One-Dimensional Electro-Thermal Modelling of Battery Pack Cooling System for Heavy-Duty Truck Application
Abstract
:1. Introduction
- Thermal management solutions for heavy-duty electric vehicles, providing analysis of these vehicles’ thermal behaviour.
- Use of actual drive cycle and power demand data for realistic battery design.
- The 1D electro-thermal modelling is based on ECM, battery test data, and typical thermal management materials.
- Industrial-scale applicability using realistic cell characteristics and cooling system performance.
2. Materials and Methods
2.1. System Description
2.2. Battery Thermal Model
2.2.1. Battery Life Cycle Dynamics and Electrical Parameters Overview
2.2.2. Equivalent Circuit Model (ECM)
2.2.3. Drive Cycle Energy Demand Analysis
2.3. Thermal Cooling Model
2.3.1. Thermal Parameters Overview
2.3.2. Simulink Model Overview
2.4. Simplified Assumptions for Battery System Modelling
3. Results
3.1. Power Demand
3.2. Electrical Battery Model
3.2.1. Model Validation
3.2.2. Long-Haul Cycle
3.2.3. AVL Cycle Results
3.3. Battery Thermal Management Performance
3.3.1. Flow Rate Simulation Results
3.3.2. Inlet Simulation Results
3.4. Transient Thermal Performance Analysis of the Battery Pack
4. Discussion
4.1. Performance Insights from the Electrical Model
4.1.1. Long-Haul Driving Cycle
4.1.2. AVL Cycle
4.1.3. Validation of Model
4.1.4. Key Assumptions and Limitations of the Model
4.2. Thermal Cooling System Model
4.2.1. Coolant Flow Rate
4.2.2. Coolant Inlet Temperature
4.2.3. System Optimisation
4.3. Combined Transient Analysis Results
5. Conclusions
- As cell ageing progresses and the initial SoC decreases, the suitability of the battery pack for long-distance travel diminishes significantly, indicating that battery degradation plays a critical role in reducing range capabilities.
- Despite ageing, cells may exhibit improved range performance from regenerative braking during drive cycles, suggesting that drive cycle regeneration can partially offset the impacts of cell degradation.
- Increasing the coolant flow rate to 18 LPM and actively controlling the inlet temperature within ±7.8 °C were found to significantly enhance thermal regulation, resulting in an 80%+ improvement in thermal stability under ambient conditions of 25 °C and 40 °C.
- The predicted single-charge range of the vehicle varied based on drive conditions, with a maximum range of 285 km, which underscores the variability in battery performance depending on real-world operating conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG000345. [Google Scholar] [CrossRef]
- Hannah, R. Cars, Planes, Trains: Where Do CO2 Emissions from Transport Come from? Our World in Data. 2020. Available online: https://ourworldindata.org/co2-emissions-from-transport (accessed on 14 April 2024).
- European Parliament. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. Off. J. Eur. Union 2021, L 111, 13–53. [Google Scholar]
- Department of Transport, Government Takes Historic Step Towards Net-Zero with End of Sale of New Petrol and Die-Sel Cars by 2030. 2020. Available online: https://www.gov.uk/government/news/government-takes-historic-step-towards-net-zero-with-end-of-sale-of-new-petrol-and-diesel-cars-by-2030 (accessed on 15 April 2024).
- Abnett, K. Electric Car Sales Surge as Europe’s Climate Targets Bite. 2021. Available online: https://www.reuters.com/business/sustainable-business/electric-car-sales-surge-europes-climate-targets-bite-2021-06-29/ (accessed on 16 April 2024).
- Thomas, C.E.S. Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. Int. J. Hydrogen Energy 2009, 34, 9279–9296. [Google Scholar] [CrossRef]
- Department for Transport. UK Confirms Pledge for Zero-Emission HGVs by 2040 and Unveils New Chargepoint Design. 2021. Available online: https://www.gov.uk/government/news/uk-confirms-pledge-for-zero-emission-hgvs-by-2040-and-unveils-new-chargepoint-design#:~:text=News%20story-,UK%20confirms%20pledge%20for%20zero%2Demission%20HGVs%20by%202040%20and,within%20the%20next%202%20decades.&text=All%20new%20heavy%20goods%20vehicles,today%20(10%20November%202021) (accessed on 20 November 2024).
