Cathodes for Zinc-Ion Micro-Batteries: Challenges, Strategies, and Perspectives
Abstract
:1. Introduction
2. Challenges and Optimization Strategies for Cathode Materials
2.1. Challenges of Cathode Materials
2.1.1. Poor Structural Stability
2.1.2. Dissolution of Cathode Materials
2.1.3. Poor Electrical Conductivity
2.1.4. Parasitic Byproducts Formation
2.2. Strategies for Developing Advanced Cathodes
2.2.1. Nanostructure Design
2.2.2. Improving Electrical Conductivity
2.2.3. Interlayer Engineering
2.2.4. Defect Engineering
3. Challenges and Optimization Strategies for Fabrication Techniques of Microelectrodes
3.1. Challenges in the Fabrication Techniques for Microelectrodes
3.1.1. Low Mass–Loading and Mechanical Instability of Microelectrodes
3.1.2. The Lack of Facile and Scalable Fabrication Techniques
3.2. Optimization Strategies for Fabrication Techniques of Microelectrodes
3.2.1. Constructing 3D Architecture Microelectrode
3.2.2. Developing Advanced Fabrication Processes
Printing Technologies
Etching Technologies
Coating Technologies
Deposition Technologies
4. Multiple Applications of ZIMBs
4.1. Fiber-Shaped ZIMBs
4.2. Two-Dimensional (2D) ZIMBs
4.3. Three-Dimensional (3D) ZIMBs
5. Conclusions and Prospects
- (1)
- Challenges persist in relation to cathode materials. In order to output more capacity in a limited space, the bulk energy density of the material must be prioritized. The materials’ vibration density or compactness should also be given greater attention. Electrode materials based on conversion or redox reaction mechanisms are likely to be more promising due to their higher energy density. Additionally, the structure of electrodes is different, and the factors restricting the performance of the battery are different. The proportion of conductive additives in an electrode of a few microns thick may not improve the performance of the MB but rather reduce the specificity of the MB. Therefore, it is very important to achieve a better understanding of the material’s electrochemical mechanisms and restriction factors in MB architectures by advanced in situ or operando characterization techniques.
- (2)
- Challenges persist in relation to cost-effective, time-efficient, accessible, scalable, and compatible fabrication techniques. The architectures of microelectrodes are essential for the energy/power density and operational stability of ZIMBs. Although various innovative fabrication methods, such as photolithography, deposition, laser scribing, and filtration, have been developed to fabricate microelectrodes, each of these methods has its respective advantages and drawbacks. Most current downsizing approaches are complex, tedious, and limited to lab-scale production. Research on developing facile and efficient approaches for large-scale and cost-effective fabrication techniques is therefore urgently needed for the commercialization of ZIMBs. Among the available methods, printing is widely regarded as a promising candidate. However, there is a shortage of suitable inks with excellent rheological properties that combine conductive materials and active materials. To date, only a few printable inks have been developed based on active materials. Consequently, significant efforts should be focused on the creation of such printable inks. Additionally, achieving a high printing resolution remains a key challenge for the future development of printing techniques. Advancements in resolution would enable the fabrication of electrode architectures with more precise and adaptable structures. The ultimate goal of this technology is to realize fully printed micro-batteries (MBs), where all components, such as anode, the cathode, electrolyte, separator, and current collectors, can be printed simultaneously. Furthermore, constructing a complete fabrication database based on current fabrication techniques is of great significance, as it would offer crucial direction and guidance to users. As far as the fabrication methods are concerned, we can attempt to combine multiple methods, utilizing their respective advantages to advance high-performance ZIMBs. For instance, it is possible to achieve electrodes with a 3D porous structure by directly ink printing the active material, followed by laser scribing.
- (3)
- Innovative configuration design. The strategy of choosing suitable electrode materials, fabrication techniques, and innovative configuration designs could lay the foundation for the development of high-performance ZIMBs. With the advancement of technical readiness, 2D microelectrodes with planar and stacked architectures are progressively transitioning to 3D planar and stacked architectures, offering high areal energy and power densities within a limited footprint. However, successfully transitioning ZIMBs with architectures of 3D electrodes from the laboratory stage to commercialization remains a challenging task. A number of challenges must be addressed, including the further optimization of performance, development of scalable and cost-effective fabrication methods, complete and uniform electrolyte filling, and the compatible integration of ZIMBs with microdevices.
