie, A.; Xiang, J.; Wen, F.; Liu, Z. Static and dynamic characteristics of magnetism in permalloy oval nanoring by micromagnetic simulation. J. Magn. Magn. Mater. 2019, 474, 301–304. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.T.; Zhuang, H.L.; Luo, X.; Liu, B.J.; Chen, F.C.; Yan, J.; Sun, Y.; Zhou, J.; Lu, W.J.; Tong, P.; et al. Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3. Phys. Rev. B 2017, 95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, H.Y.; Wang, X.S.; Wang, X.R. Breaking the current density threshold in spin-orbit-torque magnetic random access memory. Phys. Rev. B 2018, 97. [Google Scholar] [CrossRef] [Green Version]
- Laskowska, M.; Bałanda, M.; Fitta, M.; Dulski, M.; Zubko, M.; Pawlik, P.; Laskowski, Ł. Magnetic behaviour of Mn12-stearate single-molecule magnets immobilized inside SBA-15 mesoporous silica matrix. J. Magn. Magn. Mater. 2019, 478, 20–27. [Google Scholar] [CrossRef]
- Mu, C.; Hu, S.; Wang, J.; Kimura, T. Thermo-electric effect in a nano-sized crossed Permalloy/Cu junction under high bias current. Appl. Phys. Lett. 2013, 103, 132408. [Google Scholar] [CrossRef]
- Oh, S.; Jang, B.J.; Chae, H. Sensitivity Enhancement of a Vertical-Type CMOS Hall Device for a Magnetic Sensor. J. Electromagn. Eng. Sci. 2018, 18, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Nordquist, K. Process development of sub-0.5 μm nonvolatile magnetoresistive random access memory arrays. J. Vac. Sci. Technol. B 1997, 15, 2274. [Google Scholar] [CrossRef]
- White, R.L.; Newt, R.M.H.; Pease, R.F.W. Patterned media: A viable route to 50 Gbit/in/sup 2/ and up for magnetic recording? IEEE Trans. Magn. 1997, 33, 990–995. [Google Scholar] [CrossRef]
- Cowburn, R.P. Room Temperature Magnetic Quantum Cellular Automata. Science 2000, 287, 1466–1468. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.F., Jr. Micromagnetics; Interscience Publishers: New York, NY, USA, 1963. [Google Scholar]
- Laskowska, M.; Pastukh, O.; Konieczny, P.; Dulski, M.; Zalsiński, M.; Laskowski, L. Magnetic Behaviour of Mn12-Stearate Single-Molecule Magnets Immobilized on the Surface of 300 nm Spherical Silica Nanoparticles. Materials 2020, 13, 2624. [Google Scholar] [CrossRef] [PubMed]
- Laskowska, M.; Pastukh, O.; Kuźma, D.; Laskowski, Ł. How to Control the Distribution of Anchored, Mn12–Stearate, Single-Molecule Magnets. Nanomaterials 2019, 9, 1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskowski, L.; Kityk, I.; Konieczny, P.; Pastukh, O.; Schabikowski, M.; Laskowska, M. The Separation of the Mn12 Single-Molecule Magnets onto Spherical Silica Nanoparticles. Nanomaterials 2019, 9, 764. [Google Scholar] [CrossRef] [Green Version]
- Kuźma, D.; Montoncello, F.; Sobieszczyk, P.; Wal, A.; Giovannini, L.; Zieliński, P. Spin wave propagation properties across configurational antiferro/ferro-magnetic transitions. J. Appl. Phys. 2018, 124, 223902. [Google Scholar] [CrossRef]
- Kuźma, D.; Rychły, J.; Sobieszczyk, P.; Kłos, J.W.; Montoncello, F.; Zieliński, P. Edge Modes in the Switching Mechanism of Finite Chains of Macrospins. Proceedings 2019, 26, 11. [Google Scholar] [CrossRef] [Green Version]
- Akjouj, A.; Dobrzyński, L.; Al-Wahsh, H.; El Boudouti, E.H.; Leveque, G.; Pennec, Y.; Djafari-Rouhani, B. Magnonics; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-813366-8. [Google Scholar]
- Levy, J.C.S. (Ed.) Magnetic Structures of 2D and 3D Nanoparticles: Properties and Applications; Jenny Stanford Publishing: Singapore, 2016; ISBN 978-981-4613-67-5. [Google Scholar]
