Investigation of Cubic and Spherical IONPs’ Rheological Characteristics and Aggregation Patterns from the Perspective of Magnetic Targeting
Abstract
:1. Introduction
- -
- -
- This study investigated the PEG-coated spherical and cubic-shaped IONPs against the spherical nanocomposite previously employed;
- -
- The employed magnetic nanoparticle size ranged from 10 to 15 nm (ideal for particle targeting), as opposed to the 40 to 150 nm PEG-coated magnetoresponsive nanocomposite in our earlier work.
2. Materials and Methods
2.1. Chemicals
2.2. Syntheses
2.2.1. Ferric Oleate Synthesis
2.2.2. Magnetic Nanoparticles Synthesis
- The precursors and the corresponding quantities were iron oleate (0.833 g, 0.96 mmol), sodium oleate (0.213 g, 0.7 mmol), and 1-octadecene (14 mL, 1.06 mmol);
- The target temperature was 325 °C;
- The heating ramp rate of the process was 2.8 °C/min.
2.2.3. Phase Transfer of the Magnetic Nanoparticles
2.3. Characterization
3. Results
3.1. MNPs’ Synthesis and Morphology
3.1.1. Oleic Acid
3.1.2. MNPs’ Morphology
3.1.3. MNPs’ Colloidal Stability
3.2. Synthesis of the PEG-coated IONPs
3.3. IONPs’ Magnetic Property
3.4. Rheological Properties of the IONP’s Aqueous Dispersion
3.4.1. Model Suspension Preparation and Characteristics
3.4.2. Magnetic Field
3.4.3. Viscosity Curves of the Spherical and Cubic MNPs Aqueous dispersions
4. Discussion
4.1. Perspective of Biomedical Applications for the Cubic and Spherical Shape MNPs
4.1.1. Rheological Aspects of the PEG-Coated Cubic and Spherical IONPs Suspension from the Application Point of View
4.1.2. PEG-Coated IONPs Sedimentation
4.1.3. PEG-Coated IONPs Aggregation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mccarthy, J.; Weissleder, R. Multifunctional Magnetic Nanoparticles for Targeted Imaging and Therapy. Adv. Drug Deliv. Rev. 2008, 60, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Masood, F. Polymeric Nanoparticles for Targeted Drug Delivery System for Cancer Therapy. Mater. Sci. Eng. C 2016, 60, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Cherkasov, V.R.; Mochalova, E.N.; Babenyshev, A.V.; Vasilyeva, A.V.; Nikitin, P.I.; Nikitin, M.P. Nanoparticle Beacons: Supersensitive Smart Materials with On/Off-Switchable Affinity to Biomedical Targets. ACS Nano 2020, 14, 1792–1803. [Google Scholar] [CrossRef] [PubMed]
- Shabatina, T.I.; Vernaya, O.I.; Shabatin, V.P.; Melnikov, M.Y. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. Magnetochemistry 2020, 6, 30. [Google Scholar] [CrossRef]
- Nguyen, L.T.H.; Muktabar, A.; Tang, J.; Dravid, V.P.; Thaxton, C.S.; Venkatraman, S.; Ng, K.W. Engineered Nanoparticles for the Detection, Treatment and Prevention of Atherosclerosis: How Close Are We? Drug Discov. Today 2017, 22, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- George, T.A.; Hsu, C.-C.; Meeson, A.; Lundy, D.J. Nanocarrier-Based Targeted Therapies for Myocardial Infarction. Pharmaceutics 2022, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-N.; Wei, C.; Zhu, Z.-Z.; Hou, Y.-L.; Venkatraman, S.S.; Xu, Z.-C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Coating Techniques for Biomedical Applications. Chin. Phys. B 2014, 23, 037503. [Google Scholar] [CrossRef]