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, X.; Zhang, H.; Huang, Y.; He, E.; Shen, Y.; Huang, G.; Yuan, S.; Dong, X.; Zhang, Y.; Chen, R.; et al. Recent progress of flexible rechargeable batteries. Sci. Bull. 2024, 69, 3730–3755. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.; Chen, P.; Wang, M.; He, S.; Wang, L.; Qiu, J. Flexible Electrodes for Aqueous Hybrid Supercapacitors: Recent Advances and Future Prospects. Electrochem. Energy Rev. 2024, 7, 25. [Google Scholar] [CrossRef]
- Tang, L.; Peng, H.; Kang, J.; Chen, H.; Zhang, M.; Liu, Y.; Kim, D.H.; Liu, Y.; Lin, Z. Zn-based batteries for sustainable energy storage: Strategies and mechanisms. Chem. Soc. Rev. 2024, 53, 4877–4925. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Schmidt, O.G. Tiny robots and sensors need tiny batteries—Here’s how to do it. Nature 2021, 589, 195. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, Z.; Zhong, X.; Gao, R.; Piao, Z.; Jiao, M.; Zhou, G. Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS Nano 2023, 17, 1764–1802. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Zhu, M.; Tang, H.; Liu, L.; Li, Y.; Schmidt, O.G. Towards high-performance microscale batteries: Configurations and optimization of electrode materials by in-situ analytical platforms. Energy Storage Mater. 2020, 29, 17–41. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, S.; Das, P.; Lu, P.; Yu, Y.; Wu, Z.-S. Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Struct. 2020, 1, 2000053. [Google Scholar] [CrossRef]
- Pam, M.E.; Yan, D.; Yu, J.; Fang, D.; Guo, L.; Li, X.L.; Li, T.C.; Lu, X.; Ang, L.K.; Amal, R.; et al. Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries. Adv. Sci. 2020, 8, 2002722. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Fu, Y.; Dang, H.; Wang, D.; Ran, F. Optimization strategies toward advanced aqueous zinc-ion batteries: From facing key issues to viable solutions. Nano Energy 2023, 116, 108858. [Google Scholar] [CrossRef]
- Li, G.; Sun, L.; Zhang, S.; Zhang, C.; Jin, H.; Davey, K.; Liang, G.; Liu, S.; Mao, J.; Guo, Z. Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects. Adv. Funct. Mater. 2023, 34, 2301291. [Google Scholar] [CrossRef]
- Javed, M.S.; Najam, T.; Hussain, I.; Idrees, M.; Ahmad, A.; Imran, M.; Shah, S.S.A.; Luque, R.; Han, W. Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zinc-Ion Hybrid Supercapacitors. Adv. Energy Mater. 2022, 13, 2202303. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Li, W.; Yin, R.; Zheng, D.; Niu, X.; Dai, X.; Shi, W.; Liu, W.; Wu, F.; et al. Achieving Ultralong-Cycle Zinc-Ion Battery via Synergistically Electronic and Structural Regulation of a MnO2 Nanocrystal-Carbon Hybrid Framework. Small 2023, 19, e2207517. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, B.; Wang, Z.; Liu, Z.; Li, L.; Wang, M.; Meng, X.; Yong, Y.; Wang, H.; Yin, Z. Synergistic Phase and Structural Engineering for Enhanced Zinc Storage in V2O3@N-Doped Carbon Nanofibers. Small 2024, e2410380. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xu, Z.-L. Design and manufacture of high-performance microbatteries: Lithium and beyond. Microstructures 2022, 2, 2022012. [Google Scholar] [CrossRef]
- Kyeremateng, N.A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, S.; Qiu, T.; Lang, X.; Tan, H.; Wang, Y.; Li, Y. Recent advances on energy storage microdevices: From materials to configurations. Energy Storage Mater. 2022, 45, 741–767. [Google Scholar] [CrossRef]
