Is Exclusive Small Airway Asthma a Possibility?
Abstract
:1. Introduction
2. Assessing the Small Airway Compartment in Pediatric Asthma: The Conundrum!
3. Direct Airway Hyperresponsiveness and Location of Obstruction
4. Beta2 Receptor Density in Central and Peripheral Airways
5. Potential Processes That May Result in Exclusive (Dominant) Small Airway Asthma
6. Clinical Examples
7. Clinical Considerations
8. Clinical Recommendations
- Consider the FEF25–75 improvement especially when there is more than 2 s of expiratory time. A disproportionate improvement in the FEF25–75 as compared to the FEV1 after albuterol should not be ignored [34].
- Figure 1 delineates the opportunities for determining large, smaller, and small airway disability in pediatric asthma.
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leung, C.; Tang, M.; Huang, B.K.; Fain, S.B.; Hoffman, E.A.; Choi, J.; Dunican, E.M.; Mauger, D.T.; Denlinger, L.C.; Jarjour, N.N.; et al. A Novel Air Trapping Segment Score Identifies Opposing Effects of Obesity and Eosinophilia on Air Trapping in Asthma. Am. J. Respir. Crit. Care Med. 2024, 209, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- King, G.G.; Chung, L.P.; Usmani, O.S.; Nilsen, K.; Thompson, B.R. Improving asthma outcomes: Clinicians’ perspectives on peripheral airways. J. Allergy Clin. Immunol. Glob. 2024, 3, 100228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Anisuzzaman, A.S.; Yoshiki, H.; Sasaki, M.; Koshiji, T.; Uwada, J.; Nishimune, A.; Itoh, H.; Muramatsu, I. Regional quantification of muscarinic acetylcholine receptors and β-adrenoceptors in human airways. Br. J. Pharmacol. 2012, 166, 1804–1814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cazzola, M.; Calzetta, L.; Matera, M.G. Long-acting muscarinic antagonists and small airways in asthma: Which link? Allergy 2021, 76, 1990–2001. [Google Scholar] [CrossRef] [PubMed]
- Fryer, A.D.; Jacoby, D.B. Muscarinic receptors control of airway smooth muscle. Am. J. Respir. Crit. Care Med. 1998, 158, S154–S160. [Google Scholar] [CrossRef]
- Dell, S.D.; Bola, S.S.; Foty, R.G.; Marshall, L.C.; Nelligan, K.A.; Coates, A.L. Provocative dose of methacholine causing a 20% drop in FEV1 should Be used to interpret methacholine challenge tests with modern nebulizers. Ann. Am. Thorac. Soc. 2015, 12, 357–363. [Google Scholar] [CrossRef]
- Naji, N.; Keung, E.; Kane, J.; Watson, R.M.; Killian, K.J.; Gauvreau, G.M. Comparison of changes in lung function measured by plethymography and IOS after bronchoprovocation. Respir. Med. 2013, 107, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Page, C.P.; Rogliani, P.; Facciolo, F.; Gavaldà, A.; Matera, M.G. Pharmacological characterization of the interaction between aclidinium bromide and formoterol fumarate on human isolated bronchi. Eur. J. Pharmacol. 2014, 745, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Burels, K.S.; Fryer, A.D. Muscarinic receptor antagonists: Effects on pulmonary function. In Muscarinic Receptors. Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 208, pp. 317–341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, H.; Liu, X.; Li, L.; Wang, G.; Liu, C.; Zeng, Y.; Mao, R.; Du, C.; Chen, Z. Clinical and pulmonary function changes in cough variant asthma with small airway disease. Allergy Asthma Clin. Immunol. 2019, 15, 41. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Chen, F.; Guo, Y.; Ma, H.; Han, B.; Yi, J.; Kong, X. Diagnostic Value of Fractional Exhaled Nitric Oxide and Small Airway Function in Differentiating Cough-Variant Asthma from Typical Asthma. Can. Respir. J. 2021, 2021, 9954411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, J.; Wu, H.; Wu, F. Small airway dysfunction in patients with cough variant asthma: A retrospective cohort study. BMC Pulm. Med. 2021, 21, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Donovan, G.M.; Noble, P.B. Small airways vs large airways in asthma: Time for a new perspective. J. Appl. Physiol. 2021, 131, 1839–1841. [Google Scholar] [CrossRef] [PubMed]