- Hao, H.; Geng, Y.; Tate, J.E.; Liu, F.; Chen, K.; Sun, X.; Liu, Z.; Zhao, F. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nat. Commun. 2019, 10, 5398. [Google Scholar] [CrossRef]
- Agency, I.E. Global EV Outlook 2021: Accelerating Ambitions Despite the Pandemic. 2021. Available online: www.iea.org/t&c/ (accessed on 15 April 2024).
- Transport, D.O. A Simplified Guide to Lorry Types and Weights. 2023. Available online: https://assets.publishing.service.gov.uk/media/5a74dbd340f0b65f61322ceb/simplified-guide-to-lorry-types-and-weights.pdf (accessed on 16 April 2024).
- Hasnain, A.; Gamwari, A.S.; Resalayyan, R.; Sadabadi, K.F.; Khaligh, A. Medium and heavy duty vehicle electrification: Trends and technologies. IEEE Trans. Transp. Electrif. 2024. [Google Scholar] [CrossRef]
- Sandeep, V.; Shastri, S.; Sardar, A.; Salkuti, S.R. Modeling of battery pack sizing for electric vehicles. Int. J. Power Electron. Drive Syst. 2020, 11, 1987–1994. [Google Scholar] [CrossRef]
- Salek, F.; Morrey, D.; Henshall, P.; Resalati, S. Techno-Economic Assessment of Utilising Second-Life Batteries in Electric Vehicle Charging Stations; SAE: Warrendale, PA, USA, 2023. [Google Scholar] [CrossRef]
- Tudoroiu, R.E.; Zaheeruddin, M.; Tudoroiu, N.; Radu, S.M. SOC estimation of a rechargeable li-ion battery used in fuel cell hybrid electric vehicles—Comparative study of accuracy and robustness performance based on statistical criteria. Part II: SOC estimators. Batteries 2020, 6, 41. [Google Scholar] [CrossRef]
- Basma, H.; Beys, Y.; Rodríguez, F. Battery Electric Tractor-Trailers in the European Union: A Vehicle Technology Analysis. 2021. Available online: www.theicct.org (accessed on 15 April 2024).
- Yao, L.W.; Aziz, J.A.; Kong, P.Y.; Idris, N.R.N. Modeling of lithium-ion battery using MATLAB/simulink. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1729–1734. [Google Scholar]
- Salek, F.; Azizi, A.; Resalati, S.; Henshall, P.; Morrey, D. Mathematical modelling and simulation of second life battery pack with heterogeneous state of health. Mathematics 2022, 10, 3843. [Google Scholar] [CrossRef]
- Martyushev, N.V.; Malozyomov, B.V.; Sorokova, S.N.; Efremenkov, E.A.; Qi, M. Mathematical modeling of the state of the battery of cargo electric vehicles. Mathematics 2023, 11, 536. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery thermal models for hybrid vehicle simulations. J. Power Sources 2002, 110, 370–382. [Google Scholar] [CrossRef]
- Pesaran, A.; Santhanagopalan, S.; Kim, G.H. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation); National Renewable Energy Lab.(NREL): Golden, CO, USA, 2013.
- Tarascon, J.-M.; Gozdz, A.S.; Schmutz, C.; Shokoohi, F.; Warren, P.C. Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ion. 1996, 86, 49–54. [Google Scholar] [CrossRef]
- Lo, J. Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-In Hybrid Electric Vehicle Range. Master of Applied Science Thesis, University of Waterloo, Waterloo, ON, USA, 2013. [Google Scholar]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar] [CrossRef]
- Choudhari, V.G.; Dhoble, D.A.S.; Sathe, T.M. A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. J. Energy Storage 2020, 32, 101729. [Google Scholar] [CrossRef]
- Greco, A.; Cao, D.; Jiang, X.; Yang, H. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes. J. Power Sources 2014, 257, 344–355. [Google Scholar] [CrossRef]
- Saw, L.H.; Ye, Y.; Tay, A.A.O.; Chong, W.T.; Kuan, S.H.; Yew, M.C. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl. Energy 2016, 177, 783–792. [Google Scholar] [CrossRef]
- Tesla, Dimensions and Weights. 2024. Available online: https://www.tesla.com/ownersmanual/model3/en_cn/GUID-56562137-FC31-4110-A13C-9A9FC6657BF0.html (accessed on 13 November 2024).
