Supposed Virulence Factors of Flavobacterium psychrophilum: A Review
Abstract
:1. Introduction
2. Adhesion and Biofilm Formation
3. Enzymes
3.1. Proteases (Tissue Destruction)
3.2. Glycosyltransferases
3.3. Cell Wall Hydrolases
4. Gliding Motility
5. Iron Acquisition Mechanisms
5.1. Haemolysis Activity
5.2. Siderophore Production
5.3. Iron Transport Systems
6. Secretion System
7. Lipopolysaccharide (LPS) and Capsular Polysaccharide (CPS)
8. Influence of Serotype and Genotype on Virulence
9. Interaction of F. psychrophilum with the Host Immune System
10. Final Considerations
11. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Davis, H.S. Care and Diseases of Trout; US Government Printing Office: Washington, DC, USA, 1946; Volume 12, pp. 63–66. [Google Scholar]
- Borg, A.F. Studies on myxobacteria associated with diseases in salmonid fishes. Wildl. Dis. 1960, 8, 1–85. [Google Scholar]
- Chua, F.H.C. A Study on the Rainbow Trout Fry Syndrome. Master’s Thesis, Institute of Aquaculture, University of Stirling, Stirling, Scotland, 1991. [Google Scholar]
- Lorenzen, E.; Dalsgaard, I.; From, J.; Hansen, E.M.; Horlyck, V.; Korsholm, H.; Mellergaard, S.; Olesen, N.J. Preliminary investigations of fry mortality syndrome in rainbow trout. Bull. Eur. Assoc. Fish Pathol. 1991, 11, 77–79. [Google Scholar]
- Bustos, P.A.; Calbuyahue, J.; Montana, J.; Opazo, B.; Entrala, P.; Solervicens, R. First isolation of Flexibacter psychrophilus, as causative agent of rainbow trout fry syndrome (RTFS), producing rainbow trout mortality in Chile. Bull. Eur. Assoc. Fish Pathol. 1995, 15, 162–164. [Google Scholar]
- Liu, H.; Izumi, S.; Wakabayashi, H. Detection of Flavobacterium psychrophilum in various organs of ayu Plecoglossus altivelis by in situ hybridization. Fish Pathol. 2001, 36, 7–11. [Google Scholar] [CrossRef]
- Moreno, P.; Molinari, L.; Hualde, P.; Miyazaki, T. First report of Flavobacterium psychrophilum isolated from cultured rainbow trout (Oncorhynchus mykiss) in Argentina. Bull. Eur. Assoc. Fish Pathol. 2016, 36, 59. [Google Scholar]
- Čížek, A.; Palíková, M.; Lang, Š.; Mareš, J. Bacterial Coldwater Disease in Czech farmed rainbow trout (Oncorhynchus mykiss). Veterinářství 2017, 67, 743–747. (In Czech) [Google Scholar]
- Madetoja, J.; Hänninen, M.L.; Hirvelä–Koski, V.; Dalsgaard, I.; Wiklund, T. Phenotypic and genotypic characterization of Flavobacterium psychrophilum from Finnish fish farms. J. Fish Dis. 2001, 24, 469–479. [Google Scholar] [CrossRef]
- Del Cerro, A.; Márquez, I.; Prieto, J.M. Genetic diversity and antimicrobial resistance of Flavobacterium psychrophilum isolated from cultured rainbow trout, Onchorynchus mykiss (Walbaum), in Spain. J. Fish Dis. 2010, 33, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Saticioglu, I.B.; Duman, M.; Wiklund, T.; Altun SO NE, R. Serological and genetic characterization of Flavobacterium psychrophilum isolated from farmed salmonids in Turkey. J. Fish Dis. 2018, 41, 1899–1908. [Google Scholar] [CrossRef]
- Li, S.; Chai, J.; Knupp, C.; Nicolas, P.; Wang, D.; Cao, Y.; Deng, F.; Chen, F.; Loch, T.P. Phenotypic and genetic characterization of Flavobacterium psychrophilum recovered from diseased salmonids in China. Microbiol. Spectr. 2021, 9, e00330-21. [Google Scholar] [CrossRef]
- Levipan, H.A.; Avendano-Herrera, R. Different phenotypes of mature biofilm in Flavobacterium psychrophilum share a potential for virulence that differs from planktonic state. Front. Cell. Infect. Microbiol. 2017, 7, 76. [Google Scholar] [CrossRef]
- Lehmann JD, F.J.; Mock, D.; Stürenberg, F.J.; Bernardet, J.F. First isolation of Cytophaga psychrophila from a systemic disease in eel and cyprinids. Dis. Aquat. Org. 1991, 10, 217–220. [Google Scholar] [CrossRef]
- Madetoja, J.; Nyman, P.; Wiklund, T. Flavobacterium psychrophilum, invasion into and shedding by rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 2000, 43, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Miwa, S.; Nakayasu, C. Pathogenesis of experimentally induced bacterial cold water disease in ayu Plecoglossus altivelis. Dis. Aquat. Org. 2005, 67, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Palíková, M.; Navrátil, S.; Mareš, J. Preventive, Prophylactic and Curative Interventions to Reduce the Risk of Occurrence and Outbreak of Disease in Recirculating Systems of the Danish Type: Certified Methodology; Mendelova Univerzita: Brno, Czech Republic, 2015; pp. 1–25. (In Czech) [Google Scholar]
- Gultepe, N.; Tanrikul, T.T. Treatment methods of Flavobacterium psychrophilum: Cause of rainbow trout fry syndrome (RFTS) and bacterial coldwater disease (BCWD) in Turkey. J. Fish. Int. 2006, 1, 102–105. [Google Scholar]
- Aoki, M.; Kondo, M.; Kawai, K.; Oshima, S.I. Experimental bath infection with Flavobacterium psychrophilum, inducing typical signs of rainbow trout Oncorhynchus mykiss fry syndrome. Dis. Aquat. Org. 2005, 67, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Ekman, E.; Norrgren, L. Pathology and immunohistochemistry in three species of salmonids after experimental infection with Flavobacterium psychrophilum. J. Fish Dis. 2003, 26, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Dalsgaard, I.; Bruun, M.S.; Andersen, J.H.; Madsen, L. Recent knowledge of Flavobacterium psychrophilum in Denmark. In Proceedings of the 2nd Conference on Members of the Genus Flavobacterium, Paris, France, 21 September 2009. [Google Scholar]