- Laskowska, M.; Kityk, I.; Pastukh, O.; Dulski, M.; Zubko, M.; Jedryka, J.; Cpałka, K.; Zieliński, P.M.; Laskowski, Ł. Nanocomposite for photonics—Nickel pyrophosphate nanocrystals synthesised in silica nanoreactors. Microporous Mesoporous Mater. 2020, 306, 110435. [Google Scholar] [CrossRef]
- Nisoli, C.; Moessner, R.; Schiffer, P. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. Rev. Mod. Phys. 2013, 85, 1473–1490. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chua, G.L.; Singh, N.; Adeyeye, A.O. Large Area Artificial Spin Ice and Anti-Spin Ice Ni80Fe20 Structures: Static and Dynamic Behavior. Adv. Funct. Mater. 2016, 26, 1437–1444. [Google Scholar] [CrossRef]
- Wang, R.F.; Nisoli, C.; Freitas, R.S.; Li, J.; McConville, W.; Cooley, B.J.; Lund, M.S.; Samarth, N.; Leighton, C.; Crespi, V.H.; et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 2006, 439, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Grimsditch, M.; Jaccard, Y.; Schuller, I.K. Magnetic anisotropies in dot arrays: Shape anisotropy versus coupling. Phys. Rev. B 1998, 58, 11539–11543. [Google Scholar] [CrossRef] [Green Version]
- Rivkin, K.; Heifetz, A.; Sievert, P.; Ketterson, J. Resonant modes of dipole-coupled lattices. Phys. Rev. B 2004, 70. [Google Scholar] [CrossRef] [Green Version]
- Stoner, E.C.; Wohlfarth, E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A 1948, 240, 599–642. [Google Scholar] [CrossRef]
- Wohlfarth, E.P. Relations between Different Modes of Acquisition of the Remanent Magnetization of Ferromagnetic Particles. J. Appl. Phys. 1958, 29, 595–596. [Google Scholar] [CrossRef]
- Jamet, S.; Rougemaille, N.; Toussaint, J.C.; Fruchart, O. Head-to-head domain walls in one-dimensional nanostructures. In Magnetic Nano- and Microwires; Elsevier: Amsterdam, The Netherlands, 2015; pp. 783–811. [Google Scholar]
- Shinjo, T. Magnetic Vortex Core Observation in Circular Dots of Permalloy. Science 2000, 289, 930–932. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Hoffmann, H.; Zweck, J. Magnetic switching of single vortex permalloy elements. Appl. Phys. Lett. 2001, 79, 3113–3115. [Google Scholar] [CrossRef]
- Yin, L.F.; Wei, D.H.; Lei, N.; Zhou, L.H.; Tian, C.S.; Dong, G.S.; Jin, X.F.; Guo, L.P.; Jia, Q.J.; Wu, R.Q. Magnetocrystalline Anisotropy in Permalloy Revisited. Phys. Rev. Lett. 2006, 97, 067203. [Google Scholar] [CrossRef] [Green Version]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Waeyenberge, B.V. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
- Exl, L.; Bance, S.; Reichel, F.; Schrefl, T.; Stimming, H.P.; Mauser, N.J. LaBonte’s method revisited: An effective steepest descent method for micromagnetic energy minimization. J. Appl. Phys. 2014, 115, 17D118. [Google Scholar] [CrossRef] [Green Version]
- Kuźma, D. Spin Dynamics in Inhomogeneous and Defected Low Dimensional Systems. Ph.D. Thesis, Institute of Nuclear Physics PAN, Krakow, Poland, 2018. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźma, D.; Zieliński, P. Finite Length Effects on Switching Mechanisms in Chains of Magnetic Particles. Magnetochemistry 2020, 6, 47. https://doi.org/10.3390/magnetochemistry6040047
Kuźma D, Zieliński P. Finite Length Effects on Switching Mechanisms in Chains of Magnetic Particles. Magnetochemistry. 2020; 6(4):47. https://doi.org/10.3390/magnetochemistry6040047
Chicago/Turabian StyleKuźma, Dominika, and Piotr Zieliński. 2020. "Finite Length Effects on Switching Mechanisms in Chains of Magnetic Particles" Magnetochemistry 6, no. 4: 47. https://doi.org/10.3390/magnetochemistry6040047
APA StyleKuźma, D., & Zieliński, P. (2020). Finite Length Effects on Switching Mechanisms in Chains of Magnetic Particles. Magnetochemistry, 6(4), 47. https://doi.org/10.3390/magnetochemistry6040047