- Moghadami, M.; Massoudi, A.; Nangir, M. Unveiling the recent advances in micro-electrode materials and configurations for sodium-ion micro-batteries. J. Mater. Chem. A 2024, 12, 17923–17957. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Liang, S.; Zhang, B.; Fang, G.; Ma, D.; Zhou, J. Cathode Interfacial Layer Formation via in Situ Electrochemically Charging in Aqueous Zinc-Ion Battery. ACS Nano 2019, 13, 13456–13464. [Google Scholar] [CrossRef]
- Zhao, B.; Jia, P.; Yu, L.; Song, Y.; Li, Z.; Wang, Y.; Feng, R.; Li, H.; Cui, X.; Cui, H.; et al. Cathode materials for aqueous zinc-ion batteries and prospect of self-supporting electrodes: A review. J. Energy Storage 2023, 73, 109174. [Google Scholar] [CrossRef]
- Liu, M.; Wang, P.; Zhang, W.; He, H.; He, G.; Xu, S.; Yao, L.; Miller, T.S. Strategies for pH regulation in aqueous zinc ion batteries. Energy Storage Mater. 2024, 67, 103248. [Google Scholar] [CrossRef]
- Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nanomicro Lett. 2022, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Sun, W.; Liu, L.; Mao, C.; Zhang, Z.; Guo, X.; Li, G. Nutrient for Inhibiting the Activity of H2O and Optimizing Interfacial Chemistry for Aqueous Rechargeable Zn-Ion Batteries. ACS Sustain. Chem. Eng. 2024, 12, 5475–5483. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Y.; Liu, L.; Li, Q.; Liu, X.; Zhang, Z.; Zheng, J.; Guo, X.; Li, G. A “dynamic water microdomain” strategy to manipulate Zn anode reactions. Chem. Eng. J. 2024, 496, 154101. [Google Scholar] [CrossRef]
- Jing, F.; Lv, C.; Xu, L.; Shang, Y.; Pei, J.; Song, P.; Wang, Y.; Chen, G.; Yan, C. An amorphous manganese iron oxide hollow nanocube cathode for aqueous zinc ion batteries. J. Energy Chem. 2023, 87, 314–321. [Google Scholar] [CrossRef]
- Liu, Q.; Fan, G.; Zeng, Y.; Zhang, X.; Luan, D.; Guo, Y.; Gu, X.; Lou, X.W. Hollow Octahedral Pr6O11-Mn2O3 Heterostructures for High-Performance Aqueous Zn-Ion Batteries. Adv. Energy Mater. 2024, 14, 2402743. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, H.; Zhang, X.; Liu, Y.; Zhang, Y. Kinetics-Driven MnO2 Nanoflowers Supported by Interconnected Porous Hollow Carbon Spheres for Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 14388–14398. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, H.; Wang, X.; Xu, T.; Zhang, M.; Wang, Y.; Zhu, L.; Tong, S.; Zhou, X.; Li, J.; et al. Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel. Adv. Compos. Hybrid Mater. 2024, 7, 90. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Zhao, F.; Zhang, D.; Cui, Y.; Yang, Z.; Li, X.; Zhang, Y.; Su, H.; Wu, J.; et al. Dressing the manganese dioxide cathode with close-fitting thin carbon film to suppress the dissolution and expansion. Chem. Eng. J. 2023, 474, 145543. [Google Scholar] [CrossRef]
- Bie, Z.; Jiao, Z.; Cai, X.; Wang, Z.; Zhang, X.; Li, Y.; Song, W. Pomegranate-Inspired Cathodes Mitigate the Mismatch Between Carrier Transport and High Loading for Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2024, 14, 2401002. [Google Scholar] [CrossRef]
- Li, N.; Hou, Z.; Liang, S.; Cao, Y.; Liu, H.; Hua, W.; Wei, C.; Kang, F.; Wang, J.-G. Highly flexible MnO2@polyaniline core-shell nanowire film toward substantially expedited zinc energy storage. Chem. Eng. J. 2023, 452, 139408. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, M.; Huang, S.; Wang, L.; Xiao, H.; Chen, L.; Zhang, Z.; Liu, R.; Yuan, G. Conformal poly 3,4-ethylene dioxythiophene skin stabilized epsilon-type manganese dioxide microspheres for zinc ion batteries with high volumetric energy density. J. Colloid Interface Sci. 2023, 649, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Kang, L.; Berry-Gair, J.; McColl, K.; Li, J.; Dong, H.; Jiang, H.; Wang, R.; Corà, F.; Brett, D.J.L.; et al. Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes. J. Mater. Chem. A 2020, 8, 22075–22082. [Google Scholar] [CrossRef]