- Spina, D.; Rigby, P.J.; Paterson, J.W.; Goldie, R.G. Autoradiographic localization of beta-adrenoceptors in asthmatic human lung. Am. Rev. Respir. Dis. 1989, 140, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Giembycz, M.A.; Newton, R. Beyond the dogma: Novel β2-adrenoceptor signalling in the airways. Eur. Respir. J. 2006, 27, 1286–1306. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Factor, P. Alveolar epithelial β2-adrenergic receptors. Am. J. Respir. Cell Mol. Biol. 2008, 38, 127–134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Folkerts, G.; Busse, W.W.; Nijkamp, F.P.; Sorkness, R.; Gern, J.E. Virus-induced airway hyperresponsiveness and asthma. Am. J. Respir. Crit. Care Med. 1998, 157, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Gauvreau, G.M.; El-Gammal, A.I.; O’Byrne, P.M. Allergen-induced airway responses. Eur. Respir. J. 2015, 46, 819–831. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, C.; Milner, A.D.; Swarbrick, A. Nebulised salbutamol does have a protective effect on airways in children under 1 year old. Arch. Dis. Child. 1988, 63, 479–483. [Google Scholar] [CrossRef]
- Henderson, A.J.; Young, S.; Stick, S.M.; Landau, L.I.; LeSouef, P.N. Effect of salbutamol on histamine induced bronchoconstriction in healthy infants. Thorax 1993, 48, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sha, J.; Meng, C.; Zhu, D. Mechanism of Lower Airway Hyperresponsiveness Induced by Allergic Rhinitis. J. Immunol. Res. 2022, 2022, 4351345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Samitas, K.; Carter, A.; Kariyawasam, H.H.; Xanthou, G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy 2018, 73, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Donath, H.; Klenner, H.; Hutter, M.; Meoli, A.; Trischler, J.; Schulze, J.; Blumchen, K.; Zielen, S. Severe bronchial hyperresponsiveness along with house dust mite allergy indicates persistence of asthma in young children. Pediatr. Allergy Immunol. 2023, 34, e14047. [Google Scholar] [CrossRef]
- Vijayakumar, B.; Ritchie, A.; Tonkin, J.; Orton, C.M.; Wedzicha, J.; Shah, P.L. Small airways disease post COVID-19: 1 year follow up. Eur. Respir. J. 2022, 60, 2541. [Google Scholar] [CrossRef]
- Robinson, P.F.M.; Fontanella, S.; Ananth, S.; Martin Alonso, A.; Cook, J.; Kaya-de Vries, D.; Polo Silveira, L.; Gregory, L.; Lloyd, C.; Fleming, L.; et al. Recurrent Severe Preschool Wheeze: From Prespecified Diagnostic Labels to Underlying Endotypes. Am. J. Respir. Crit. Care Med. 2021, 204, 523–535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Custovic, D.; Fontanella, S.; Custovic, A. Understanding progression from pre-school wheezing to school-age asthma: Can modern data approaches help? Pediatr. Allergy Immunol. 2023, 34, e14062. [Google Scholar] [CrossRef] [PubMed]
- Usmani, O.S.; Singh, D.; Spinola, M.; Bizzi, A.; Barnes, P.J. The prevalence of small airways disease in adult asthma: A systematic literature review. Respir. Med. 2016, 116, 19–27. [Google Scholar] [CrossRef]