- Bernad, S.I.; Craciunescu, I.; Sandhu, G.S.; Dragomir-Daescu, D.; Tombacz, E.; Vekas, L.; Turcu, R. Fluid Targeted Delivery of Functionalized Magnetoresponsive Nanocomposite Particles to a Ferromagnetic Stent. J. Magn. Magn. Mater. 2021, 519, 167489. [Google Scholar] [CrossRef]
- Bernad, S.I.; Susan-Resiga, D.; Bernad, E. Hemodynamic Effects on Particle Targeting in the Arterial Bifurcation for Different Magnet Positions. Molecules 2019, 24, 2509. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wang, C.; Li, Y. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine 2022, 17, 1567–1583. [Google Scholar] [CrossRef]
- Nigam, S.; Barick, K.C.; Bahadur, D. Development of Citrate-Stabilized Fe3O4 Nanoparticles: Conjugation and Release of Doxorubicin for Therapeutic Applications. J. Magn. Magn. Mater. 2011, 323, 237–243. [Google Scholar] [CrossRef]
- Lin, J.-F.; Wu, J.; Zhu, J.; Mao, Z.; Said, A.H.; Leu, B.M.; Cheng, J.; Uwatoko, Y.; Jin, C.; Zhou, J. Abnormal Elastic and Vibrational Behaviors of Magnetite at High Pressures. Sci. Rep. 2014, 4, 6282. [Google Scholar] [CrossRef] [Green Version]
- Hui, C.; Shen, C.; Yang, T.; Bao, L.; Tian, J.; Ding, H.; Li, C.; Gao, H.-J. Large-Scale Fe3O4 Nanoparticles Soluble in Water Synthesized by a Facile Method. J. Phys. Chem. C 2008, 112, 11336–11339. [Google Scholar] [CrossRef]
- Ramírez-Cando, L.J.; De Simone, U.; Coccini, T. Toxicity Evaluation of Iron Oxide (Fe3O4) Nanoparticles on Human Neuroblastoma-Derived SH-SY5Y Cell Line. J. Nanosci. Nanotechnol. 2017, 17, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Foppen, J.W.; Banerjee, A.; Sawssen, S.; Bachhar, N.; Peddis, D.; Bandyopadhyay, S. Magnetic Nanoparticles to Unique DNA Tracers: Effect of Functionalization on Physico-chemical Properties. Nanoscale Res. Lett. 2021, 16, 24. [Google Scholar] [CrossRef]
- Kim, D.K.; Zhang, Y.; Voit, W.; Rao, K.V.; Muhammed, M. Synthesis and Characterization of Surfactant-Coated Superparamagnetic Monodispersed Iron Oxide Nanoparticles. J. Magn. Magn. Mater. 2001, 225, 30–36. [Google Scholar] [CrossRef]
- Salazar-Alvarez, G.; Qin, J.; Šepelák, V.; Bergmann, I.; Vasilakaki, M.; Trohidou, K.N.; Ardisson, J.D.; Macedo, W.A.A.; Mikhaylova, M.; Muhammed, M.; et al. Cubic versus Spherical Magnetic Nanoparticles: The Role of Surface Anisotropy. J. Am. Chem. Soc. 2008, 130, 13234–13239. [Google Scholar] [CrossRef]
- McDonagh, B.H.; Staudinger, C.; Normile, P.S.; De Toro, J.A.; Bandyopadhyay, S.; Glomm, W.R.; Singh, G. New Insights into Controlling the Twin Structure of Magnetic Iron Oxide Nanoparticles. Appl. Mater. Today 2021, 24, 101084. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent Progress on Magnetic Iron Oxide Nanoparticles: Synthesis, Surface Functional Strategies and Biomedical Applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen. ACS Nano 2017, 11, 2284–2303. [Google Scholar] [CrossRef]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron Oxide Nanoparticles: Diagnostic, Therapeutic and Theranostic Applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef]
- Bunge, A.; Leoștean, C.; Radu, T.; Tripon, S.C.; Borodi, G.; Turcu, R. Substituted Poly(Vinylphosphonate) Coatings of Magnetite Nanoparticles and Clusters. Magnetochemistry 2022, 8, 79. [Google Scholar] [CrossRef]
