Implantable Medical Device Security
Abstract
:1. Introduction
1.1. Implantable Medical Devices
1.2. Motivation
2. Threat Model
2.1. The Adversary
2.2. Attacks
3. Securing IMDs
3.1. Biometric Identification
3.2. Lightweight Cryptography and Key-Management
3.3. Out-of-Band Channels and OOBKey
3.4. External Devices
3.5. Machine Learning
3.6. Securing (Local and Remote) Software
4. Ethical Aspects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grand View Research, Inc. Internet of Things in Healthcare Market Size, Share & Trends Analysis. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/internet-of-things-iot-healthcare-market (accessed on 4 September 2024).
- America’s Cyber Defense Agengy. Cybersecurity Alerts & Advisories. 2023. Available online: https://www.cisa.gov/news-events/cybersecurity-advisories (accessed on 4 September 2024).
- U.S. Food and Drug Administration. Postmarket Management of Cybersecurity in Medical Devices. Technical Report. Guidance for Industry and Food and Drug Administration Staff. 2016. Available online: https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm482022.pdf (accessed on 20 July 2024).
- Sametinger, J.; Rozenblit, J.; Lysecky, R.; Ott, P. Security challenges for medical devices. Commun. ACM 2015, 58, 74–82. [Google Scholar] [CrossRef]
- Greatbatch, W.; Holmes, C. History of implantable devices. IEEE Eng. Med. Biol. Mag. 1991, 10, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Majerus, S.J.A.; Fletter, P.C.; Damaser, M.S.; Garverick, S.L. Low-Power Wireless Micromanometer System for Acute and Chronic Bladder-Pressure Monitoring. IEEE Trans. Biomed. Eng. 2011, 58, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Wang, X.; Bhunia, S. Implantable electronics: Emerging design issues and an Ultra light-weight security solution. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6425–6428. [Google Scholar] [CrossRef]
- Marin, E.; Singelée, D.; Yang, B.; Verbauwhede, I.; Preneel, B. On the Feasibility of Cryptography for a Wireless Insulin Pump System. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 9–11 March 2016; pp. 113–120. [Google Scholar] [CrossRef]
- Halperin, D.; Heydt-Benjamin, T.S.; Ransford, B.; Clark, S.S.; Defend, B.; Morgan, W.; Fu, K.; Kohno, T.; Maisel, W.H. Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 18–22 May 2008; pp. 129–142. [Google Scholar]
- Li, C.; Raghunathan, A.; Jha, N.K. Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system. In Proceedings of the 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, Columbia, MO, USA, 13–15 June 2011; pp. 150–156. [Google Scholar] [CrossRef]
- Altawy, R.; Youssef, A.M. Security Tradeoffs in Cyber Physical Systems: A Case Study Survey on Implantable Medical Devices. IEEE Access 2016, 4, 959–979. [Google Scholar] [CrossRef]
- Halperin, D.; Heydt-Benjamin, T.S.; Fu, K.; Kohno, T.; Maisel, W.H. Security and privacy for implantable medical devices. IEEE Pervasive Comput. 2008, 7, 30–39. [Google Scholar] [CrossRef]
- Corporation, M. CVE-2022-43557. 2022. Available online: https://www.cve.org/CVERecord?id=CVE-2022-43557 (accessed on 24 September 2024).
- Marin, E.; Singelée, D.; Garcia, F.D.; Chothia, T.; Willems, R.; Preneel, B. On the (in)security of the latest generation implantable cardiac defibrillators and how to secure them. In Proceedings of the 32nd Annual Conference on Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA, 5–9 December 2016; Schwab, S., Robertson, W.K., Balzarotti, D., Eds.; ACM: New York, NY, USA, 2016; pp. 226–236. [Google Scholar]
- Corporation, M. CVE-2024-34463. 2024. Available online: https://www.cve.org/CVERecord?id=CVE-2024-34463 (accessed on 24 September 2024).
- Corporation, M. CVE-2023-31222. 2023. Available online: https://www.cve.org/CVERecord?id=CVE-2023-31222 (accessed on 24 September 2024).