- Gao, X.; Shen, C.; Dong, H.; Dai, Y.; Jiang, P.; Parkin, I.P.; Zhang, H.; Carmalt, C.J.; He, G. Co-intercalation strategy for simultaneously boosting two-electron conversion and bulk stabilization of Mn-based cathodes in aqueous zinc-ion batteries. Energy Environ. Sci. 2024, 17, 2287–2297. [Google Scholar] [CrossRef]
- Jing, F.; Liu, Y.; Shang, Y.; Lv, C.; Xu, L.; Pei, J.; Liu, J.; Chen, G.; Yan, C. Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode. Energy Storage Mater. 2022, 49, 164–171. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Wei, T.; Zhao, H.; Wang, C.; Wei, X. Laser-induced oxygen vacancy defect Mn7O13·5H2O as binder-free cathode for high performance all-in-one zinc-ion battery. Appl. Surf. Sci. 2023, 639, 158219. [Google Scholar] [CrossRef]
- Long, F.; Xiang, Y.; Yang, S.; Li, Y.; Du, H.; Liu, Y.; Wu, X.; Wu, X. Layered manganese dioxide nanoflowers with Cu2+ and Bi3+ intercalation as high-performance cathode for aqueous zinc-ion battery. J. Colloid Interface Sci. 2022, 616, 101–109. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Chen, P.; Qin, M.; Yang, C.; Zhang, W.; Zhang, Z.; Zhen, Y.; Fu, F.; Xu, B. Structural Transformation by Crystal Engineering Endows Aqueous Zinc-Ion Batteries with Ultra-long Cyclability. Small 2023, 19, e2300585. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, M.; Liu, R.; Xiao, H.; Liu, Y.; Wang, X.; Huang, Y.; Yuan, G. Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability. Energy Storage Mater. 2022, 48, 212–222. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Naveed, A.; Li, G.; Zhang, H.; Zhou, Y.; Dou, A.; Su, M.; Liu, Y.; Guo, R.; et al. Magnesium Ion Doping and Micro-Structural Engineering Assist NH4V4O10 as a High-Performance Aqueous Zinc Ion Battery Cathode. Adv. Funct. Mater. 2023, 33, 2306205. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, Y.; Cheng, H.; Liu, C.; Wang, Z.; Ye, H.; Pan, Y.; Jia, D.; Lin, H. Polypyrrole-Doped NH4V3O8 with Oxygen Vacancies as High-Performance Cathode Material for Aqueous Zinc-Ion Batteries. Small 2023, 19, e2304668. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ma, W.; Guo, J.; Xiong, J.; Hou, F.; Si, W.; Sang, Z.; Yang, D. PEDOT-intercalated MnO2 layers as a high-performance cathode material for aqueous Zn-ion batteries. J. Alloys Compd. 2023, 932, 167688. [Google Scholar] [CrossRef]
- Deng, L.; Sun, K.; Liu, J.; Li, Z.; Cao, J.; Liao, S. High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering. Molecules 2024, 29, 3147. [Google Scholar] [CrossRef]
- He, Q.; Bai, J.; Xue, M.; Liao, Y.; Wang, H.; Long, M.; Chen, L. Polypyride intercalation boosting the kinetics and stability of V3O7·H2O cathodes for aqueous zinc-ion batteries. J. Energy Chem. 2024, 97, 361–370. [Google Scholar] [CrossRef]
- Zhang, A.; Yin, X.; Saadoune, I.; Wei, Y.; Wang, Y. Zwitterion Intercalated Manganese Dioxide Nanosheets as High-Performance Cathode Materials for Aqueous Zinc Ion Batteries. Small 2024, 20, e2402811. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yi, S.; Si, R.; Xi, B.; An, X.; Liu, J.; Li, J.; Xiong, S. Advances on Defect Engineering of Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2022, 12, 2202039. [Google Scholar] [CrossRef]
- Huang, J.; Cao, Y.; Cao, M.; Zhong, J. Improving the capacity of zinc-ion batteries through composite defect engineering. RSC Adv. 2021, 11, 34079–34085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, R.; Huang, C.; Dong, C.; Xu, L.; Yuan, L.; Lu, S.; Wang, L.; Zhang, L.; Chen, L. Oxygen defect engineering and amphipathic molecules intercalation co-boosting fast kinetics and stable structure of S-doped (NH4)2V10O25∙8H2O free-standing cathode for aqueous Zn-ion storage. Nano Energy 2024, 122, 109301. [Google Scholar] [CrossRef]