- Gelbrich, T.; Feyen, M.; Schmidt, A.M. Magnetic Thermoresponsive Core−Shell Nanoparticles. Macromolecules 2006, 39, 3469–3472. [Google Scholar] [CrossRef]
- Bronstein, L.M.; Huang, X.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B.D.; Dragnea, B. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chem. Mater. 2007, 19, 3624–3632. [Google Scholar] [CrossRef]
- Toster, J.; Kusumawardani, I.; Eroglu, E.; Iyer, K.S.; Rosei, F.; Raston, C.L. Superparamagnetic Imposed Diatom Frustules for the Effective Removal of Phosphates. Green Chem. 2014, 16, 82–85. [Google Scholar] [CrossRef]
- Soares, P.I.P.; Alves, A.M.R.; Pereira, L.C.J.; Coutinho, J.T.; Ferreira, I.M.M.; Novo, C.M.M.; Borges, J.P.M.R. Effects of Surfactants on the Magnetic Properties of Iron Oxide Colloids. J. Colloid Interface Sci. 2014, 419, 46–51. [Google Scholar] [CrossRef]
- Patil, R.M.; Shete, P.B.; Thorat, N.D.; Otari, S.V.; Barick, K.C.; Prasad, A.; Ningthoujam, R.S.; Tiwale, B.M.; Pawar, S.H. Non-Aqueous to Aqueous Phase Transfer of Oleic Acid Coated Iron Oxide Nanoparticles for Hyperthermia Application. RSC Adv. 2014, 4, 4515–4522. [Google Scholar] [CrossRef]
- Guerrini, L.; Alvarez-Puebla, R.; Pazos-Perez, N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef] [Green Version]
- Cogoni, G.; Grosso, M.; Baratti, R.; Romagnoli, J.A. Time evolution of the PSD in crystallization operations: An analytical solution based on Ornstein-Uhlenbeck process. AIChE J. 2012, 58, 3731–3739. [Google Scholar] [CrossRef]
- Hühn, J.; Carrillo-Carrion, C.; Soliman, M.G.; Pfeiffer, C.; Valdeperez, D.; Masood, A.; Chakraborty, I.; Zhu, L.; Gallego, M.; Yue, Z.; et al. Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chem. Mater. 2017, 29, 399–461. [Google Scholar] [CrossRef]
- Horie, M.; Fujita, K. Toxicity of Metal Oxides Nanoparticles. In Advances in molecular toxicology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 145–178. [Google Scholar] [CrossRef]
- Illés, E.; Szekeres, M.; Kupcsik, E.; Tóth, I.Y.; Farkas, K.; Jedlovszky-Hajdú, A.; Tombácz, E. PEGylation of Surfacted Magnetite Core–Shell Nanoparticles for Biomedical Application. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Oh, E.; Susumu, K.; Goswami, R.; Mattoussi, H. One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities. Langmuir 2010, 26, 7604–7613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yang, Z.; Lu, W.; Zhang, R.; Huang, Q.; Tian, M.; Li, L.; Liang, D.; Li, C. Influence of Anchoring Ligands and Particle Size on the Colloidal Stability and in Vivo Biodistribution of Polyethylene Glycol-Coated Gold Nanoparticles in Tumor-Xenografted Mice. Biomaterials 2009, 30, 1928–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, R.; Miskolczy, G. Magnetic Properties of Stable Dispersions of Subdomain Magnetite Particles. J. Appl. Phys. 1970, 41, 1064–1072. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Rosensweig, R.E. Ferrohydrodynamics; Cambridge University Press: Cambridge, UK, 1985; p. 344. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Kantorovich, S.S.; Reznikov, E.N.; Holm, C.; Pshenichnikov, A.F.; Lebedev, A.V.; Chremos, A.; Camp, P.J. Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation. Phys. Rev. E 2007, 75, 061405. [Google Scholar] [CrossRef] [Green Version]