- Nilsen, H.; Olsen, A.B.; Vaagnes, Ø.; Hellberg, H.; Bottolfsen, K.; Skjelstad, H.; Colquhoun, D.J. Systemic Flavobacterium psychrophilum infection in rainbow trout, Oncorhynchus mykiss (Walbaum), farmed in fresh and brackish water in Norway. J. Fish Dis. 2011, 34, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Otis, E.J. Lesions of Coldwater Disease in Steelhead Trout (Salmo gairdneri): The Role of Cytophaga psychrophila Extracellular Products. Ph.D. Thesis, University of Rhode Island, Kingston, NY, USA, 1984. [Google Scholar]
- Holt, R.A. Cytophaga psychrophila, the Causative Agent of Bacterial Cold-Water Disease in Salmonid Fish; Oregon State University: Corvallis, OR, USA, 1987. [Google Scholar]
- Castillo, D.; Donati, V.L.; Jørgensen, J.; Sundell, K.; Dalsgaard, I.; Madsen, L.; Wiklund, T.; Middelboe, M. Comparative genomic analyses of Flavobacterium psychrophilum isolates reveals new putative genetic determinants of virulence traits. Microorganisms 2021, 9, 1658. [Google Scholar] [CrossRef]
- Nematollahi, A.; Decostere, A.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F. Adhesion of high and low virulence Flavobacterium psychrophilum strains to isolated gill arches of rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 2003, 55, 101–107. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Howell, A.; Wiklund, T. Inhibition of Flavobacterium psychrophilum adhesion in vitro. FEMS Microbiol. Lett. 2015, 362, fnv203. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Castillo, A.G.; Thompson, K.D.; Adams, A.; Marín de Mateo, M.; Rodríguez-Jerez, J.J. Biofilm formation of Flavobacterium psychrophilum on various substrates. Aquac. Res. 2018, 49, 3830–3837. [Google Scholar] [CrossRef]
- Huq, A.; Whitehouse, C.A.; Grim, C.J.; Alam, M.; Colwell, R.R. Biofilms in water, its role and impact in human disease transmission. Curr. Opin. Biotechnol. 2008, 19, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pascual, D.; Rochat, T.; Kerouault, B.; Guijarro, J.A.; Bernardet, J.F.; Duchaud, E. More than gliding: Involvement of GldD and GldG in the virulence of Flavobacterium psychrophilum. Front. Microbiol. 2017, 8, 293089. [Google Scholar] [CrossRef] [PubMed]
- Barbier, P.; Rochat, T.; Mohammed, H.H.; Wiens, G.D.; Bernardet, J.F.; Halpern, D.; Duchaud, E.; McBride, M.J. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 2020, 86, e00799-20. [Google Scholar] [CrossRef]
- Duchaud, E.; Boussaha, M.; Loux, V.; Bernardet, J.F.; Michel, C.; Kerouault, B.; Mondot, S.; Nicolas, P.; Bossy, R.; Caron, C.; et al. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat. Biotechnol. 2007, 25, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.; Christiansen, R.H.; Dalsgaard, I.; Madsen, L.; Espejo, R.; Middelboe, M. Comparative genome analysis provides insights into the pathogenicity of Flavobacterium psychrophilum. PLoS ONE 2016, 11, e0152515. [Google Scholar] [CrossRef] [PubMed]
- Sundell, K.; Wiklund, T. Characteristics of epidemic and sporadic Flavobacterium psychrophilum sequence types. Aquaculture 2015, 441, 51–56. [Google Scholar] [CrossRef]
- Högfors-Rönnholm, E.; Wiklund, T. Phase variation in Flavobacterium psychrophilum: Characterization of two distinct colony phenotypes. Dis. Aquat. Org. 2010, 90, 43–53. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Dalsgaard, I.; Lindén, A.; Wiklund, T. In vivo adherence of Flavobacterium psychrophilum to mucosal external surfaces of rainbow trout (Oncorhynchus mykiss) fry. J. Fish Dis. 2017, 40, 1309–1320. [Google Scholar] [CrossRef]
- Sundell, K.; Landor, L.; Nicolas, P.; Jørgensen, J.; Castillo, D.; Middelboe, M.; Dalsgaard, I.; Donati, V.L.; Madsen, L.; Wiklund, T. Phenotypic and genetic predictors of pathogenicity and virulence in Flavobacterium psychrophilum. Front. Mikrobiol. 2019, 10, 467421. [Google Scholar] [CrossRef] [PubMed]
- McEldowney, S.; Fletcher, M. Effect of pH, temperature, and growth conditions on the adhesion of a gliding bacterium and three nongliding bacteria to polystyrene. Microb. Ecol. 1988, 16, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Huang, L.; Su, Y.; Qin, Y.; Zhao, L.; Yan, Q. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen 2018, 7, e00551. [Google Scholar] [CrossRef] [PubMed]
- Van Dyk, J.C.; Marchand, M.J.; Pieterse, G.M.; Barnhoorn, I.E.; Bornman, M.S. Histological changes in the gills of Clarias gariepinus (Teleostei: Clariidae) from a polluted South African urban aquatic system. Afr. J. Aquat. Sci. 2009, 34, 283–291. [Google Scholar] [CrossRef]
- Papadopoulou, A. Flavobacterium psychrophilum Adhesion and Biofilm Formation. Ph.D. Thesis, Åbo Akademi University, Turku, Finland, 2018. [Google Scholar]
- Cruz, L.F.; Cobine, P.A.; De La Fuente, L. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility. Appl. Environ. Mikrobiol. 2012, 78, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- De Kerchove, A.J.; Elimelech, M. Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir 2008, 24, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- Abolmaaty, A.; Meyer, D. PDMS flow cell for monitoring bacterial adhesion capacity of Escherichia coli O157: H7 in beverages. J. Adv. Biol. Biotechnol. 2017, 15, 1–12. [Google Scholar] [CrossRef]
- Staroscik, A.; Hunnicutt, D. The influence of culture conditions on biofilm formation in Flavobacterium columnare. Flavobacterium 2007. In Proceedings of the Workshop National Conservation Training Center, Shepherdstown, WV, USA, 4–5 June 2007. [Google Scholar]
- Kondo, M.; Kawai, K.; Kurohara, K.; Oshima, S.I. Adherence of Flavobacterium psychrophilum on the body surface of the ayu Plecoglossus altivelis. Microbes Infect. 2002, 4, 279–283. [Google Scholar] [CrossRef]