- Xiong, T.; Yu, Z.G.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y.W.; Pennycook, S.J.; Lee, W.S.V.; Xue, J. Defect Engineering of Oxygen-Deficient Manganese Oxide to Achieve High-Performing Aqueous Zinc Ion Battery. Adv. Energy Mater. 2019, 9, 1803815. [Google Scholar] [CrossRef]
- Bassyouni, Z.; Allagui, A.; Abou Ziki, J.D. Microsized Electrochemical Energy Storage Devices and Their Fabrication Techniques For Portable Applications. Adv. Mater. Technol. 2022, 8, 2200459. [Google Scholar] [CrossRef]
- Shi, X.; Das, P.; Wu, Z.-S. Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Lett. 2021, 7, 267–281. [Google Scholar] [CrossRef]
- Sha, M.; Zhao, H.; Lei, Y. Updated Insights into 3D Architecture Electrodes for Micropower Sources. Adv Mater. 2021, 33, e2103304. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Kan, R.; Hu, S.; He, L.; Hong, X.; Tang, H.; Luo, W. Recent Advances in High-Performance Microbatteries: Construction, Application, and Perspective. Small 2020, 16, e2003251. [Google Scholar] [CrossRef]
- Naresh, N.; Zhu, Y.; Luo, J.; Fan, Y.; Wang, T.; Raju, K.; De Volder, M.; Parkin, I.P.; Boruah, B.D. Advanced 3D Micro-Electrodes for On-Chip Zinc-Ion Micro-Batteries. Adv. Funct. Mater. 2024, 35, 2413777. [Google Scholar] [CrossRef]
- Liu, G.; Ma, Z.; Li, G.; Yu, W.; Wang, P.; Meng, C.; Guo, S. All-Printed 3D Solid-State Rechargeable Zinc-Air Microbatteries. ACS Appl. Mater. Interfaces 2023, 15, 13073–13085. [Google Scholar] [CrossRef]
- Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E.B.; Spadaccini, C.M.; Worsley, M.A.; Li, Y. Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading. Joule 2019, 3, 459–470. [Google Scholar] [CrossRef]
- Huang, H.; Liao, L.; Lin, Z.; Pan, D.; Nuo, Q.; Wu, T.T.; Jiang, Y.; Bai, H. Direct Ink Writing of Pickering Emulsions Generates Ultralight Conducting Polymer Foams with Hierarchical Structure and Multifunctionality. Small 2023, 19, 2301493. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, M.; Wang, P.; Cheng, L.; Chen, L.; Huang, Y.; Yu, S.; Mo, F.; Wei, J. Printed Solid-State Batteries. Electrochem. Energy Rev. 2023, 6, 34. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Z.; Li, M.; Li, Z.; Hu, X.; Xu, Q.; Wang, Y.; Liu, H.; Wang, Y. 3D Printed Flexible Zinc Ion Micro-Batteries with High Areal Capacity Toward Practical Application. Adv. Funct. Mater. 2023, 34, 2310966. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, S.; Zhou, F.; Qin, J.; Shi, X.; Wang, S.; Sun, C.; Bao, X.; Wu, Z.S. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. Natl. Sci. Rev. 2020, 7, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Liu, Y.; Zha, J.; Tan, F.; Zhang, B.; Yan, W.; Zhao, J.; Lu, B.; Zhou, J.; Tan, C. A Flexible and Safe Planar Zinc-Ion Micro-Battery with Ultrahigh Energy Density Enabled by Interfacial Engineering for Wearable Sensing Systems. Adv. Funct. Mater. 2023, 33, 2303009. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, H.; Zhang, Y.; Yu, S.; Malyi, O.I.; Zhao, X.; Wang, L.; Wang, H.; Peng, J.; Li, X.; et al. Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 2021, 7, eabd6978. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jin, X.; Wang, Y.; Zhang, X.; Li, D.; Wang, J.; Yuan, M.; Liu, J.; Zhao, Y. All-Direct Laser Patterning Zinc-Based Microbatteries. Adv. Funct. Mater. 2023, 34, 2314060. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Z.S.; Qin, J.; Zheng, S.; Wang, S.; Zhou, F.; Sun, C.; Bao, X. Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output. Adv. Mater. 