- Socoliuc, V.; Vekas, L.; Turcu, R. Magnetically induced phase condensation in an aqueous dispersion of magnetic nanogels. Soft Matter 2013, 9, 3098–3105. [Google Scholar] [CrossRef]
- Gholizadeh, A. A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods. J. Am. Ceram. Soc. 2017, 100, 3577–3588. [Google Scholar] [CrossRef]
- Cho, Y.I.; Kensey, K.R. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 1991, 28, 241–262. [Google Scholar] [CrossRef]
- Bernad, S.I.; Bernad, E. Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications. Micromachines 2022, 13, 1818. [Google Scholar] [CrossRef]
- Ta, H.T.; Truong, N.P.; Whittaker, A.K.; Davis, T.P.; Peter, K. The Effects of Particle Size, Shape, Density and Flow Characteristics on Particle Margination to Vascular Walls in Cardiovascular Diseases. Expert Opin. Drug Deliv. 2018, 15, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Bernad, S.I.; Socoliuc, V.; Susan-Resiga, D.; Crăciunescu, I.; Turcu, R.; Tombácz, E.; Vékás, L.; Ioncica, M.C.; Bernad, E.S. Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting. Pharmaceutics 2022, 14, 1923. [Google Scholar] [CrossRef]
- Carreau, P.J. Rheological Equations from Molecular Network Theories. Trans. Soc. Rheol. 1972, 16, 99–127. [Google Scholar] [CrossRef]
- Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [Green Version]
- Bhang, S.H.; Won, N.; Lee, T.-J.; Jin, H.; Nam, J.; Park, J.; Chung, H.; Park, H.-S.; Sung, Y.-E.; Hahn, S.K.; et al. Hyaluronic Acid−Quantum Dot Conjugates for In Vivo Lymphatic Vessel Imaging. ACS Nano 2009, 3, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Gyawali, D.; Stark, J.M.; Akcora, P.; Nair, P.; Tran, R.T.; Yang, J. A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter 2012, 8, 1499–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020, 11, 2337. [Google Scholar] [CrossRef] [PubMed]
- Joseph, E.; Singhvi, G. Chapter 4—Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 91–116. [Google Scholar] [CrossRef]
- Wiogo, H.T.R.; Lim, M.; Bulmus, V.; Yun, J.; Amal, R. Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir 2011, 27, 843–850. [Google Scholar] [CrossRef]
- Yeap, S.P.; Toh, P.Y.; Ahmad, A.L.; Low, S.C.; Majetich, S.A.; Lim, J.K. Colloidal stability and magnetophoresis of gold-coated iron oxide nanorods in biological media. J. Phys. Chem. C 2012, 116, 22561–22569. [Google Scholar] [CrossRef]
- Petosa, A.R.; Jaisi, D.; Quevedo, I.; Elimelech, M.; Tufenkji, N. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532–6549. [Google Scholar] [CrossRef] [Green Version]
- Vikesland, P.J.; Rebodos, R.L.; Bottero, J.Y.; Rose, J.; Masion, A. Aggregation and sedimentation of magnetite nanoparticle clusters. Environ. Sci. Nano 2016, 3, 567–577. [Google Scholar] [CrossRef] [Green Version]
- El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Clinical relevance. Nanomedicine 2018, 13, 953–971. [Google Scholar] [CrossRef] [PubMed]
Particle Shape | Particle Core Diameter/Edge Length [nm] | Heating Rate [°C/min] | Target Temperature [°C] | Dwelling Time [min] |
---|---|---|---|---|
Spherical | 8–11 | 3.0 | 320 | 45 |
Cubic | 14–16 | 2.8 | 325 | 45 |
Sample | Dm [nm] | DTEM [nm] | DH [nm] | DH–DTEM [nm] | The Polydispersity Index (PDI) | Zeta Potential (mV) |
---|---|---|---|---|---|---|