- Denning, T.; Borning, A.; Friedman, B.; Gill, B.T.; Kohno, T.; Maisel, W.H. Patients, pacemakers, and implantable defibrillators: Human values and security for wireless implantable medical devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GO, USA, 10–15 April 2010; pp. 917–926. [Google Scholar]
- Denning, T.; Kramer, D.B.; Friedman, B.; Reynolds, M.R.; Gill, B.; Kohno, T. CPS: Beyond usability: Applying value sensitive design based methods to investigate domain characteristics for security for implantable cardiac devices. In Proceedings of the 30th Annual Computer Security Applications Conference, ACSAC ’14, New Orleans, LA, USA, 8–12 December 2014; pp. 426–435. [Google Scholar] [CrossRef]
- Shinohara, K.; Wobbrock, J.O. In the shadow of misperception: Assistive technology use and social interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, Vancouver, BC, Canada, 7–12 May 2011; pp. 705–714. [Google Scholar] [CrossRef]
- Rushanan, M.; Rubin, A.D.; Kune, D.F.; Swanson, C.M. SoK: Security and Privacy in Implantable Medical Devices and Body Area Networks. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 524–539. [Google Scholar] [CrossRef]
- Camara, C.; Peris-Lopez, P.; Tapiador, J.E. Security and privacy issues in implantable medical devices: A comprehensive survey. J. Biomed. Inform. 2015, 55, 272–289. [Google Scholar] [CrossRef]
- Kwarteng, E.; Cebe, M. A survey on security issues in modern Implantable Devices: Solutions and future issues. Smart Health 2022, 25, 100295. [Google Scholar] [CrossRef]
- Kintzlinger, M.; Nissim, N. Keep an eye on your personal belongings! The security of personal medical devices and their ecosystems. J. Biomed. Inform. 2019, 95, 103233. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Bajpai, B.C.; Zeadally, S. Security issues in implantable medical devices: Fact or fiction? Sustain. Cities Soc. 2021, 66, 102552. [Google Scholar] [CrossRef]
- Zhang, M.; Marin, E.; Ryan, M.; Kostakos, V.; Murray, T.; Tag, B.; Oswald, D. OOBKey: Key Exchange with Implantable Medical Devices Using Out-Of-Band Channels. In Proceedings of the 2024 21st Annual International Conference on Privacy, Security and Trust, Vienna, Austria, 30 July–2 August 2024. [Google Scholar]
- Yaqoob, T.; Abbas, H.; Atiquzzaman, M. Security Vulnerabilities, Attacks, Countermeasures, and Regulations of Networked Medical Devices—A Review. IEEE Commun. Surv. Tutor. 2019, 21, 3723–3768. [Google Scholar] [CrossRef]
- Hasan, R.; Zawoad, S.; Noor, S.; Haque, M.M.; Burke, D. How Secure is the Healthcare Network from Insider Attacks? An Audit Guideline for Vulnerability Analysis. In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, USA, 10–14 June 2016; pp. 417–422. [Google Scholar] [CrossRef]
- Burleson, W.; Clark, S.S.; Ransford, B.; Fu, K. Design challenges for secure implantable medical devices. In Proceedings of the 49th Annual Design Automation Conference, San Francisco, CA, USA, 3–7 June 2012; pp. 12–17. [Google Scholar]
- Siddiqi, M.A.; Serdijn, W.A.; Strydis, C. Zero-Power Defense Done Right: Shielding IMDs from Battery-Depletion Attacks. J. Signal Process. Syst. 2021, 93, 421–437. [Google Scholar] [CrossRef]
- Catuogno, L.; Galdi, C.; Pasquino, N. An Effective Methodology for Measuring Software Resource Usage. IEEE Trans. Instrum. Meas. 2018, 67, 2487–2494. [Google Scholar] [CrossRef]
