Effects of Ultrasonic Pretreatment on the Discharge for Better Recycling of Spent Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Experimental Apparatus and Devices
2.2.1. Experimental Apparatus
2.2.2. Preparation for XRF Analysis
2.3. Effects of Electrolyte Concentration on Discharge in Electrolyte Solution Under Same Ultrasonic Power
2.4. Pretreatment and Discharge Efficiency Calculation
2.5. Effects of Different Ultrasonic Powers in Same Electrolyte Solution
3. Results and Discussion
3.1. Experimental Phenomenon
3.2. Effect of Electrolyte Concentration Without Ultrasonic Treatment
3.3. Effects of Ultrasonic Power
3.4. XRF Analysis
3.5. pH Analysis
3.5.1. pH of Electrolyte Solution After Discharge with Different Ultrasonic Powers
3.5.2. pH of Electrolyte Solution with Different Mass Concentrations After Discharge
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Yu, J. A Comparative Life Cycle Assessment on Lithium-Ion Battery: Case Study on Electric Vehicle Battery in China Considering Battery Evolution. Waste Manag. Res. 2021, 39, 156–164. [Google Scholar] [CrossRef]
- Hossain, R.; Sarkar, M.; Sahajwalla, V. Technological Options and Design Evolution for Recycling Spent Lithium-ion Batteries: Impact, Challenges, and Opportunities. WIREs Energy Environ. 2023, 12, e481. [Google Scholar] [CrossRef]
- Wang, Y.; Diao, W.; Fan, C.; Wu, X.; Zhang, J. Benign Recycling of Spent Batteries towards All-Solid-State Lithium Batteries. Chem.—Eur. J. 2019, 25, 8975–8981. [Google Scholar] [CrossRef]
- Niu, B.; Xiao, J.; Xu, Z. Recycling Spent LiCoO2 Battery as a High-efficient Lithium-doped Graphitic Carbon Nitride/Co3O4 Composite Photocatalyst and Its Synergistic Photocatalytic Mechanism. Energy Environ. Mater. 2023, 6, e12312. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Recovery of Valuable Metals from Cathodic Active Material of Spent Lithium Ion Batteries: Leaching and Kinetic Aspects. Waste Manag. 2015, 45, 306–313. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Xu, Z. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environ. Sci. Technol. 2017, 51, 11960–11966. [Google Scholar] [CrossRef]
- Golmohammadzadeh, R.; Faraji, F.; Rashchi, F. Recovery of Lithium and Cobalt from Spent Lithium Ion Batteries (LIBs) Using Organic Acids as Leaching Reagents: A Review. Resour. Conserv. Recycl. 2018, 136, 418–435. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Xu, Z. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives. Environ. Sci. Technol. 2020, 54, 9–25. [Google Scholar] [CrossRef]
- Duan, X.; Zhu, W.; Ruan, Z.; Xie, M.; Chen, J.; Ren, X. Recycling of Lithium Batteries—A Review. Energies 2022, 15, 1611. [Google Scholar] [CrossRef]
- Tong, Z.; Ren, X.; Ni, M.; Bu, X.; Dong, L. Review of Ultrasound-Assisted Recycling and Utilization of Cathode Materials from Spent Lithium-Ion Batteries: State-of-the-Art and Outlook. Energy Fuels 2023, 37, 14574–14588. [Google Scholar] [CrossRef]
- Guo, B.; Liu, X.; He, R.; Gao, X.; Yan, X.; Yang, S. Advances on Mechanism of Degradation and Thermal Runaway of Lithium-Ion Batteries. Chin. J. Rare Met. 2024, 48, 225–239. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, T.; Cheng, J.; Ji, F.; Zeng, Z.; Li, Y.; Zhang, C.; Wang, J.; Xia, W.; Ci, N.; et al. Unlocking the Decomposition Limitations of the Li2C2O4 for Highly Efficient Cathode Preliathiations. Adv. Powder Mater. 2024, 3, 100215. [Google Scholar] [CrossRef]
- Zhong, W.; Tao, J.; Chen, Y.; White, R.G.; Zhang, L.; Li, J.; Huang, Z.; Lin, Y. Unraveling the Evolution of Cathode–Solid Electrolyte Interface Using Operando X-Ray Photoelectron Spectroscopy. Adv. Powder Mater. 2024, 3, 100184. [Google Scholar] [CrossRef]
- Fujita, T.; Chen, H.; Wang, K.; He, C.; Wang, Y.; Dodbiba, G.; Wei, Y. Reduction, reuse and recycle of spent Li-ion batteries for automobiles:A review. Int. J. Miner. Metall. Mater. 2021, 28, 179–192. [Google Scholar] [CrossRef]