- Sundell, K.; Wiklund, T. Effect of biofilm formation on antimicrobial tolerance of Flavobacterium psychrophilum. J. Fish Dis. 2011, 34, 373–383. [Google Scholar] [CrossRef]
- Bertolini, J.M.; Wakabayashi, H.; Watral, V.G.; Whipple, M.J.; Rohovec, J.S. Electrophoretic detection of proteases from selected strains of Flexibacter psychrophilus and assessment of their variability. J. Aquat. Anim. Health 1994, 6, 224–233. [Google Scholar] [CrossRef]
- Secades, P.; Alvarez, B.; Guijarro, J.A. Purification and characterization of a psychrophilic, calcium-induced, growth-phase-dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 2001, 67, 2436–2444. [Google Scholar] [CrossRef] [PubMed]
- Secades, P.; Alvarez, B.; Guijarro, J.A. Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol. Lett. 2003, 226, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.L.; Casado, A.; Enríquez, R. Experimental infection of Flavobacterium psychrophilum in fins of Atlantic salmon Salmo salar revealed by scanning electron microscopy. Dis. Aquat. Org. 2004, 59, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Thunes, N.C.; Mohammed, H.H.; Evenhuis, J.P.; Lipscomb, R.S.; Pérez-Pascual, D.; Stevick, R.J.; Birkett, C.; Conrad, R.A.; Ghigo, J.M.; McBride, M.J. Secreted peptidases contribute to virulence of fish pathogen Flavobacterium columnare. Front. Cell. Infect. Microbiol. 2023, 13, 1093393. [Google Scholar] [CrossRef] [PubMed]
- Ostland, V.E.; Byrne, P.J.; Hoover, G.; Ferguson, H.W. Necrotic myositis of rainbow trout, Oncorhynchus mykiss (Walbaum): Proteolytic characteristics of a crude extracellular preparation from Flavobacterium psychrophilum. J. Fish Dis. 2000, 23, 329–336. [Google Scholar] [CrossRef]
- Rochat, T.; Pérez-Pascual, D.; Nilsen, H.; Carpentier, M.; Bridel, S.; Bernardet, J.F.; Duchaud, E. Identification of a novel elastin-degrading enzyme from the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Mikrobiol. 2019, 85, e02535-18. [Google Scholar] [CrossRef]
- Møller, J.D.; Barnes, A.C.; Dalsgaard, I.; Ellis, A.E. Characterisation of surface blebbing and membrane vesicles produced by Flavobacterium psychrophilum. Dis. Aquat. Org. 2005, 64, 201–209. [Google Scholar] [CrossRef]
- Nakayama, H.; Tanaka, K.; Teramura, N.; Hattori, S. Expression of collagenase in Flavobacterium psychrophilum isolated from cold-water disease-affected ayu (Plecoglossus altivelis). Biosci. Biotechnol. Biochem. 2016, 80, 135–144. [Google Scholar] [CrossRef]
- Soule, M.; LaFrentz, S.; Cain, K.; LaPatra, S.; Call, D.R. Polymorphisms in 16S rRNA genes of Flavobacterium psychrophilum correlate with elastin hydrolysis and tetracycline resistance. Dis. Aquat. Org. 2005, 65, 209–216. [Google Scholar] [CrossRef]
- Madsen, L.; Dalsgaard, I. Characterization of Flavobacterium psychrophilum; comparison of proteolytic activity and virulence of strains isolated from rainbow trout (Oncorhynchus mykiss). In Methodology in Fish Diseases Research; Fisheries Research Services: Edinburgh, UK, 1998; pp. 45–52. [Google Scholar]
- Guérin, C.; Lee, B.H.; Fradet, B.; Van Dijk, E.; Mirauta, B.; Thermes, C.; Bernardet, J.F.; Repoila, F.; Duchaud, E.; Nicolas, P.; et al. Transcriptome architecture and regulation at environmental transitions in flavobacteria: The case of an important fish pathogen. ISME Commun. 2021, 1, 33. [Google Scholar] [CrossRef]
- Perez-Pascual, D.; Gomez, E.; Alvarez, B.; Mendez, J.; Reimundo, P.; Navais, R.; Duchaud, E.; Guijarro, J.A. Comparative analysis and mutation effects of fpp2–fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum. Microbiology 2011, 157, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Merle, C.; Faure, D.; Urdaci, M.C.; Le Hénaff, M. Purification and characterization of a membrane glycoprotein from the fish pathogen Flavobacterium psychrophilum. J. Appl. Microbiol. 2003, 94, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Dumetz, F.; LaPatra, S.E.; Duchaud, E.; Claverol, S.; Le Henaff, M. The Flavobacterium psychrophilum OmpA, an outer membrane glycoprotein, induces a humoral response in rainbow trout. J. Appl. Mikrobiol. 2007, 103, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Benz, I.; Schmidt, M.A. Never say never again: Protein glycosylation in pathogenic bacteria. Mol. Mikrobiol. 2002, 45, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Upreti, R.K.; Kumar, M.; Shankar, V. Bacterial glycoproteins: Functions, biosynthesis and applications. Proteomics 2003, 3, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pascual, D.; Gómez, E.; Guijarro, J.A. Lack of a type-2 glycosyltransferase in the fish pathogen Flavobacterium psychrophilum determines pleiotropic changes and loss of virulence. Vet. Res. 2015, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Buist, G.; van Dijl, J.M. Staphylococcus aureus cell wall maintenance–the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol. Rev. 2022, 46, fuac025. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.M.; Weiser, J.N. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect. Immun. 2011, 79, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Kroniger, T.; Flender, D.; Schlüter, R.; Köllner, B.; Trautwein-Schult, A.; Becher, D. Proteome analysis of the Gram-positive fish pathogen Renibacterium salmoninarum reveals putative role of membrane vesicles in virulence. Sci. Rep. 2022, 12, 3003. [Google Scholar] [CrossRef]
- Chapagain, P.; Ali, A.; Salem, M. Dual RNA-Seq of Flavobacterium psychrophilum and Its Outer Membrane Vesicles Distinguishes Genes Associated with Susceptibility to Bacterial Cold-Water Disease in Rainbow Trout (Oncorhynchus mykiss). Pathogens 2023, 12, 436. [Google Scholar] [CrossRef]
