The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations
Abstract
:1. Introduction
2. Nonproportional Light Response: Minimalist Approach
3. Monte Carlo Simulation of the Ionization Density
4. Characterization of Scintillators with CaloCube Beam Test Data
5. Simulation of a Space Calorimeter
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evoli, C.; Amato, E.; Blasi, P.; Aloisio, R. Stochastic nature of Galactic cosmic-ray sources. Phys. Rev. D 2021, 104, 123029. [Google Scholar] [CrossRef]
- Munini, R.; Boezio, M.; Bruno, A.; Christian, E.C.; de Nolfo, G.A.; Felice, V.D.; Martucci, M.; Merge’, M.; Richardson, I.G.; Ryan, J.M.; et al. Evidence of Energy and Charge Sign Dependence of the Recovery Time for the 2006 December Forbush Event Measured by the PAMELA Experiment. Astrophys. J. 2018, 853, 76. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, L.; Bartoloni, A.; Başeğmez-du Pree, S.; Bates, J.; et al. The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II—Results from the first seven years. Phys. Rep. 2021, 894, 1–116. [Google Scholar] [CrossRef]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bonechi, S.; Bongi, M.; et al. Direct Measurement of the Cosmic-Ray Proton Spectrum from 50 GeV to 10 TeV with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2019, 122, 181102. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bi, X.J.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; Chen, J.L.; et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv. 2019, 5, eaax3793. [Google Scholar] [CrossRef] [PubMed]
- Gargano, F. The High Energy cosmic-Radiation Detection (HERD) facility on board the Chinese Space Station: Hunting for high-energy cosmic rays. In Proceedings of the 37th International Cosmic Ray Conference—PoS (ICRC2021), Berlin, Germany, 15–22 July 2021; Volume 395, p. 26. [Google Scholar] [CrossRef]
- Mertsch, P. Rapporteur Talk: Cosmic Ray Direct. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 15–22 July 2021; Volume 395, p. 44. [Google Scholar]
- Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature 2017, 552, 63–66. [Google Scholar] [CrossRef]
- Abdollahi, S.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bloom, E.D.; Bonino, R.; et al. Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope. Phys. Rev. D 2017, 95, 082007. [Google Scholar] [CrossRef]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bonechi, S.; Bongi, M.; et al. Extended Measurement of the Cosmic-Ray Electron and Positron Spectrum from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2018, 120, 261102. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; et al. Towards Understanding the Origin of Cosmic-Ray Electrons. Phys. Rev. Lett. 2019, 122, 101101. [Google Scholar] [CrossRef] [Green Version]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bongi, M.; Brogi, P.; Bruno, A.; et al. Measurement of the Iron Spectrum in Cosmic Rays from 10 GeV/n to 2.0 TeV/n with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2021, 126, 241101. [Google Scholar] [CrossRef]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bongi, M.; Brogi, P.; et al. Direct Measurement of the Cosmic-Ray Carbon and Oxygen Spectra from 10 GeV/n to 2.2 TeV/n with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2020, 125, 251102. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Cavasonza, L.A.; Allen, M.S.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, L.; Bartoloni, A.; et al. Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer. Phys. Rev. Lett. 2021, 126, 041104. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2017, 119, 251101. [Google Scholar] [CrossRef] [PubMed]