- Nissan. Leaf, the Electric Family Car. 2024. Available online: https://www.nissan.co.uk/vehicles/new-vehicles/leaf.html?cid=psm_cmid=17064511648_grid=131231644970_adid=595105867889&gad_source=1&gclid=CjwKCAiAudG5BhAREiwAWMlSjF4SKaC72zA2ccqbWAoHdD7rTwQSaUZfqC8-JupvA95B2gdF-CqO1BoCtvAQAvD_BwE&gclsrc=aw.ds (accessed on 13 November 2024).
- Volvo. FH Specifications. 2024. Available online: https://www.volvotrucks.co.uk/en-gb/trucks/models/volvo-fh/specifications.html (accessed on 13 November 2024).
- Gunes, F.; Yang, Y.; Kim, B.; Wellers, M. Mechanical hybrid control for heavy-goods vehicle. In Proceedings of the 2018 UKACC 12th International Conference on Control, Sheffield, UK, 5–7 September 2018; pp. 127–132. [Google Scholar] [CrossRef]
- Singh, A.K.; Dalai, A.; Kumar, P. Analysis of induction motor for electric vehicle application based on drive cycle analysis. In Proceedings of the 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems, Mumbai, India, 16–19 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Salameh, M.; Brown, I.P.; Krishnamurthy, M. Fundamental evaluation of data clustering approaches for driving cycle-based machine design optimization. IEEE Trans. Transp. Electrif. 2019, 5, 1395–1405. [Google Scholar] [CrossRef]
- Leonard, A.T.; Salek, F.; Azizi, A.; Resalati, S. Electrification of a class 8 heavy-duty truck considering battery pack sizing and cargo capacity. Appl. Sci. 2022, 12, 9683. [Google Scholar] [CrossRef]
- Pesaran, A. Battery thermal management in EVs and HEVs: Issues and solutions. In Proceedings of the Advanced Automotive Battery Conference, Las Vegas, NV, USA, 6–8 February 2001; p. 10. [Google Scholar]
- Xu, X.; Li, W.; Xu, B.; Qin, J. Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions. Appl. Energy 2019, 250, 404–412. [Google Scholar] [CrossRef]
- Piao, C.; Chen, T.; Zhou, A.; Wang, P.; Chen, J. Research on electric vehicle cooling system based on active and passive liquid cooling. J. Phys. Conf. Ser. 2020, 1549, 042146. [Google Scholar] [CrossRef]
- Lan, C.; Xu, J.; Qiao, Y.; Ma, Y. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 2016, 101, 284–292. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Hosen, M.S.; Jaguemont, J.; Berecibar, M.; Van Mierlo, J. A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors. Appl. Therm. Eng. 2020, 185, 116449. [Google Scholar] [CrossRef]
- Yue, Q.L.; He, C.X.; Wu, M.C.; Xu, J.B.; Zhao, T.S. Pack-level modeling of a liquid cooling system for power batteries in electric vehicles. Int. J. Heat Mass Transf. 2022, 192, 122946. [Google Scholar] [CrossRef]
- Broatch, A.; Olmeda, P.; Margot, X.; Agizza, L. A generalized methodology for lithium-ion cells characterization and lumped electro-thermal modelling. Appl. Therm. Eng. 2022, 217, 119174. [Google Scholar] [CrossRef]
- Samsung. Introduction of Samsung SDI’s 94 Ah Cells. 2015. Available online: https://files.gwl.eu/inc/_doc/attach/StoItem/7213/30118_Introduction%20of%20SDI%20EV%2094Ah%20cell_V9-2.pdf (accessed on 12 November 2024).
- Wang, Q.; Jiang, B.; Li, B.; Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 106–128. [Google Scholar] [CrossRef]
- Boyd, J. China and Japan push for a global charging standard for EVs. IEEE Spectr. 2018, 56, 12–13. [Google Scholar] [CrossRef]
- Vovyo Pump, Automotive Electric Water Pump. 2024. Available online: https://www.vovyopump.com/automotive-electric-water-pump/ (accessed on 15 April 2024).
- Hoşöz, M.; Gündem, A.; Keklik, E. Performance comparison of propylene glycol-water and ethylene glycol-water mixtures as engine coolants in a flat-tube automobile radiator. Int. J. Automot. Sci. Technol. 2021, 5, 147–156. [Google Scholar] [CrossRef]
- Mathworks. Battery: Generic Battery Model; n.d. Available online: https://uk.mathworks.com/help/sps/powersys/ref/battery.html (accessed on 12 November 2024).