- Lorenzen, E.; Dalsgaard, I.; Bernardet, J.F. Characterization of isolates of Flavobacterium psychrophilum associated with coldwater disease or rainbow trout fry syndrome I: Phenotypic and genomic studies. Dis. Aquat. Org. 1997, 31, 197–208. [Google Scholar] [CrossRef]
- McBride, M.J.; Nakane, D. Flavobacterium gliding motility and the type IX secretion system. Curr. Opin. Mikrobiol. 2015, 28, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Hunnicutt, D.W.; McBride, M.J. Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc. Natl. Acad. Sci. USA 1997, 94, 12139–12144. [Google Scholar] [CrossRef] [PubMed]
- Hunnicutt, D.W.; McBride, M.J. Cloning and characterization of the Flavobacterium johnsoniae gliding-motility genes gldB and gldC. J. Bacteriol. 2000, 182, 911–918. [Google Scholar] [CrossRef]
- Hunnicutt, D.W.; McBride, M.J. Cloning and characterization of the Flavobacterium johnsoniae gliding motility genes gldD and gldE. J. Bacteriol. 2001, 183, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Hunnicutt, D.W.; Kempf, M.J.; McBride, M.J. Mutations in Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and interfere with membrane localization of GldA. J. Bacteriol. 2002, 184, 2370–2378. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.J.; Braun, T.F.; Brust, J.L. Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization. J. Bacteriol. 2003, 185, 6648–6657. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.J.; Braun, T.F. GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. J. Bacteriol. 2004, 186, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.F.; McBride, M.J. Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J. Bacteriol. 2005, 187, 2628–2637. [Google Scholar] [CrossRef]
- Braun, T.F.; Khubbar, M.K.; Saffarini, D.A.; McBride, M.J. Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J. Bacteriol. 2005, 187, 6943–6952. [Google Scholar] [CrossRef]
- Nelson, S.S.; Glocka, P.P.; Agarwal, S.; Grimm, D.P.; McBride, M.J. Flavobacterium johnsoniae SprA is a cell surface protein involved in gliding motility. J. Bacteriol. 2007, 189, 7145–7150. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.S.; Bollampalli, S.; McBride, M.J. SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J. Bacteriol. 2008, 190, 2851–2857. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Naito, M.; Yukitake, H.; Hirakawa, H.; Shoji, M.; McBride, M.J.; Rhodes, R.G.; Nakayama, K. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 276–281. [Google Scholar] [CrossRef]
- Rhodes, R.G.; Pucker, H.G.; McBride, M.J. Development and use of a gene deletion strategy for Flavobacterium johnsoniae to identify the redundant gliding motility genes remF, remG, remH, and remI. J. Bacteriol. 2011, 193, 2418–2428. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.G.; Samarasam, M.N.; Van Groll, E.J.; McBride, M.J. Mutations in Flavobacterium johnsoniae sprE result in defects in gliding motility and protein secretion. J. Bacteriol. 2011, 193, 5322–5327. [Google Scholar] [CrossRef]
- Rhodes, R.G.; Nelson, S.S.; Pochiraju, S.; McBride, M.J. Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J. Bacteriol. 2011, 193, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Rhodes, R.G.; Pochiraju, S.; Nakane, D.; McBride, M.J. Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. J. Bacteriol. 2012, 194, 3678–3688. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Johnston, J.J.; Van Baaren, J.M.; McBride, M.J. Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J. Bacteriol. 2013, 195, 3201–3212. [Google Scholar] [CrossRef]
- Liu, J.; McBride, M.J.; Subramaniam, S. Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. J. Bacteriol. 2007, 189, 7503–7506. [Google Scholar] [CrossRef]
- Nakane, D.; Sato, K.; Wada, H.; McBride, M.J.; Nakayama, K. Helical flow of surface protein required for bacterial gliding motility. Proc. Natl. Acad. Sci. USA 2013, 110, 11145–11150. [Google Scholar] [CrossRef] [PubMed]
- James, R.H.; Deme, J.C.; Hunter, A.; Berks, B.C.; Lea, S.M. Structures of the Type IX Secretion/gliding motility motor from across the phylum Bacteroidetes. Mbio 2022, 13, e00267-22. [Google Scholar]
- Högfors-Rönnholm, E.; Sundell, K.; Wiklund, T. Isolation of a nonvirulent and non-motile variant of Flavobacterium psychrophilum. In Proceedings of the Conference Flavobacterium, Paris, France, 21–23 September 2009. [Google Scholar]
- Castillo, D.; Christiansen, R.H.; Dalsgaard, I.; Madsen, L.; Middelboe, M. Bacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: Linking genomic mutations to changes in bacterial virulence factors. Appl. Environ. Mikrobiol. 2015, 81, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Kunttu, H.M.; Runtuvuori-Salmela, A.; Sundell, K.; Wiklund, T.; Middelboe, M.; Landor, L.; Ashrafi, R.; Hoikkala, V.; Sundberg, L.R. Bacteriophage resistance affects Flavobacterium columnare virulence partly via mutations in genes related to gliding motility and the Type IX secretion system. Appl. Environ. Microbiol. 2021, 87, e00812-21. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, J.; Sundell, K.; Castillo, D.; Dramshøj, L.S.; Jørgensen, N.B.; Madsen, S.B.; Landor, L.; Wiklund, T.; Donati, V.L.; Madsen, L.; et al. Reversible mutations in gliding motility and virulence genes: A flexible and efficient phage defence mechanism in Flavobacterium psychrophilum. Environ. Microbiol. 2022, 24, 4915–4930. [Google Scholar] [CrossRef] [PubMed]