- Pycroft, L.; Aziz, T.Z. Security of implantable medical devices with wireless connections: The dangers of cyber-attacks. Expert Rev. Med. Devices 2018, 15, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Khera, M. Think Like a Hacker: Insights on the Latest Attack Vectors (and Security Controls) for Medical Device Applications. J. Diabetes Sci. Technol. 2017, 11, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Dawn Medlin, B.; Romaniello, A. An investigative study: Health care workers as security threat suppliers. J. Inf. Priv. Secur. 2007, 3, 30–46. [Google Scholar] [CrossRef]
- Hei, X.; Du, X. IMD Access Control During Emergencies. In Security for Wireless Implantable Medical Devices; Springer: New York, NY, USA, 2013; pp. 19–35. [Google Scholar] [CrossRef]
- Bonatti, P.A.; Galdi, C.; Torres, D. Event-driven RBAC. J. Comput. Secur. 2015, 23, 709–757. [Google Scholar] [CrossRef]
- Catuogno, L.; Galdi, C.; Riccio, D. Flexible and robust Enterprise Right Management. In Proceedings of the IEEE Symposium on Computers and Communication, ISCC 2016, Messina, Italy, 27–30 June 2016; pp. 1257–1262. [Google Scholar] [CrossRef]
- Catuogno, L.; Galdi, C.; Riccio, D. Off-line enterprise rights management leveraging biometric key binding and secure hardware. J. Ambient Intell. Humaniz. Comput. 2019, 10, 2883–2894. [Google Scholar] [CrossRef]
- Catuogno, L.; Galdi, C.; Riccio, D. An Enterprise Rights Management System for On-the-Field Maintenance Facilities. IEEE Access 2020, 8, 95987–95996. [Google Scholar] [CrossRef]
- Seepers, R.M.; Strydis, C.; Sourdis, I.; De Zeeuw, C.I. Adaptive entity-identifier generation for imd emergency access. In Proceedings of the First Workshop on Cryptography and Security in Computing Systems, Vienna, Austria, 20 January 2014; pp. 41–44. [Google Scholar]
- Rostami, M.; Juels, A.; Koushanfar, F. Heart-to-heart (H2H): Authentication for implanted medical devices. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, CCS ’13, Berlin, Germany, 4–8 November 2013; pp. 1099–1112. [Google Scholar] [CrossRef]
- Rathore, H.; Fu, C.; Mohamed, A.; Al-Ali, A.; Du, X.; Guizani, M.; Yu, Z. Multi-layer security scheme for implantable medical devices. Neural Comput. Appl. 2020, 32, 4347–4360. [Google Scholar] [CrossRef]
- Siam, A.I.; El-Shafai, W.; Abou Elazm, L.A.; El-Bahnasawy, N.A.; Abd El-Samie, F.E.; Abou Elazm, A.; El-Banby, G.M. Enhanced user verification in IoT applications: A fusion-based multimodal cancelable biometric system with ECG and PPG signals. Neural Comput. Appl. 2024, 36, 6575–6595. [Google Scholar] [CrossRef]
- El-Rahiem, B.A.; El-Samie, F.E.A.; Amin, M. Multimodal biometric authentication based on deep fusion of electrocardiogram (ECG) and finger vein. Multimed. Syst. 2022, 28, 1325–1337. [Google Scholar] [CrossRef]
- Poon, C.C.; Zhang, Y.T.; Bao, S.D. A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Commun. Mag. 2006, 44, 73–81. [Google Scholar] [CrossRef]
- Riccio, D.; Galdi, C.; Manzo, R. Biometric/Cryptographic Keys Binding Based on Function Minimization. In Proceedings of the 12th International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2016, Naples, Italy, 28 November–1 December 2016; pp. 144–150. [Google Scholar] [CrossRef]
- Juels, A.; Sudan, M. A fuzzy vault scheme. Des. Codes Cryptogr. 2006, 38, 237–257. [Google Scholar] [CrossRef]
- Dodis, Y.; Ostrovsky, R.; Reyzin, L.; Smith, A.D. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 2008, 38, 97–139. [Google Scholar] [CrossRef]
- Cao, C.; He, C.; Bao, S.; Li, Y. Improvement of fuzzy vault scheme for securing key distribution in body sensor network. In Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011, Boston, MA, USA, 30 August–3 September 2011; pp. 3563–3567. [Google Scholar] [CrossRef]