- Lai, X.; Gao, W.; Zheng, Y.; Ouyang, M.; Li, J.; Han, X.; Zhou, L. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochim. Acta 2019, 295, 1057–1066. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Thermal conductivity of aluminum alloys—A review. Materials 2023, 16, 2972. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2023. [Google Scholar]
- Mazhar, S.; Qarni, A.A.; Haq, Y.U.; Haq, Z.U.; Murtaza, I. Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 2020, 46, 12593–12605. [Google Scholar] [CrossRef]
- Dow Chemical Company. Engineering and Operating Guide for Dowfrost and Dowfrost HD inhibited Propylene Glycol-Based Heat Transfer Fluids. 2008. Available online: https://www.dow.com/documents/180/180-01286-01-engineering-and-operating-guide-for-dowfrost-and-dowfrost-hd.pdf?iframe=true#:~:text=Composition%20%28%25%20by%20weight%29%20Propylene%20Glycol%2095.5%2094.0,10.7%20Reserve%20Alkalinity%20%28min.%29%209.0%20ml%2016.0%20ml (accessed on 12 November 2024).
- MathWorks. MATLAB Simulink. 2023. Available online: https://www.mathworks.com/ (accessed on 4 December 2024).
- Durst, F.; Arnold, I. Fluid Mechanics: An Introduction to the Theory of Fluid Flows; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Salek, F.; Halder, P.; Leonard, A.T.; Babaie, M.; Resalati, S.; Zare, A. Battery Sizing, Parametric Analysis, and Powertrain Design for a Class 8 Heavy-Duty BATTERY Electric Truck; SAE Technical Paper Series; SAE: Warrendale, PA, USA, 2023; Available online: https://api.semanticscholar.org/CorpusID:258034060 (accessed on 12 November 2024).
- Salek, F.; Abouelkhair, E.; Babaie, M.; Cunliffe, F.; Zare, A. Assessment of the powertrain electrification for a heavy-duty class 8 truck for two different electric drives. In Proceedings of the SAE Powertrains, Fuels & Lubricants Conference & Exhibition, Krakow, Poland, 6–8 September 2022; p. 8. [Google Scholar]
- DAF. New Generation DAF Electric. 2024. Available online: https://www.daf.co.uk/en-gb/trucks/new-generation-daf-electric (accessed on 17 November 2024).
- Kim, E.; Shin, K.G.; Lee, J. Real-time battery thermal management for electric vehicles. In Proceedings of the 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), Berlin, Germany, 14–17 April 2014; pp. 72–83. [Google Scholar] [CrossRef]
- Makings, M.; Maciocha, M.; Biggs, J.; Salek, F.; Zare, A.; Resalati, S.; Short, T.; Babaie, M. CFD Analysis of the Battery Thermal Management System for a Heavy-Duty Truck; WCX SAE World Congress Experience; SAE Technical Paper; SAE: Warrendale, PA, USA, 2024. [Google Scholar] [CrossRef]
- Henke, M.; Hailu, G. Thermal management of stationary battery systems: A literature review. Energies 2020, 13, 4194. [Google Scholar] [CrossRef]
- Wu, S.; Xiong, R.; Li, H.; Nian, V.; Ma, S. The state of the art on preheating lithium-ion batteries in cold weather. J. Energy Storage 2020, 27, 101059. [Google Scholar] [CrossRef]
- Angermeier, S.; Ketterer, J.; Karcher, C. Liquid-based battery temperature control of electric buses. Energies 2020, 13, 4990. [Google Scholar] [CrossRef]
Type | Module | Pack | Total |
---|---|---|---|
Electrical architecture | 12 cells in series (12 s) | 16 modules in series | 7 packs in parallel |
Cell [41] | Module | Pack | Total | |
---|---|---|---|---|
Nominal voltage (V) | 3.68 | 44.16 | 706.56 | 706.56 |
Maximum voltage (V) | 4.15 | 49.80 | 796.80 | 796.80 |
Capacity (Ah) | 94 | 94 | 94 | 658 |
Energy capacity (kWh) | 0.35 | 66.41 | 64.41 | 464.92 |