- Skaar, E.P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010, 6, e1000949. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lechardeur, D.; Bernardet, J.F.; Kerouault, B.; Guérin, C.; Rigaudeau, D.; Nicolar, P.; Duchaud, E.; Rochat, T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum. Virulence 2022, 13, 1221–1241. [Google Scholar] [CrossRef] [PubMed]
- Högfors-Rönnholm, E.; Wiklund, T. Hemolytic activity in Flavobacterium psychrophilum is a contact-dependent, two-step mechanism and differently expressed in smooth and rough phenotypes. Microb. Pathog. 2010, 49, 369–375. [Google Scholar] [CrossRef]
- Møller, J.D.; Larsen, J.L.; Madsen, L.; Dalsgaard, I. Involvement of a sialic acid-binding lectin with hemagglutination and hydrophobicity of Flavobacterium psychrophilum. Appl. Environ. Mikrobiol. 2003, 69, 5275–5280. [Google Scholar] [CrossRef]
- Wu, A.K.; Kropinski, A.M.; Lumsden, J.S.; Dixon, B.; MacInnes, J.I. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum ATCC 49418 T. Stand. Genom. Sci. 2015, 10, 3. [Google Scholar] [CrossRef]
- Pimenta, A.L.; Racher, K.; Jamieson, L.; Blight, M.A.; Holland, I.B. Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. J. Bacteriol. 2005, 187, 7471–7480. [Google Scholar] [CrossRef]
- Lemos, M.L.; Balado, M. Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. J. Appl. Microbiol. 2020, 129, 104–115. [Google Scholar] [CrossRef]
- Møller, J.D.; Ellis, A.E.; Barnes, A.C.; Dalsgaard, I. Iron acquisition mechanisms of Flavobacterium psychrophilum. J. Fish Dis. 2005, 28, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Bruce, T.J.; Ma, J.; Sudheesh, P.S.; Cain, K.D. Quantification and comparison of gene expression associated with iron regulation and metabolism in a virulent and attenuated strain of Flavobacterium psychrophilum. J. Fish Dis. 2021, 44, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Hesami, S.; Metcalf, D.S.; Lumsden, J.S.; MacInnes, J.I. Identification of cold-temperature-regulated genes in Flavobacterium psychrophilum. Appl. Environ. Microbiol. 2011, 77, 1593–1600. [Google Scholar] [CrossRef]
- Alvarez, B.; Alvarez, J.; Menendez, A.; Guijarro, J.A. A mutant in one of two exbD loci of a TonB system in Flavobacterium psychrophilum shows attenuated virulence and confers protection against cold water disease. Microbiology 2008, 154, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Noinaj, N.; Guillier, M.; Barnard, T.J.; Buchanan, S.K. TonB-dependent transporters: Regulation, structure, and function. Annu. Rev. Microbiol. 2010, 64, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Dumetz, F.; Duchaud, E.; Claverol, S.; Orieux, N.; Papillon, S.; Lapaillerie, D.; Le Henaff, M. Analysis of the Flavobacterium psychrophilum outer-membrane subproteome and identification of new antigenic targets for vaccine by immunomics. Microbiology 2008, 154, 1793–1801. [Google Scholar] [CrossRef]
- Conrad, R.A.; Evenhuis, J.P.; Lipscomb, R.S.; Pérez-Pascual, D.; Stevick, R.J.; Birkett, C.; Ghigo, J.M.; McBride, M.J. Flavobacterium columnare ferric iron uptake systems are required for virulence. Front. Cell. Infect. Microbiol. 2022, 12, 1029833. [Google Scholar] [CrossRef]
- Yue, W.W.; Grizot, S.; Buchanan, S.K. Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J. Mol. Biol. 2003, 332, 353–368. [Google Scholar] [CrossRef]
- Lau, C.K.; Krewulak, K.D.; Vogel, H.J. Bacterial ferrous iron transport: The Feo system. FEMS Microbiol. Rev. 2016, 40, 273–298. [Google Scholar] [CrossRef]
- Mavrodi, D.V.; Parejko, J.A.; Mavrodi, O.V.; Kwak, Y.S.; Weller, D.M.; Blankenfeldt, W.; Thomashow, L.S. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ. Mikrobiol. 2013, 15, 675–686. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.J.; Zhu, Y. Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J. Bacteriol. 2013, 195, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Chatzi, K.E.; Sardis, M.F.; Karamanou, S.; Economou, A. Breaking on through to the other side: Protein export through the bacterial Sec system. Biochem. J. 2013, 449, 25–37. [Google Scholar] [CrossRef]
- Sato, K.; Sakai, E.; Veith, P.D.; Shoji, M.; Kikuchi, Y.; Yukitake, H.; Ohara, N.; Naito, M.; Okamoto, K.; Reynolds, E.C.; et al. Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J. Biol. Chem. 2005, 280, 8668–8677. [Google Scholar] [CrossRef]
- Ishiguro, I.; Saiki, K.; Konishi, K. PG27 is a novel membrane protein essential for a Porphyromonas gingivalis protease secretion system. FEMS Microbiol. Lett. 2009, 292, 261–267. [Google Scholar] [CrossRef]
- Saiki, K.; Konishi, K. The role of Sov protein in the secretion of gingipain protease virulence factors of Porphyromonas gingivalis. FEMS Microbiol. Lett. 2010, 302, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Saiki, K.; Konishi, K. Identification of a novel Porphyromonas gingivalis outer membrane protein, PG534, required for the production of active gingipains. FEMS Microbiol. Lett. 2010, 310, 168–174. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Peng, B.; Yang, Q.; Glew, M.D.; Veith, P.D.; Cross, K.J.; Goldie, K.N.; Chen, D.; O’Brien-Simpson, N.; Dashper, S.; et al. The outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis. Mol. Microbiol. 2011, 79, 1380–1401. [Google Scholar] [CrossRef]
- Shoji, M.; Sato, K.; Yukitake, H.; Kondo, Y.; Narita, Y.; Kadowaki, T.; Naito, M.; Nakayama, K. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS ONE 2011, 6, e21372. [Google Scholar] [CrossRef]