- Duttagupta, S.; Marin, E.; Singelée, D.; Preneel, B. HAT: Secure and Practical Key Establishment for Implantable Medical Devices. In Proceedings of the Thirteenth ACM Conference on Data and Application Security and Privacy, CODASPY ’23, Charlotte, NC, USA, 24–26 April 2023; pp. 213–224. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Son, D.; Kwon, H.; Astillo, P.V.; You, I. APSec1.0: Innovative Security Protocol Design with Formal Security Analysis for the Artificial Pancreas System. Sensors 2023, 23, 5501. [Google Scholar] [CrossRef]
- Salehi Shahraki, A.; Lauer, H.; Grobler, M.; Sakzad, A.; Rudolph, C. Access Control, Key Management, and Trust for Emerging Wireless Body Area Networks. Sensors 2023, 23, 9856. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y.; Wang, H.; Su, X.; Li, H. dAPRE:Efficient and Reliable Attribute-Based Proxy Re-Encryption Using DAG for Data Sharing in IoT. IEEE Trans. Consum. Electron. 2024, 70, 584–596. [Google Scholar] [CrossRef]
- Gollakota, S.; Hassanieh, H.; Ransford, B.; Katabi, D.; Fu, K. They can hear your heartbeats: Non-invasive security for implantable medical devices. In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, Toronto, ON, Canada, 15–19 August 2011; pp. 2–13. [Google Scholar] [CrossRef]
- Xu, F.; Qin, Z.; Tan, C.C.; Wang, B.; Li, Q. IMDGuard: Securing implantable medical devices with the external wearable guardian. In Proceedings of the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1862–1870. [Google Scholar] [CrossRef]
- Panda, A.; Pinisetty, S.; Roop, P. Securing Pacemakers using Runtime Monitors over Physiological Signals. ACM Trans. Embed. Comput. Syst. 2024. [Google Scholar] [CrossRef]
- Wu, L.; Du, J. Designing novel proxy-based access control scheme for implantable medical devices. Comput. Stand. Interfaces 2024, 87, 103754. [Google Scholar] [CrossRef]
- Newaz, A.I.; Sikder, A.K.; Rahman, M.A.; Uluagac, A.S. A survey on security and privacy issues in modern healthcare systems: Attacks and defenses. Acm Trans. Comput. Healthc. 2021, 2, 1–44. [Google Scholar] [CrossRef]
- Gao, S.; Thamilarasu, G. Machine-learning classifiers for security in connected medical devices. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–5. [Google Scholar]
- Sundas, A.; Badotra, S.; Bharany, S.; Almogren, A.; Tag-ElDin, E.M.; Rehman, A.U. HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning. Sustainability 2022, 14, 11934. [Google Scholar] [CrossRef]
- Kintzlinger, M.; Cohen, A.; Nissim, N.; Rav-Acha, M.; Khalameizer, V.; Elovici, Y.; Shahar, Y.; Katz, A. CardiWall: A trusted firewall for the detection of malicious clinical programming of cardiac implantable electronic devices. IEEE Access 2020, 8, 48123–48140. [Google Scholar] [CrossRef]
- Levy-Loboda, T.; Rav-Acha, M.; Katz, A.; Nissim, N. Cardio-ML: Detection of malicious clinical programmings aimed at cardiac implantable electronic devices based on machine learning and a missing values resemblance framework. Artif. Intell. Med. 2021, 122, 102200. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Rogers, A.J.; Johnson, K.W.; Wang, Z.; Turakhia, M.P.; Halperin, J.L.; Narayan, S.M. Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 2021, 18, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Levy-Loboda, T.; Sheetrit, E.; Liberty, I.F.; Haim, A.; Nissim, N. Personalized insulin dose manipulation attack and its detection using interval-based temporal patterns and machine learning algorithms. J. Biomed. Inform. 2022, 132, 104129. [Google Scholar] [CrossRef]
- Meneghetti, L.; Dassau, E.; Doyle, F.J., III; Del Favero, S. Machine learning-based anomaly detection algorithms to alert patients using sensor augmented pump of infusion site failures. J. Diabetes Sci. Technol. 2022, 16, 641–648. [Google Scholar] [CrossRef]