Maximum energy capacity (kWh) | 0.39 | 74.52 | 74.52 | 521.64 |
Mass (kg) | 2.1 | 28 | 448 | 3136 |
Charge/Discharge Cycles | Capacity Difference at 25 °C (%) | Internal Resistance Difference at 25 °C (%) |
---|---|---|
1 | 0 | 0 |
2000 | −9.96 | 17.28 |
4000 | −20.28 | 42.45 |
Parameter | Symbol | Unit |
---|---|---|
Voltage | V | |
Polarisation constant | V/Ah | |
Current dynamics | A | |
Battery current | A | |
Extracted capacity | Ah | |
Maximum battery capacity | Q | Ah |
Exponential voltage | A | V |
Exponential capacity | B | Ah−1 |
Materials | Thickness (m) | Thermal Conductivity | Application |
---|---|---|---|
Aluminium | 0.004–0.005 | 202.40 | Cell casing and module plates |
HV Insulation | 0.002 | 1.38 | Electrical insulation and high-voltage protection |
PVC Lid | 0.005 | 0.02 | Electrical insulation and thermal protection |
Air Pockets | N/A | 5.00 | Heat Dissipation |
System | Property | Values |
---|---|---|
Coolant | Viscosity | 4.41 (mPa/s) |
Kinematic Viscosity | 4.25 (mm2/s) | |
Thermal Conductivity | 0.35 (W/mK) | |
Specific Heat Capacity | 3.57 (kJ/kg K) | |
Heat Exchanger Pipes | Thermal Conductivity | 202.4 (W/mK) |
Hydraulic Diameter | 0.01 (m) | |
Pipe Roughness | 1 × 10−6 (m) | |
Laminar Flow Upper Reynolds Number | 2300 | |
Turbulent Flow Lower Reynolds Number | 4000 | |
Nusselt Number | 3.66 | |
Darcy Friction Factor Constant | 64 |
Cycles | Energy Consumption—Literature (kWh) | Energy Consumption—Simulink Model (kWh) | Difference (%) |
---|---|---|---|
Long-haul | 169.42 | 187.77 | 10.82 |
AVL | 343.42 | 339.83 | −1.05 |
Cycles | 1 | 2000 | 4000 | ||||||
---|---|---|---|---|---|---|---|---|---|
Pack Energy Capacity (kWh) | 66.41 | 59.78 | 53.13 | ||||||
Initial SoC | 1 | 0.9 | 0.8 | 1 | 0.9 | 0.8 | 1 | 0.9 | 0.8 |
Final SoC | 0.60 | 0.48 | 0.37 | 0.55 | 0.44 | 0.32 | 0.48 | 0.37 | 0.26 |
Energy Consumed (kWh) | 188 | 193 | 197 | 189 | 194 | 199 | 192 | 197 | 201 |
Cycles | 1 | 2000 | 4000 | ||||||
---|---|---|---|---|---|---|---|---|---|
Pack Energy Capacity (kWh) | 66.41 | 59.78 | 53.13 | ||||||
Initial SoC | 1 | 0.9 | 0.8 | 1 | 0.9 | 0.8 | 1 | 0.9 | 0.8 |
Final SoC | 0.26 | 0.18 | 0.08 | 0.19 | 0.11 | 0 | 0.09 | 0 | 0 |
Energy Consumed (kWh) | 342 | 333 | 335 | 339 | 331 | 335 | 335 | 335 | 298 |
Ambient Temperature (°C) | Coolant Flow Rate (LPM) | Coolant Inlet Temperature (°C) |
---|---|---|
−15 | 18 | −7.2 |
25 | 18 | 25.0 |
40 | 18 | 32.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciocha, M.; Short, T.; Thorat, U.; Salek, F.; Thompson, H.; Babaie, M. One-Dimensional Electro-Thermal Modelling of Battery Pack Cooling System for Heavy-Duty Truck Application. Batteries 2025, 11, 55. https://doi.org/10.3390/batteries11020055
Maciocha M, Short T, Thorat U, Salek F, Thompson H, Babaie M. One-Dimensional Electro-Thermal Modelling of Battery Pack Cooling System for Heavy-Duty Truck Application. Batteries. 2025; 11(2):55. https://doi.org/10.3390/batteries11020055
Chicago/Turabian StyleMaciocha, Mateusz, Thomas Short, Udayraj Thorat, Farhad Salek, Harvey Thompson, and Meisam Babaie. 2025. "One-Dimensional Electro-Thermal Modelling of Battery Pack Cooling System for Heavy-Duty Truck Application" Batteries 11, no. 2: 55. https://doi.org/10.3390/batteries11020055
APA StyleMaciocha, M., Short, T., Thorat, U., Salek, F., Thompson, H., & Babaie, M. (2025). One-Dimensional Electro-Thermal Modelling of Battery Pack Cooling System for Heavy-Duty Truck Application. Batteries, 11(2), 55. https://doi.org/10.3390/batteries11020055