- Zhang, G.; Yuan, X.; He, Y.; Wang, H.; Zhang, T.; Xie, W. Recent Advances in Pretreating Technology for Recycling Valuable Metals from Spent Lithium-Ion Batteries. J. Hazard. Mater. 2021, 406, 124332. [Google Scholar] [CrossRef]
- Zhong, X.; Liu, W.; Han, J.; Jiao, F.; Qin, W.; Liu, T. Pretreatment for the Recovery of Spent Lithium Ion Batteries: Theoretical and Practical Aspects. J. Clean. Prod. 2020, 263, 121439. [Google Scholar] [CrossRef]
- Punt, T.; Bradshaw, S.M.; Van Wyk, P.; Akdogan, G. The Efficiency of Black Mass Preparation by Discharge and Alkaline Leaching for LIB Recycling. Minerals 2022, 12, 753. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Xu, Z. Generation and Detection of Metal Ions and Volatile Organic Compounds (VOCs) Emissions from the Pretreatment Processes for Recycling Spent Lithium-Ion Batteries. Waste Manag. 2016, 52, 221–227. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.; Ge, L.; Fu, R.; Zhang, X.; Huang, Y. Characteristics of Wet and Dry Crushing Methods in the Recycling Process of Spent Lithium-Ion Batteries. J. Power Sources 2013, 240, 766–771. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Chen, Z.; Wang, S.; Wang, Y.; Liu, W.; Li, W.; Xue, R.; Liu, C.T. Susceptibility of Chloride Ion Concentration, Temperature, and Surface Roughness on Pitting Corrosion of CoCrFeNi Medium-entropy Alloy. Mater. Corros. 2022, 73, 106–115. [Google Scholar] [CrossRef]
- Ali, H.; Khan, H.A.; Pecht, M. Preprocessing of Spent Lithium-Ion Batteries for Recycling: Need, Methods, and Trends. Renew. Sustain. Energy Rev. 2022, 168, 112809. [Google Scholar] [CrossRef]
- Ren, X.; Tong, Z.; Dai, Y.; Ma, G.; Lv, Z.; Bu, X.; Bilal, M.; Vakylabad, A.B.; Hassanzadeh, A. Effects of Mechanical Stirring and Ultrasound Treatment on the Separation of Graphite Electrode Materials from Copper Foils of Spent LIBs: A Comparative Study. Separations 2023, 10, 246. [Google Scholar] [CrossRef]
- Zhang, G.; He, Y.; Wang, H.; Feng, Y.; Xie, W.; Zhu, X. Application of Mechanical Crushing Combined with Pyrolysis-Enhanced Flotation Technology to Recover Graphite and LiCoO 2 from Spent Lithium-Ion Batteries. J. Clean. Prod. 2019, 231, 1418–1427. [Google Scholar] [CrossRef]
- Tong, Z.; Dong, L.; Wang, X.; Bu, X. Enhancement Mechanism of the Difference of Hydrophobicity between Anode and Cathode Active Materials from Spent Lithium-Ion Battery Using Plasma Modification. ACS Sustain. Chem. Eng. 2024, 12, 8541–8551. [Google Scholar] [CrossRef]
- Wang, B.; Lin, X.-Y.; Tang, Y.; Wang, Q.; Leung, M.K.H.; Lu, X.-Y. Recycling LiCoO 2 with Methanesulfonic Acid for Regeneration of Lithium-Ion Battery Electrode Materials. J. Power Sources 2019, 436, 226828. [Google Scholar] [CrossRef]
- Qiu, X.; Tian, Y.; Deng, W.; Li, F.; Hu, J.; Deng, W.; Chen, J.; Zou, G.; Hou, H.; Yang, Y.; et al. Coupling Regeneration Strategy of Lithium-Ion Electrode Materials Turned with Naphthalenedisulfonic Acid. Waste Manag. 2021, 136, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, Y.-T.; Lee, S.-W. Optimization of the Electrochemical Discharge of Spent Li-Ion Batteries from Electric Vehicles for Direct Recycling. Energies 2023, 16, 2759. [Google Scholar] [CrossRef]
- Ojanen, S.; Lundström, M.; Santasalo-Aarnio, A.; Serna-Guerrero, R. Challenging the Concept of Electrochemical Discharge Using Salt Solutions for Lithium-Ion Batteries Recycling. Waste Manag. 2018, 76, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Torabian, M.M.; Jafari, M.; Bazargan, A. Discharge of Lithium-Ion Batteries in Salt Solutions for Safer Storage, Transport, and Resource Recovery. Waste Manag. Res. 2022, 40, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Robles, D.; Vyas, A.A.; Fear, C.; Jeevarajan, J.A.; Mukherjee, P.P. Overdischarge and Aging Analytics of Li-Ion Cells. J. Electrochem. Soc. 2020, 167, 090558. [Google Scholar] [CrossRef]