- Sorkness, R.L.; Zoratti, E.M.; Kattan, M.; Gergen, P.J.; Evans, M.D.; Visness, C.M.; Gill, M.; Hershey, G.K.; Kercsmar, C.M.; Liu, A.H.; et al. Obstruction phenotype as a predictor of asthma severity and instability in children. J. Allergy Clin. Immunol. 2018, 142, 1090–1099. [Google Scholar] [CrossRef]
- Hopp, R.J.; Pasha, M.A. A literature review of the evidence that a 12% improvement in FEV1 is an appropriate cut-off for children. J. Asthma. 2016, 53, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Shim, C. Response to bronchodilators. Clin. Chest Med. 1989, 10, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Knihtilä, H.M.; Stubbs, B.J.; Carey, V.J.; Laranjo, N.; Zeiger, R.S.; Bacharier, L.B.; O’Connor, G.T.; Weiss, S.T.; Litonjua, A.A. Preschool impulse oscillometry predicts active asthma and impaired lung function at school age. J. Allergy Clin. Immunol. 2024, 154, 94–100.e13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hopp, R.; Lee, J.; Bohan, H. An a Priori Approach to Small Airway Dysfunction in Pediatric Asthmatics. Children 2022, 9, 1454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guilbert, T.W.; McDowell, K.M. Impulse oscillometry: Gathering speed in the assessment of preschool lung function. J. Allergy Clin. Immunol. 2024, 154, 82–83. [Google Scholar] [CrossRef]
- King, G.G.; Farrow, C.E.; Chapman, D.G. Dismantling the pathophysiology of asthma using imaging. Eur. Respir. Rev. 2019, 28, 180111. [Google Scholar] [CrossRef]
- Tulic, M.K.; Christodoulopoulos, P.; Hamid, Q. Small airway inflammation in asthma. Respir. Res. 2001, 2, 333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Pre- and Post-Albuterol Results in Selected Children Presenting with Asthma-like Symptoms | |||||||
---|---|---|---|---|---|---|---|
Age | FVC | Post FVC | FEV1 | Post FEV1 | FEF25–75 | Post FEF25–75 | |
Example 1 | 8 | 96% | 93% | 109% | 107% | 129% | 167% |
Example 2 | 5 | 79% | 73% | 84% | 78% | 83% | 123% |
Example 3 | 8 | 85% | 88% | 85% | 93% | 81% | 134% |
Example 4 | 6 | 98% | 94% | 93% | 100% | 78% | 136% |
Example 5 | 10 | 88% | 82% | 86% | 86% | 80% | 99% |
Example 6 | 6 | 114% | 114% | 126% | 127% | 138% | 170% |
Example 7 | 5 | 112% | 107% | 121% | 116% | 111% | 157% |
Example 8 | 6 | 97% | 92% | 104% | 92% | 117% | 165% |
Example 9 | 10 | 112% | 113% | 113% | 117% | 108% | 143% |
Example 10 | 5 | 100% | 102% | 100% | 106% | 87% | 127% |
Example 11 | 5 | 98% | 99% | 106% | 109% | 127% | 152% |
Example 12 | 9 | 81% | 81% | 78% | 82% | 66% | 116% |
FVC % Improvement [30] | FEV1 % Improvement [3,31] | FEF25–75 % Improvement [12,13,14,32] | Reasonable Clinical Outcome | |
---|---|---|---|---|
Scenario 1 | ≥10% | ≥10% | ≥30% | Daily asthma care |
Scenario 2 | <10% | ≥10% | ≥30% | Daily asthma care |
Scenario 3 | <10% | <10% | ≥30% | Follow longitudinally [33] or consider cough variant asthma [12,13,14] |
Scenario 4 | <10% | <10% | <30% | Consider alternative cough etiologies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hopp, R.J. Is Exclusive Small Airway Asthma a Possibility? Allergies 2024, 4, 138-144. https://doi.org/10.3390/allergies4030010
Hopp RJ. Is Exclusive Small Airway Asthma a Possibility? Allergies. 2024; 4(3):138-144. https://doi.org/10.3390/allergies4030010
Chicago/Turabian StyleHopp, Russell J. 2024. "Is Exclusive Small Airway Asthma a Possibility?" Allergies 4, no. 3: 138-144. https://doi.org/10.3390/allergies4030010
APA StyleHopp, R. J. (2024). Is Exclusive Small Airway Asthma a Possibility? Allergies, 4(3), 138-144. https://doi.org/10.3390/allergies4030010