- Adriani, O.; Berti, E.; Betti, P.; Bigongiari, G.; Bonechi, L.; Bongi, M.; Bottai, S.; Brogi, P.; Castellini, G.; Checchia, C.; et al. Light yield non-proportionality of inorganic crystals and its effect on cosmic-ray measurements. J. Instrum. 2022, 17, P08014. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, S.; Ambrosi, G. Overall Status of the High Energy Cosmic Radiation Detection Facility Onboard the Future China’s Space Station. Proc. Sci. 2019, 358, 62. [Google Scholar]
- Murray, R.B.; Meyer, A. Scintillation Response of Activated Inorganic Crystals to Various Charged Particles. Phys. Rev. 1961, 122, 815–826. [Google Scholar] [CrossRef]
- Moses, W.; Bizarri, G.; Williams, R.; Payne, S.; Vasil’ev, A.; Singh, J.; Li, Q.; Grim, J.; Choong, W.S. The Origins of Scintillator Non-Proportionality. IEEE Trans. Nucl. Sci. 2012, 59, 2038. [Google Scholar] [CrossRef]
- Birks, J. (Ed.) Preface. In The Theory and Practice of Scintillation Counting; International Series of Monographs in Electronics and Instrumentation; Pergamon: London, UK, 1964; pp. xvii–xviii. [Google Scholar] [CrossRef]
- Tarle, G.; Ahlen, S.P.; Cartwright, B.G. Cosmic ray isotope abundances from chromium to nickel. APJ 1979, 230, 607–620. [Google Scholar] [CrossRef]
- Payne, S.A.; Cherepy, N.J.; Hull, G.; Valentine, J.D.; Moses, W.W.; Choong, W.S. Nonproportionality of Scintillator Detectors: Theory and Experiment. IEEE Trans. Nucl. Sci. 2009, 56, 2506–2512. [Google Scholar] [CrossRef]
- Ferrari, A.; Sala, P.R.; Fasso, A.; Ranft, J. FLUKA: A Multi-Particle Transport Code; Stanford University: Stanford, CA, USA, 2005. [Google Scholar] [CrossRef]
- Payne, S.; Moses, W.; Sheets, S.; Ahle, L.; Cherepy, N.; Sturm, B.; Dazeley, S.; Bizarri, G.; Choong, W.S. Nonproportionality of Scintillator Detectors: Theory and Experiment. II. IEEE Trans. Nucl. Sci. 2011, 58, 3392–3402. [Google Scholar] [CrossRef]
- Lott, B.; Piron, F.; Blank, B.; Bogaert, G.; Bregeon, J.; Canchel, G.; Chekhtman, A.; d’Avezac, P.; Dumora, D.; Giovinazzo, J.; et al. Response of the GLAST LAT calorimeter to relativistic heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2006, 560, 395–404. [Google Scholar] [CrossRef]
- Stanford University; Wei, Y.; Zhang, Y.; Zhang, Z.; Wu, L.; Dai, H.; Liu, C.; Zhao, C.; Wang, Y.; Zhao, Y.; et al. The Quenching Effect of BGO Crystals on Relativistic Heavy Ions in the DAMPE Experiment. IEEE Trans. Nucl. Sci. 2020, 67, 939–945. [Google Scholar] [CrossRef]
- Adriani, O.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bottai, S.; et al. The CALOCUBE project for a space based cosmic ray experiment: Design, construction, and first performance of a high granularity calorimeter prototype. J. Instrum. 2019, 14, P11004. [Google Scholar] [CrossRef]
- Adriani, O.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; et al. CaloCube: An isotropic spaceborne calorimeter for high-energy cosmic rays. Optimization of the detector performance for protons and nuclei. Astropart. Phys. 2017, 96, 11–17. [Google Scholar] [CrossRef]
- Pacini, L.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; et al. CaloCube: An innovative homogeneous calorimeter for the next-generation space experiments. J. Phys. Conf. Ser. 2017, 928, 012013. [Google Scholar] [CrossRef]