- Chen, X.; Hua, W.; Yuan, L.; Ji, S.; Wang, S.; Yan, S. Evolution Fate of Battery Chemistry during Efficient Discharging Processing of Spent Lithium-Ion Batteries. Waste Manag. 2023, 170, 278–286. [Google Scholar] [CrossRef]
- Yao, L.P.; Zeng, Q.; Qi, T.; Li, J. An Environmentally Friendly Discharge Technology to Pretreat Spent Lithium-Ion Batteries. J. Clean. Prod. 2020, 245, 118820. [Google Scholar] [CrossRef]
- Su, Y.; Lu, S.; Zhou, H.; Yang, W. Research on safe discharge of used power lithium-ion batteries. Compr. Util. Resour. China 2020, 38, 40–42+52. [Google Scholar]
- Paulino, J.F.; Busnardo, N.G.; Afonso, J.C. Recovery of Valuable Elements from Spent Li-Batteries. J. Hazard. Mater. 2008, 150, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Duan, Q.; Peng, Q.; Wei, Z.; Cao, H.; Sun, J.; Wang, Q. Comparative Study of Chemical Discharge Strategy to Pretreat Spent Lithium-Ion Batteries for Safe, Efficient, and Environmentally Friendly Recycling. J. Clean. Prod. 2022, 359, 132116. [Google Scholar] [CrossRef]
- Su, Y.; Lu, S.; Zhou, H.; Yang, W. Experimental study on chemical discharge of used lithium-ion batteries. Min. Metall. 2021, 30, 90–94+106. [Google Scholar]
- Jiang, L.; Zheng, W.; Zhang, G.; Zhang, Z.; Zhang, K.; Xu, K.; Lai, Y.; Yang, J. Research on green discharge technology for the pretreatment of waste lithium-ion batteries. J. Cent. South Univ. (Nat. Sci. Ed.) 2023, 54, 684–693. [Google Scholar]
- Holzhäuser, F.J.; Mensah, J.B.; Palkovits, R. (Non-)Kolbe Electrolysis in Biomass Valorization—A Discussion of Potential Applications. Green Chem. 2020, 22, 286–301. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, H.; Wang, B.; Zheng, X.; Dai, C. The Re-Synthesis of LiCoO2 from Spent Lithium Ion Batteries Separated by Vacuum-Assisted Heat-Treating Method. Int. J. Electrochem. Sci. 2013, 8, 8201–8209. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, J.; Zhan, L.; Xu, Z. A Cleaner Approach to the Discharge Process of Spent Lithium Ion Batteries in Different Solutions. J. Clean. Prod. 2020, 255, 120064. [Google Scholar] [CrossRef]
Experimental Facilities | Model and Working Condition | Manufacturer |
---|---|---|
BAK disassembled battery | BAK 18650-2150 Mah battery with an initial voltage of 3.8 V | BAK from car teardown |
Wires | Oxygen-free Cu core and PVC sheath, and loading voltage of 300 V | Generic |
99.6% pure nickel | 99.6% pure nickel (0.5 mm × 15 mm per meter) 0.5 mm in thickness, 15 mm in width | Quanzhou Baiyixing Electronic Technology |
Digital multifunction electricity meter | VC890C+ | Xi’an Beicheng Electronics |
Circulating water vacuum pump | SHZ-D III | Yuhua Brand |
Ultrasonic cleaning equipment | AK-080SD | Yuclean |
Plastic centrifuge tubes, beakers, rubber droppers, and battery boxes | N/A | Generic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Tong, Z.; Wan, H.; Jiang, S.; Bu, X.; Dong, L. Effects of Ultrasonic Pretreatment on the Discharge for Better Recycling of Spent Lithium-Ion Batteries. Batteries 2025, 11, 56. https://doi.org/10.3390/batteries11020056
Yang W, Tong Z, Wan H, Jiang S, Bu X, Dong L. Effects of Ultrasonic Pretreatment on the Discharge for Better Recycling of Spent Lithium-Ion Batteries. Batteries. 2025; 11(2):56. https://doi.org/10.3390/batteries11020056
Chicago/Turabian StyleYang, Weichen, Zheng Tong, Hezhan Wan, Shuangyin Jiang, Xiangning Bu, and Lisha Dong. 2025. "Effects of Ultrasonic Pretreatment on the Discharge for Better Recycling of Spent Lithium-Ion Batteries" Batteries 11, no. 2: 56. https://doi.org/10.3390/batteries11020056
APA StyleYang, W., Tong, Z., Wan, H., Jiang, S., Bu, X., & Dong, L. (2025). Effects of Ultrasonic Pretreatment on the Discharge for Better Recycling of Spent Lithium-Ion Batteries. Batteries, 11(2), 56. https://doi.org/10.3390/batteries11020056