- Gorasia, D.G.; Veith, P.D.; Hanssen, E.G.; Glew, M.D.; Sato, K.; Yukitake, H.; Nakayama, K.; Reynolds, E.C. Structural insights into the PorK and PorN components of the Porphyromonas gingivalis type IX secretion system. PLoS Pathog. 2016, 12, e1005820. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.E.; Seers, C.A.; Veith, P.D.; Butler, C.A.; Nor Muhammad, N.A.; Chen, Y.Y.; Slakeski, N.; Peng, B.; Zhang, L.; Dashper, S.G.; et al. PG1058 is a novel multidomain protein component of the bacterial type IX secretion system. PLoS ONE 2016, 11, e0164313. [Google Scholar] [CrossRef]
- Lasica, A.M.; Goulas, T.; Mizgalska, D.; Zhou, X.; De Diego, I.; Ksiazek, M.; Madej, M.; Guo, Y.; Guevara, T.; Nowak, M.; et al. Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis. Sci. Rep. 2016, 6, 37708. [Google Scholar] [CrossRef] [PubMed]
- Lauber, F.; Deme, J.C.; Lea, S.M.; Berks, B.C. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 2018, 564, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Naito, M.; Tominaga, T.; Shoji, M.; Nakayama, K. PGN_0297 is an essential component of the type IX secretion system (T9SS) in Porphyromonas gingivalis: Tn-seq analysis for exhaustive identification of T9SS-related genes. Microbiol. Imunol. 2019, 63, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Gorasia, D.G.; Chreifi, G.; Seers, C.A.; Butler, C.A.; Heath, J.E.; Glew, M.D.; McBride, M.J.; Subramanian, P.; Kjær, A.; Jensen, G.J.; et al. In situ structure and organisation of the type IX secretion system. BioRxiv 2020. [Google Scholar] [CrossRef]
- Glew, M.D.; Veith, P.D.; Chen, D.; Gorasia, D.G.; Peng, B.; Reynolds, E.C. PorV is an outer membrane shuttle protein for the type IX secretion system. Sci. Rep. 2017, 7, 8790. [Google Scholar] [CrossRef]
- Gorasia, D.G.; Veith, P.D.; Chen, D.; Seers, C.A.; Mitchell, H.A.; Chen, Y.Y.; Glew, M.D.; Dashper, S.G.; Reynolds, E.C. Porphyromonas gingivalis type IX secretion substrates are cleaved and modified by a sortase-like mechanism. PLoS Pathog. 2015, 11, e1005152. [Google Scholar] [CrossRef] [PubMed]
- Paillat, M.; Lunar Silva, I.; Cascales, E.; Doan, T. A journey with type IX secretion system effectors: Selection, transport, processing and activities. Microbiology 2023, 169, 001320. [Google Scholar] [CrossRef]
- Li, N.; Zhu, Y.; LaFrentz, B.R.; Evenhuis, J.P.; Hunnicutt, D.W.; Conrad, R.A.; Barbier, P.; Gullstrand, C.W.; Roets, J.E.; Powers, J.L.; et al. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare. Appl. Environ. Microbiol. 2017, 83, e01769-17. [Google Scholar] [CrossRef]
- Thunes, N.C.; Conrad, R.A.; Mohammed, H.H.; Zhu, Y.; Barbier, P.; Evenhuis, J.P.; Pérez-Pascual, D.; Ghigo, J.M.; Lipscomb, R.S.; Schneider, R.J.; et al. Type IX secretion system effectors and virulence of the model Flavobacterium columnare strain MS-FC-4. Appl. Environ. Microbiol. 2022, 88, e01705-21. [Google Scholar] [CrossRef] [PubMed]
- Benedyk, M.; Marczyk, A.; Chruścicka, B. Type IX secretion system is pivotal for expression of gingipain-associated virulence of Porphyromonas gingivalis. Mol. Oral Microbiol. 2019, 34, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, T.; Yukitake, H.; Naito, M.; Sato, K.; Kikuchi, Y.; Kondo, Y.; Shoji, M.; Nakayama, K. A two-component system regulates gene expression of the type IX secretion component proteins via an ECF sigma factor. Sci. Rep. 2016, 6, 23288. [Google Scholar] [CrossRef] [PubMed]
- LaFrentz, B.R.; LaPatra, S.E.; Call, D.R.; Wiens, G.D.; Cain, K.D. Proteomic analysis of Flavobacterium psychrophilum cultured in vivo and in iron-limited media. Dis. Aquat. Org. 2009, 87, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Rangdale, E.; Richards, R.H.; Alderman, D.J. Histopathological and electron microscopical observations on rainbow trout fry syndrome. Vet. Rec. 1999, 144, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Bertani, B.; Ruiz, N. Function and biogenesis of lipopolysaccharides. Ecosal Plus 2018, 8, 10–1128. [Google Scholar] [CrossRef]
- Crump, E.M.; Perry, M.B.; Clouthier, S.C.; Kay, W.W. Antigenic characterization of the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Mikrobiol. 2001, 67, 750–759. [Google Scholar] [CrossRef] [PubMed]
- MacLean, L.L.; Vinogradov, E.; Crump, E.M.; Perry, M.B.; Kay, W.W. The structure of the lipopolysaccharide O-antigen produced by Flavobacterium psychrophilum (259-93). Eur. J. Biochem. 2001, 268, 2710–2716. [Google Scholar] [CrossRef]
- Kam, J.Y.; Hortle, E.; Krogman, E.; Warner, S.E.; Wright, K.; Luo, K.; Cheng, T.; Cholan, P.M.; Kikuchi, K.; Triccas, J.A.; et al. Rough and smooth variants of Mycobacterium abscessus are differentially controlled by host immunity during chronic infection of adult zebrafish. Nat. Commun. 2022, 13, 952. [Google Scholar] [CrossRef]
- Hasman, H.; Schembri, M.A.; Klemm, P. Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. J. Bacteriol. 2000, 182, 1089–1095. [Google Scholar] [CrossRef]
- Kokoulin, M.S.; Kalinovsky, A.I.; Komandrova, N.A.; Tovarchi, V.E.; Tomshich, S.V.; Ol’ga, I.N.; Vaskovsky, V.E. The structure of the O-specific polysaccharide from marine bacterium Litorimonas taeanensis G5T containing 2-acetamido-4-((3S, 5S)-3, 5-dihydroxyhexanamido)-2, 4-dideoxy-D-quinovose and 2-acetamido-2, 6-dideoxy-L-xylo-hexos-4-ulose. Carbohydr. Res. 2013, 375, 105–111. [Google Scholar] [CrossRef] [PubMed]
- LaFrentz, B.R.; Lindstrom, N.M.; LaPatra, S.E.; Call, D.R.; Cain, K.D. Electrophoretic and Western blot analyses of the lipopolysaccharide and glycocalyx of Flavobacterium psychrophilum. Fish Shellfish Imunol. 2007, 23, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Vatsos, I.N.; Thompson, K.D.; Adams, A. Development of an immunofluorescent antibody technique (IFAT) and in situ hybridization to detect Flavobacterium psychrophilum in water samples. Aquac. Res. 2002, 33, 1087–1090. [Google Scholar] [CrossRef]