- Adriani, O.; Agnesi, A.; Albergo, S.; Antonelli, M.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bongi, M.; et al. The CaloCube calorimeter for high-energy cosmic-ray measurements in space: Performance of a large-scale prototype. J. Instrum. 2021, 16, P10024. [Google Scholar] [CrossRef]
- Zampa, G.; Bonvicini, V.; Orzan, G.; Zampa, N. CASIS: A Very High Dynamic Range Front-End Electronics with Integrated Cyclic ADC for Calorimetry Applications. In Proceedings of the 2006 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2006; Volume 2, pp. 845–849. [Google Scholar] [CrossRef]
- Asaoka, Y.; Akaike, Y.; Komiya, Y.; Miyata, R.; Torii, S.; Adriani, O.; Asano, K.; Bagliesi, M.; Bigongiari, G.; Binns, W.; et al. Energy calibration of CALET onboard the International Space Station. Astropart. Phys. 2017, 91, 1–10. [Google Scholar] [CrossRef]
Experiment | Material | Electromagnetic Depth () | Hadronic Depth () | Launch Year |
---|---|---|---|---|
CALET [4] | PWO | 27 | 1.2 | 2015 |
DAMPE [5] | BGO | 32 | 1.6 | 2015 |
FERMI [17] | CsI(Tl) | 8.6 | 0.4 | 2008 |
HERD [18] | LYSO | 55 | 3.0 | 2027 (expected) |
Material | Size (cm) | (g/cm3) | (cm) | (cm) | (nm) | (ns) |
---|---|---|---|---|---|---|
BGO | 2.0 | 7.1 | 23 | 1.1 | 480 | 300 |
CsI(Tl) | 3.6 | 4.5 | 40 | 1.9 | 550 | 1220 |
LYSO | 2.0 | 7.4 | 21 | 1.1 | 420 | 40 |
YAP | 2.2 | 5.5 | 22 | 2.7 | 370 | 27 |
YAG | 2.5 | 4.6 | 25 | 3.5 | 550 | 70 |
BaF2 | 3.1 | 4.9 | 31 | 2.0 | 300 | 650 |
Material | MeV/cm | (1/B) MeV/cm | |||
---|---|---|---|---|---|
BGO | 0.159 ± 0.033 | 98 ± 45 | 0.1884 ± 0.0039 | 364 ± 42 | 1.64 |
CsI(Tl) | 0.326 ± 0.010 | 34.1 ± 2.8 | 0.121 ± 0.012 | 1338 ± 64 | 0.81 |
LYSO | 0.758 ± 0.045 | 164.7 ± 8.4 | 0.0274 ± 0.0048 | 45.1 ± 9.1 | 0.64 |
YAP | 0.2212 ± 0.0085 | 90 ± 11 | 0.174 ± 0.012 | 873 ± 70 | 1.24 |
YAG | 0.0912 ± 0.015 | 73 ± 29 | 0.1052 ± 0.0055 | 462 ± 31 | 1.23 |
BaF2 | 0.322 ± 0.024 | 35.8 ± 6.2 | 0.3440 ± 0.0071 | 546 ± 36 | 1.11 |
Scintillator | Electrons ≥10 GeV | Protons 10 GeV | Protons 100 GeV | Protons 1 TeV | Protons 10 TeV |
---|---|---|---|---|---|
LYSO | −2.3% | −7.1% | −5.6% | −4.6% | −3.4% |
BGO | −1.1% | −4.3% | −3.0% | −2.3% | −1.8% |
CsI(Tl) | +0.82% | +2.9% | +2.0% | +1.5% | +1.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacini, L.; Adriani, O.; Berti, E.; Betti, P.; Bigongiari, G.; Bonechi, L.; Bongi, M.; Bottai, S.; Brogi, P.; Castellini, G.; et al. The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations. Instruments 2022, 6, 53. https://doi.org/10.3390/instruments6040053
Pacini L, Adriani O, Berti E, Betti P, Bigongiari G, Bonechi L, Bongi M, Bottai S, Brogi P, Castellini G, et al. The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations. Instruments. 2022; 6(4):53. https://doi.org/10.3390/instruments6040053
Chicago/Turabian StylePacini, Lorenzo, Oscar Adriani, Eugenio Berti, Pietro Betti, Gabriele Bigongiari, Lorenzo Bonechi, Massimo Bongi, Sergio Bottai, Paolo Brogi, Guido Castellini, and et al. 2022. "The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations" Instruments 6, no. 4: 53. https://doi.org/10.3390/instruments6040053
APA StylePacini, L., Adriani, O., Berti, E., Betti, P., Bigongiari, G., Bonechi, L., Bongi, M., Bottai, S., Brogi, P., Castellini, G., Checchia, C., D’Alessandro, R., Detti, S., Finetti, N., Maestro, P., Marrocchesi, P. S., Mori, N., Olmi, M., Papini, P., ... Vannuccini, E. (2022). The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations. Instruments, 6(4), 53. https://doi.org/10.3390/instruments6040053