- Ahmad, U.; Song, H.; Bilal, A.; Mahmood, S.; Alazab, M.; Jolfaei, A.; Ullah, A.; Saeed, U. A novel deep learning model to secure internet of things in healthcare. In Machine Intelligence and Big Data Analytics for Cybersecurity Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 341–353. [Google Scholar]
- Rathore, H.; Al-Ali, A.; Mohamed, A.; Du, X.; Guizani, M. DLRT: Deep learning approach for reliable diabetic treatment. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Ahmad, U.; Song, H.; Bilal, A.; Saleem, S.; Ullah, A. Securing insulin pump system using deep learning and gesture recognition. In Proceedings of the 2018 17th IEEE International Conference on Trust, Security And Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 1716–1719. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečný, J.; Mazzocchi, S.; McMahan, H.B.; et al. Towards Federated Learning at Scale: System Design. arXiv 2019, arXiv:1902.01046. [Google Scholar]
- Xu, J.; Glicksberg, B.S.; Su, C.; Walker, P.; Bian, J.; Wang, F. Federated learning for healthcare informatics. J. Healthc. Inform. Res. 2021, 5, 1–19. [Google Scholar] [CrossRef]
- Zhao, L.; Xie, H.; Zhong, L.; Wang, Y. Explainable federated learning scheme for secure healthcare data sharing. Health Inf. Sci. Syst. 2024, 12, 49. [Google Scholar] [CrossRef]
- Khan, S.H.; Alam, M.G.R. A Federated Learning Approach to Pneumonia Detection. In Proceedings of the 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Bebortta, S.; Tripathy, S.S.; Basheer, S.; Chowdhary, C.L. FedEHR: A Federated Learning Approach towards the Prediction of Heart Diseases in IoT-Based Electronic Health Records. Diagnostics 2023, 13, 3166. [Google Scholar] [CrossRef]
- Rani, S.; Kataria, A.; Kumar, S.; Tiwari, P. Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review. Knowl.-Based Syst. 2023, 274, 110658. [Google Scholar] [CrossRef]
- Zhao, P.; Jiang, J.; Zhang, G. FedSuper: A Byzantine-Robust Federated Learning Under Supervision. ACM Trans. Sens. Netw. 2024, 20, 1–29. [Google Scholar] [CrossRef]
- Zhao, P.; Tao, J.; Lui, K.; Zhang, G.; Gao, F. Deep Reinforcement Learning-Based Joint Optimization of Delay and Privacy in Multiple-User MEC Systems. IEEE Trans. Cloud Comput. 2023, 11, 1487–1499. [Google Scholar] [CrossRef]
- Quiñones, E.; Perales, J.; Ejarque, J.; Badouh, A.; Marco, S.; Auzanneau, F.; Galea, F.; González, D.; Hervás, J.R.; Silva, T.; et al. The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud Computing Infrastructures for IA-based Medical Solutions. In HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision; Terzo, O., Martinovič, J., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Biskup, J.; Bonatti, P.A.; Galdi, C.; Sauro, L. Inference-proof Data Filtering for a Probabilistic Setting. In Proceedings of the 5th Workshop on Society, Privacy and the Semantic Web—Policy and Technology (PrivOn2017) Co-Located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria, 22 October 2017; Volume 1951. [Google Scholar]
- Biskup, J.; Bonatti, P.A.; Galdi, C.; Sauro, L. Optimality and Complexity of Inference-Proof Data Filtering and CQE. In Proceedings of the Computer Security—ESORICS 2014—19th European Symposium on Research in Computer Security, Wroclaw, Poland, 7–11 September 2014; Proceedings, Part II; Lecture Notes in Computer Science. Kutylowski, M., Vaidya, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8713, pp. 165–181. [Google Scholar] [CrossRef]
- Moran, B.; Tschofenig, H.; Brown, D.; Meriac, M. RFC 9019: A Firmware Update Architecture for Internet of Things. 2021. Available online: https://www.rfc-editor.org/info/rfc9019 (accessed on 24 September 2024).