- Vatsos, I.N.; Thompson, K.D.; Adams, A. Starvation of Flavobacterium psychrophilum in broth, stream water and distilled water. Dis. Aquat. Org. 2003, 56, 115–126. [Google Scholar] [CrossRef]
- Decostere, A.; Haesebrouck, F.; Van Driessche, E.; Charlier, G.; Ducatelle, R. Characterization of the adhesion of Flavobacterium columnare (Flexibacter columnaris) to gill tissue. J. Fish Dis. 1999, 22, 465–474. [Google Scholar] [CrossRef]
- Kachlany, S.C.; Levery, S.B.; Kim, J.S.; Reuhs, B.L.; Lion, L.W.; Ghiorse, W.C. Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ. Microbiol. 2001, 3, 774–784. [Google Scholar] [CrossRef]
- Lorenzen, E.; Olesen, N.J. Characterization of isolates of Flavobacterium psychrophilum associated with coldwater disease or rainbow trout fry syndrome II: Serological studies. Dis. Aquat. Org. 1997, 31, 209–220. [Google Scholar] [CrossRef]
- Rochat, T.; Fujiwara-Nagata, E.; Calvez, S.; Dalsgaard, I.; Madsen, L.; Calteau, A.; Lunazzi, A.; Nicolas, P.; Wiklund, T.; Bernardet, J.F.; et al. Genomic characterization of Flavobacterium psychrophilum serotypes and development of a multiplex PCR-based serotyping scheme. Front. Microbiol. 2017, 8, 289590. [Google Scholar] [CrossRef]
- Dalsgaard, I.; Madsen, L. Bacterial pathogens in rainbow trout, Oncorhynchus mykiss (Walbaum), reared at Danish freshwater farms. J. Fish Dis. 2000, 23, 199–209. [Google Scholar] [CrossRef]
- Ngo, T.P.; Bartie, K.L.; Thompson, K.D.; Verner-Jeffreys, D.W.; Hoare, R.; Adams, A. Genetic and serological diversity of Flavobacterium psychrophilum isolates from salmonids in United Kingdom. Vet. Microbiol. 2017, 201, 216–224. [Google Scholar] [CrossRef]
- Ilardi, P.; Valdes, S.; Rivera, J.; Irgang, R.; Avendaño-Herrera, R. Co-occurrence of heterogeneous Flavobacterium psychrophilum isolates within the same Chilean farm and during the same infectious outbreak. J. Fish Dis. 2023, 46, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.; Dalsgaard, I. Reproducible methods for experimental infection with Flavobacterium psychrophilum in rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 1999, 36, 169–176. [Google Scholar] [CrossRef]
- Nicolas, P.; Mondot, S.; Achaz, G.; Bouchenot, C.; Bernardet, J.F.; Duchaud, E. Population structure of the fish-pathogenic bacterium Flavobacterium psychrophilum. Appl. Environ. Microbiol. 2008, 74, 3702–3709. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Siekoula-Nguedia, C.; Blanc, G.; Duchaud, E.; Calvez, S. Genetic diversity of Flavobacterium psychrophilum isolated from rainbow trout in France: Predominance of a clonal complex. Vet. Microbiol. 2012, 161, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Strepparava, N.; Nicolas, P.; Wahli, T.; Segner, H.; Petrini, O. Molecular epidemiology of Flavobacterium psychrophilum from Swiss fish farms. Dis. Aquat. Org. 2013, 105, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, H.; Sundell, K.; Duchaud, E.; Nicolas, P.; Dalsgaard, I.; Madsen, L.; Aspán, A.; Jansson, E.; Colquhoun, D.J.; Wiklund, T. Multilocus sequence typing identifies epidemic clones of Flavobacterium psychrophilum in Nordic countries. Appl. Environ. Microbiol. 2014, 80, 2728–2736. [Google Scholar] [CrossRef] [PubMed]
- Knupp, C.; Wiens, G.D.; Faisal, M.; Call, D.R.; Cain, K.D.; Nicolas, P.; Van Vliet, D.; Yamashita, C.; Ferguson, J.A.; Meuninck, D.; et al. Large-scale analysis of Flavobacterium psychrophilum multilocus sequence typing genotypes recovered from North American salmonids indicates that both newly identified and recurrent clonal complexes are associated with disease. Appl. Environ. Microbiol. 2019, 85, e02305-18. [Google Scholar] [CrossRef] [PubMed]
- Decostere, A.; D’Haese, E.; Lammens, M.; Nelis, H.; Haesebrouck, F. In vivo study of phagocytosis, intracellular survival and multiplication of Flavobacterium psychrophilum in rainbow trout, Oncorhynchus mykiss (Walbaum), spleen phagocytes. J. Fish Dis. 2001, 24, 481–487. [Google Scholar] [CrossRef]
- Nematollahi, A.; Pasmans, F.; Haesebrouck, F.; Decostere, A. Early interactions of Flavobacterium psychrophilum with macrophages of rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 2005, 64, 23–28. [Google Scholar] [CrossRef]
- Wiklund, T.; Dalsgaard, I. Survival of Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) serum in vitro. Fish Shellfish Immunol. 2002, 12, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.L.; Cox, W.T.; Levine, R.P. Evidence that the causal agent of bacterial cold-water disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Dis. Aquat. Org. 1997, 29, 213–218. [Google Scholar] [CrossRef]
- Morgan, A.L.; Thompson, K.D.; Auchinachie, N.A.; Migaud, H. The effect of seasonality on normal haematological and innate immune parameters of rainbow trout Oncorhynchus mykiss L. Fish Shellfish Immunol. 2008, 25, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Papežíková, I.; Mareš, J.; Vojtek, L.; Hyršl, P.; Marková, Z.; Šimková, A.; Bartoňková, J.; Navrátil, A.; Palíková, M. Seasonal changes in immune parameters of rainbow trout (Oncorhynchus mykiss), brook trout (Salvelinus fontinalis) and brook trout× Arctic charr hybrids (Salvelinus fontinalis× Salvelinus alpinus alpinus). Fish Shellfish Immunol. 2016, 57, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Sunyer, J.O.; Salinas, I. The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Madetoja, J.; Nystedt, S.; Wiklund, T. Survival and virulence of Flavobacterium psychrophilum in water microcosms. FEMS Microbiol. Ecol. 2003, 43, 217–223. [Google Scholar] [CrossRef]