2017, 29, 1703034. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Tang, T.; Xie, H.; Hasan, S.W.; Liang, L.; Tian, Z.Q.; Shen, P.K. Robust, Conductive, and High Loading Fiber-Shaped Electrodes Fabricated by 3D Active Coating for Flexible Energy Storage Devices. Nano Lett. 2022, 22, 5795–5802. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Z.; Qiao, C.; Fan, Y.; Qin, X.; Shao, G. Spectroscopic Monitoring of the Electrode Process of MnO(2)@rGO Nanospheres and Its Application in High-Performance Flexible Micro-Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 34686–34696. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, G.; Wang, L.; Zhang, X.; Zhao, Z.; Chen, F.; Song, L.; Duan, H. Engineering 3D Architecture Electrodes for High-Rate Aqueous Zn-Mn Microbatteries. ACS Appl. Energy Mater. 2021, 4, 10414–10422. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Jia, R.; Jiang, K.; Shen, G.; Chen, D. A Flexible Concentric Circle Structured Zinc-Ion Micro-Battery with Electrodeposited Electrodes. Small Methods 2020, 4, 2000363. [Google Scholar] [CrossRef]
- Wang, G.-Y.; Li, G.-X.; Tang, Y.-D.; Zhao, Z.; Yu, W.; Meng, C.-Z.; Guo, S.-J. Flexible and Antifreezing Fiber-Shaped Solid-State Zinc-Ion Batteries with an Integrated Bonding Structure. J. Phys. Chem. Lett. 2023, 14, 3512–3520. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.S. Zinc based micro-electrochemical energy storage devices: Present status and future perspective. EcoMat 2020, 2, e12042. [Google Scholar] [CrossRef]
- Gao, T.; Yan, G.; Yang, X.; Yan, Q.; Tian, Y.; Song, J.; Li, F.; Wang, X.; Yu, J.; Li, Y.; et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J. Energy Chem. 2022, 71, 192–200. [Google Scholar] [CrossRef]
- Xia, Z.; Li, S.; Wu, G.; Shao, Y.; Yang, D.; Luo, J.; Jiao, Z.; Sun, J.; Shao, Y. Manipulating Hierarchical Orientation of Wet-Spun Hybrid Fibers via Rheological Engineering for Zn-Ion Fiber Batteries. Adv. Mater. 2022, 34, 2203905. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, T.; Zhou, T.; Zhang, X.; Wang, Y.; Zhou, X.; Wei, L. Advanced Fiber-Shaped Aqueous Zn Ion Battery Integrated with Strain Sensor. ACS Appl. Mater. Interfaces 2022, 14, 41045–41052. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xu, Q.; Waqar, M.; Yang, H.; Gong, W.; Yang, J.; Zhong, J.; Liu, Z. Millisecond-induced defect chemistry realizes high-rate fiber-shaped zinc-ion battery as a magnetically soft robot. Energy Storage Mater. 2023, 55, 64–72. [Google Scholar] [CrossRef]
- Li, Y.; Guan, Q.; Cheng, J.; Wang, B. Amorphous H0.82MoO3.26 cathodes based long cyclelife fiber-shaped Zn-ion battery for wearable sensors. Energy Storage Mater. 2022, 49, 227–235. [Google Scholar] [CrossRef]
- Ho, C.C.; Evans, J.W.; Wright, P.K. Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. J. Micromech. Microeng. 2010, 20, 104009. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn-MnO2 Battery. Adv. Mater. 2017, 29, 1700274. [Google Scholar] [CrossRef]
- Zheng, Z.; Cheng, W.; Jiang, G.; Li, X.; Sun, J.; Zhu, Y.; Zhao, D.; Yu, H. Ethanol Vapor-Induced Synthesis of Robust, High-Efficiency Zinc Ion Gel Electrolytes for Flexible Zn-Ion Batteries. Small Struct. 2024, 5, 2400180. [Google Scholar] [CrossRef]
- Jin, X.; Song, L.; Dai, C.; Ma, H.; Xiao, Y.; Zhang, X.; Han, Y.; Li, X.; Zhang, J.; Zhao, Y.; et al. A self-healing zinc ion battery under −20 °C. Energy Storage Mater. 2022, 44, 517–526. [Google Scholar] [CrossRef]