Spherical MNPs | 7.3 ± 1.6 | 10 ± 1.2 | 19.8 ± 0.4 | 9.8 ± 0.8 | 0.14 | −14 |
Cubic MNPs | 9.0 ± 1.6 | 15.6 ± 1.6 | 24.7 ± 5.7 | 9.2 ± 4.2 | 0.11 | −23.9 |
Sample | DH before Coating [nm] | DH after Coating [nm] | Zeta Potential (mV) |
---|---|---|---|
Spherical MNPs | 19.8 ± 0.4 | 135.3 ± 38.8 | −26.9 |
Cubic MNPs | 24.7 ± 5.8 | 132.6 ± 36.9 | −28.3 |
Particles | Synthesis Procedure | Size, DTEM [nm] | Magnetic Diameter, DM [nm] | Saturation Magnetization, Ms [emu/g] | References |
---|---|---|---|---|---|
Spherical | Thermal decomposition | 10 ± 1.2 | 7.3 ± 1.6 | 34 | Our results |
Cubic | Thermal decomposition | 15.6 ± 1.6 | 9.0 ± 1.6 | 78 | Our results |
Spherical | Thermal decomposition | 14.5 | - | 75 ± 1 | [17] |
Cubic | Thermal decomposition | 12 | - | 75 ± 1 | [17] |
Spherical | Thermal decomposition | 18.5 ± 1.7 | 10.7 ± 5.6 | 74 | [20] |
Spherical | Controlled co-precipitation | 7.2 ± 0.02 | 5.6 | 42.1 | [16] |
Spherical | Co-precipitation | 12 | 8.7 | 52.03 | [40] |
Spherical | Co-precipitation | 10 | - | 34 (CMOA = 16 mM) 45 (CMOA = 64 mM) | [26] |
Particle | B [mT] | η∞ [Pas] | η0 [Pas] | C [s] | p [−] | r2 |
---|---|---|---|---|---|---|
Spherical | 0 | 0.0019 | 15.4 | 67.6 | 0.4325 | 0.971 |
34 | 0.0019 | 20.2 | 67.9 | 0.4335 | 0.971 | |
183 | 0.0026 | 140.0 | 116.6 | 0.474 | 0.989 | |
Cubic | 0 | 0.002 | 90 | 87.4 | 0.454 | 0.982 |
34 | 0.002 | 130 | 95.4 | 0.460 | 0.984 | |
183 | 0.002 | 100 | 61.9 | 0.395 | 0.941 |
Viscosity Values [Pa∙s] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
B [mT] | = 1000 s−1 | = 100 s−1 | = 10 s−1 | = 1 s−1 | = 0.1 s−1 | |||||
sMNPs | cMNPs | sMNPs | cMNPs | sMNPs | cMNPs | sMNPs | cMNPs | sMNPs | cMNPs | |
0 | 0.0013 | 0.0011 | 0.0041 | 0.0034 | 0.0103 | 0.0079 | 0.0525 | 0.0289 | 0.3531 | 0.1341 |
34 | 0.0017 | 0.00127 | 0.0045 | 0.0038 | 0.0159 | 0.0098 | 0.0696 | 0.0318 | 0.8124 | 0.1494 |
183 | 0.0029 | 0.00166 | 0.0076 | 0.0039 | 0.0175 | 0.0122 | 0.1069 | 0.1003 | 1.2086 | 0.699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioncica, M.-C.; Bandyopadhyay, S.; Bali, N.; Socoliuc, V.; Bernad, S.I. Investigation of Cubic and Spherical IONPs’ Rheological Characteristics and Aggregation Patterns from the Perspective of Magnetic Targeting. Magnetochemistry 2023, 9, 99. https://doi.org/10.3390/magnetochemistry9040099
Ioncica M-C, Bandyopadhyay S, Bali N, Socoliuc V, Bernad SI. Investigation of Cubic and Spherical IONPs’ Rheological Characteristics and Aggregation Patterns from the Perspective of Magnetic Targeting. Magnetochemistry. 2023; 9(4):99. https://doi.org/10.3390/magnetochemistry9040099
Chicago/Turabian StyleIoncica, Maria-Cristina, Sulalit Bandyopadhyay, Nesrine Bali, Vlad Socoliuc, and Sandor I. Bernad. 2023. "Investigation of Cubic and Spherical IONPs’ Rheological Characteristics and Aggregation Patterns from the Perspective of Magnetic Targeting" Magnetochemistry 9, no. 4: 99. https://doi.org/10.3390/magnetochemistry9040099
APA StyleIoncica, M. -C., Bandyopadhyay, S., Bali, N., Socoliuc, V., & Bernad, S. I. (2023). Investigation of Cubic and Spherical IONPs’ Rheological Characteristics and Aggregation Patterns from the Perspective of Magnetic Targeting. Magnetochemistry, 9(4), 99. https://doi.org/10.3390/magnetochemistry9040099