- Catuogno, L.; Galdi, C. Secure Firmware Update: Challenges and Solutions. Cryptography 2023, 7, 30. [Google Scholar] [CrossRef]
- Hou, F.; Jansen, S. A systematic literature review on trust in the software ecosystem. Empir. Softw. Eng. 2023, 28, 8. [Google Scholar] [CrossRef]
- Catuogno, L.; Galdi, C.; Persiano, G. Secure Dependency Enforcement in Package Management Systems. IEEE Trans. Dependable Secur. Comput. 2020, 17, 377–390. [Google Scholar] [CrossRef]
- Cui, A.; Costello, M.; Stolfo, S.J. When Firmware Modifications Attack: A Case Study of Embedded Exploitation. In Proceedings of the 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, CA, USA, 24–27 February 2013. [Google Scholar]
- Andy, S.; Rahardjo, B.; Hanindhito, B. Attack scenarios and security analysis of MQTT communication protocol in IoT system. In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–6. [Google Scholar]
- Ibrahim, M.; Continella, A.; Bianchi, A. AoT—Attack on Things: A security analysis of IoT firmware updates. In Proceedings of the 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), Delft, The Netherlands, 3–7 July 2023; pp. 1047–1064. [Google Scholar] [CrossRef]
- Beauchamp, T.L.; Childress, J.F. Principles of Biomedical Ethics; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Torgersen, L.N.S.; Schulz, S.M.; Lugo, R.G.; Sütterlin, S. Patient informed consent, ethical and legal considerations in the context of digital vulnerability with smart, cardiac implantable electronic devices. PLoS Digit. Health 2024, 3, 1–17. [Google Scholar] [CrossRef]
- Kramer, D.B.; Fu, K. Cybersecurity Concerns and Medical Devices: Lessons From a Pacemaker Advisory. JAMA 2017, 318, 2077–2078. [Google Scholar] [CrossRef]
- Das, S.; Siroky, G.P.; Lee, S.; Mehta, D.; Suri, R. Cybersecurity: The need for data and patient safety with cardiac implantable electronic devices. Heart Rhythm. 2021, 18, 473–481. [Google Scholar] [CrossRef]
- Simon, D.A.; Kesselheim, A.S. Physician and Device Manufacturer Tort Liability for Remote Patient Monitoring Devices. In Digital Health Care Outside of Traditional Clinical Settings: Ethical, Legal, and Regulatory Challenges and Opportunities; Cambridge University Press: Cambridge, UK, 2024; pp. 109–122. [Google Scholar]
- Radcliffe, J. Hacking medical devices for fun and insulin: Breaking the human SCADA system. In Proceedings of the Black Hat Conference, Las Vegas, NV, USA, 30 July–4 August 2011. [Google Scholar]
- Ho, A.; Quick, O. Leaving patients to their own devices? Smart technology, safety and therapeutic relationships. BMC Med. Ethics 2018, 19, 1–6. [Google Scholar] [CrossRef]
- Siddiqi, M.A.; Tsintzira, A.A.; Digkas, G.; Siavvas, M.G.; Strydis, C. Adding security to implantable medical devices: Can we afford it? In Proceedings of the International Conference on Embedded Wireless Systems and Networks, EWSN, Delft, The Netherlands, 17–19 February 2021; pp. 67–78. [Google Scholar]
- Segura Anaya, L.; Alsadoon, A.; Costadopoulos, N.; Prasad, P. Ethical implications of user perceptions of wearable devices. Sci. Eng. Ethics 2018, 24, 1–28. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catuogno, L.; Galdi, C. Implantable Medical Device Security. Cryptography 2024, 8, 53. https://doi.org/10.3390/cryptography8040053
Catuogno L, Galdi C. Implantable Medical Device Security. Cryptography. 2024; 8(4):53. https://doi.org/10.3390/cryptography8040053
Chicago/Turabian StyleCatuogno, Luigi, and Clemente Galdi. 2024. "Implantable Medical Device Security" Cryptography 8, no. 4: 53. https://doi.org/10.3390/cryptography8040053
APA StyleCatuogno, L., & Galdi, C. (2024). Implantable Medical Device Security. Cryptography, 8(4), 53. https://doi.org/10.3390/cryptography8040053