- Shi, J.; Wang, S.; Chen, X.; Chen, Z.; Du, X.; Ni, T.; Wang, Q.; Ruan, L.; Zeng, W.; Huang, Z. An Ultrahigh Energy Density Quasi-Solid-State Zinc Ion Microbattery with Excellent Flexibility and Thermostability. Adv. Energy Mater. 2019, 9, 1901957. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, S.; Zhou, F.; Das, P.; Sun, C.; Zheng, S.; Wu, Z.S. 2D Amorphous V2O5/Graphene Heterostructures for High-Safety Aqueous Zn-Ion Batteries with Unprecedented Capacity and Ultrahigh Rate Capability. Adv. Energy Mater. 2020, 10, 2000081. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L.; Zhou, K.; Zhang, L.; Zeng, X.; Shi, Y.; Cai, W.; Wu, J.; Lin, Y. Fully Printed and Sweat-Activated Micro-Batteries with Lattice-Match Zn/MoS2 Anode for Long-Duration Wearables. Adv Mater. 2024, 36, e2412844. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hwang, J.; Song, C.; Park, C.; Kim, H.S.; Ahn, H. Zinc-Ion Microbatteries with High Operando Dynamic Stretchability Designed to Operate in Extreme Environments. Adv. Funct. Mater. 2023, 34, 2310571. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, D.; Jiang, Y.; Cheng, F.; Sun, J.; Guo, Q.; Luo, Y.; Chen, Y.; Liu, W. Lightweight Zn-Philic 3D-Cu Scaffold for Customizable Zinc Ion Batteries. Adv. Funct. Mater. 2024, 34, 2312664. [Google Scholar] [CrossRef]
- Meng, F.; Ren, Y.; Ping, B.; Huang, J.; Li, P.; Chen, X.; Wang, N.; Li, H.; Zhang, L.; Zhang, S.; et al. Five-Axis Curved-Surface Multi-Material Printing on Conformal Surface to Construct Aqueous Zinc-Ion Battery Modules. Adv. Mater. 2024, 36, e2408475. [Google Scholar] [CrossRef]
Categories | Technologies | Advantages | Disadvantages |
---|---|---|---|
rinting technologies | Screen printing | Fast fabrication, scalable, cost-effective | Low resolution, functional ink-incompatible |
Direct ink writing | Low cost, easy operation, high resolution, material diversity | Strict requirements for viscosity inks (rheological and viscoelastic properties), small-scale production, nozzle jam | |
Etching technologies | Laser scribing | Fast fabrication, high resolution, scalable, eco-friendly | Expensive equipment |
Photolithography | Cost-effective, high resolution | Hash work environment | |
Plasma etching | Facile | Limited to carbon materials | |
Coating technologies | Spray coating | Material diversity, scalable, easy operation | Poor homogeneity of the film |
Vacuum filtration | Low cost, facile, controllable thickness | Time–consuming, complex architectures inadaptability | |
Layer-by-layer assembly | Material-saving, facile | Complex preparation procedure | |
Deposition technologies | Electrolytic deposition | Low cost, fast fabrication, scalable, eco-friendly | Uncontrollable growth in a lateral direction |
Electrophoretic deposition | Low cost, simple equipment | Limited to the charged materials | |
Chemical vapor deposition | Scalable, controllable thickness | High cost, complicated operation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Lin, Q.; Li, Z.; Cao, J.; Sun, K.; Wei, T. Cathodes for Zinc-Ion Micro-Batteries: Challenges, Strategies, and Perspectives. Batteries 2025, 11, 57. https://doi.org/10.3390/batteries11020057
Deng L, Lin Q, Li Z, Cao J, Sun K, Wei T. Cathodes for Zinc-Ion Micro-Batteries: Challenges, Strategies, and Perspectives. Batteries. 2025; 11(2):57. https://doi.org/10.3390/batteries11020057
Chicago/Turabian StyleDeng, Ling, Qunfang Lin, Zeyang Li, Juexian Cao, Kailing Sun, and Tongye Wei. 2025. "Cathodes for Zinc-Ion Micro-Batteries: Challenges, Strategies, and Perspectives" Batteries 11, no. 2: 57. https://doi.org/10.3390/batteries11020057
APA StyleDeng, L., Lin, Q., Li, Z., Cao, J., Sun, K., & Wei, T. (2025). Cathodes for Zinc-Ion Micro-Batteries: Challenges, Strategies, and Perspectives. Batteries, 11(2), 57. https://doi.org/10.3390/batteries11020057