- Amoutzias, G.D.; Nikolaidis, M.; Hesketh, A. The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022, 10, 1040. [Google Scholar] [CrossRef]
- Duchaud, E.; Rochat, T.; Habib, C.; Barbier, P.; Loux, V.; Guérin, C.; Dalsgaard, I.; Madsen, L.; Nilsen, H.; Sundell, K.; et al. Genomic diversity and evolution of the fish pathogen Flavobacterium psychrophilum. Front. Microbiol. 2018, 9, 297304. [Google Scholar] [CrossRef]
Locus Tag | Gene Name | Product Descriptiction | Family | Reference |
---|---|---|---|---|
FP0081 | Putive zinc metalloprotease | M50 | Duchaud et al., 2007 [32] | |
FP0082 | Metalloprotease | M1 | Duchaud et al., 2007 [32] | |
FP0086 | Pep0 | Metallopeptidase Pep0 | Duchaud et al., 2007 [32] | |
FP0231 | Fpp1 | Psychrophilic metalloprotease Fpp1 | Secades et al., 2001 [49] | |
FP0232 | Fpp2 | Psychrophilic metalloprotease Fpp2 | M43 | Secades et al., 2003 [50] |
FP0280 | Putative fungalysin metalloprotease | M36 | Duchaud et al., 2007 [32] | |
FP0281 | Putative fungalysin metalloprotease | M36 | Duchaud et al., 2007 [32] | |
FP0506 | Elastinase | Rochat et al., 2019 [54] | ||
FP1024 | Putative cytophagalysin metalloprotease | M43 | Duchaud et al., 2007 [32] | |
FP1619 | Putative cytophagalysin metalloprotease | M43 | Duchaud et al., 2007 [32] | |
FP1763 | Putative subtilisin family serine endopeptidase | Duchaud et al., 2007 [32] | ||
FP1776 + FP1777 | Collagenase | M43 | Duchaud et al., 2007 [32] | |
FP2364 | Putative membrane-associated zinc metalloprotease | M48 | Duchaud et al., 2007 [32] | |
FP2396 | Putative subtilisin family serine endopeptidase | S8 | Duchaud et al., 2007 [32] |
Protein Name | Description | Reference |
---|---|---|
GldA | ATP-binding component of ABC transporter | Agarwal et al., 1997 [72] |
GldB | Membrane lipoprotein | Hunnicutt & McBride, 2000 [73] |
GldD | Membrane lipoprotein | Hunnicut & McBride, 2001 [74] |
GldF | Channel-forming component of ABC transporter | Hunnicutt et al., 2002 [75] |
GldG | Putative accessory protein of ABC transporter | Hunnicutt et al., 2002 [75] |
GldH | Membrane lipoprotein | McBride et al., 2003 [76] |
GldI | Membrane lipoprotein | McBride & Braun, 2004 [77] |
GldJ | Membrane lipoprotein | Braun & McBride, 2005 [78] |
GldK | T9SS component | Braun et al., 2005 [79] |
GldL | T9SS component | Braun et al., 2005 [79] |
GldM | T9SS component | Braun et al., 2005 [79] |
GldN | T9SS component | Braun et al., 2005 [79] |
SprA | T9SS component | Nelson et al., 2007 [80] |
SprB | Filamentous surface motility adhesin | Nelson et al., 2008 [81] |
SprC | Outer membrane protein | Rhodes et al., 2011 [85] |
SprD | T9SS component | Rhodes et al., 2011 [85] |
SprE | T9SS component | Rhodes et al., 2011 [84] |
SprF | T9SS component | Rhodes et al., 2011 [85] |
SprT | T9SS component | Sato et al., 2010 [82] |
RemA | sprB-like surface motility adhesin | Shrivastava et al., 2012 [86] |
RemF | Periplasmic protein | Rhodes et al., 2011 [83] |
RemG | Outer membrane protein | Rhodes et al., 2011 [83] |
RemH | Periplasmic protein | Rhodes et al., 2011 [83] |
RemI | Outer membrane protein | Rhodes et al., 2011 [83] |
Classification | Name | Description | Reference |
---|---|---|---|
Secretion complex proteins | GldK 1,2 | Periplasmic lipoprotein anchored to outer membrane | Braun et al., 2005 [79] |
GldL 1,2 | Cytoplasmic membrane protein | Braun et al., 2005 [79] | |
GldM 1,2 | Cytoplasmic membrane protein | Braun et al., 2005 [79] | |
GldN 1,2 | Periplasmic protein | Braun et al., 2005 [79] | |
SprA 1,2 (Sov) | Outer membrane channel protein | Nelson et al., 2007 [80]; Saiki & Konishi, 20010 [117] | |
SprD 2 | Outer membrane protein | Rhodes et al., 2011 [85] | |
SprE 2 (PorW) | Outer membrane lipoprotein | Sato et al., 2010 [82], Rhodes et al., 2011 [84] | |
SprF 2 (PorP) | Outer membrane protein | Sato et al., 2010 [82]; Rhodes et al., 2011 [85] | |
SprT 2 (PorT) | Outer membrane β-barrel protein | Sato et al., 2005 [115]; Sato et al., 2010 [82] | |
Plug | Outer membrane protein | Lauber et al., 2018 [124] | |
PorE | Outer membrane lipoprotein | Heath et al., 2016 [122] | |
PorF | Outer membrane Ton-B dependent receptor | Saiki & Konishi, 2010 [118] | |
PorG | Outer membrane β-barrel protein | Gorasia et al., 2016 [121] | |
Attachment complex protein | PorQ | Outer membrane β-barrel protein | Sato et al., 2010 [82] |
PorU | Outer membrane protein, T9SS sortase | Sato et al., 2010 [82] | |
PorV | Outer membrane protein | Ishiguaro et al., 2009 [116]; Chen et al., 2011 [119]; Shoji et al., 2011 [120] | |
PorZ | Outer membrane β-barrel protein | Lasica et al., 2016 [123] | |
Regulatory proteins | PorX | Cytoplasmic putative response regulator | Sato et al., 2010 [82] |
PorY | Cytoplasmic membrane sensor histidine kinase | Sato et al., 2010 [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaibarová, V.; Čížek, A. Supposed Virulence Factors of Flavobacterium psychrophilum: A Review. Fishes 2024, 9, 163. https://doi.org/10.3390/fishes9050163
Vaibarová V, Čížek A. Supposed Virulence Factors of Flavobacterium psychrophilum: A Review. Fishes. 2024; 9(5):163. https://doi.org/10.3390/fishes9050163
Chicago/Turabian StyleVaibarová, Věra, and Alois Čížek. 2024. "Supposed Virulence Factors of Flavobacterium psychrophilum: A Review" Fishes 9, no. 5: 163. https://doi.org/10.3390/fishes9050163
APA StyleVaibarová, V., & Čížek, A. (2024). Supposed Virulence Factors of Flavobacterium psychrophilum: A Review. Fishes, 9(5), 163. https://doi.org/10.3390/fishes9050163