Effects of Plasma Temperature in the Blowout Regime for Plasma Accelerators
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Beam Breakup Instability
3.2. Ion Motion
3.3. Combined Effects
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgs, P.W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964, 13, 508. [Google Scholar] [CrossRef]
- The ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29. [Google Scholar]
- The CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar]
- European Strategy Group. 2020 Update of the European Strategy for Particle Physics. CERN Counc. Geneva 2020, CERN-ESU-013, CERN-ESU-015.
- Adolphsen, C.; Angal-Kalinin, D.; Arndt, T.; Arnold, M.; Assmann, R.; Auchmann, B.; Aulenbacher, K.; Ballarino, A.; Baudouy, B. European Strategy for Particle Physics—Accelerator R&D Roadmap. CERN Yellow Rep. Monogr. 2022, 1, 1–270. [Google Scholar]
- Narain, M.; Reina, L.; Tricoli, A.; Begel, M.; Belloni, A.; Bose, T.; Boveia, A.; Dawson, S.; Doglioni, C.; Freitas, A.; et al. The Future of US Particle Physics—The Snowmass 2021 Energy Frontier Report. arXiv 2022, arXiv:2211.11084. [Google Scholar]
- Keinigs, R.; Jones, M.E. Two-dimensional dynamics of the plasma wakefield accelerator. Phys. Fluids 1987, 30, 252–263. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Breizman, B.; Katsouleas, T.C.; Su, J.J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 1991, 44, R6189–R6192. [Google Scholar] [CrossRef]
- Lindstrøm, C.A.; Beinortaité, J.; Björklund Svensson, J.; Boulton, L.; Chappell, J.; Diederichs, S.; Foster, B.; Garland, J.M.; González Caminal, P.; Loisch, G.; et al. Emittance preservation in a plasma- wakefield accelerator. Nat. Comm. 2023. submitted. [Google Scholar]
- Wang, W.; Feng, K.; Ke, L.; Yu, C.; Xu, Y.; Qi, R.; Chen, Y.; Qin, Z.; Zhang, Z.; Fang, M.; et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 2021, 595, 516–520. [Google Scholar] [CrossRef]
- Labat, M.; Cabadag, J.C.; Ghaith, A.; Irman, A.; Berlioux, A.; Berteaud, P.; Blache, F.; Bock, S.; Bouvet, F.; Briquez, F.; et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Nat. Photonics 2023, 17, 150–156. [Google Scholar]
- Pompili, R.; Alesini, D.; Anania, M.P.; Arjmand, S.; Behtouei, M.; Bellaveglia, M.; Biagioni, A.; Buonomo, B.; Cardelli, F.; Carpanese, M.; et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 2022, 605, 659–662. [Google Scholar] [PubMed]
- Cowley, J.; Thornton, C.; Arran, C.; Shalloo, R.; Corner, L.; Cheung, G.; Gregory, C.; Mangles, S.; Matlis, N.; Symes, D.; et al. Excitation and control of plasma wakefields by multiple laser pulses. Nature 2022, 603, 58. [Google Scholar] [CrossRef] [PubMed]
- D’arcy, R.; Chappell, J.; Beinortaite, J.; Diederichs, S.; Boyle, G.; Foster, B.; Garland, M.J.; Caminal, P.G.; Lindstrøm, C.A.; Loisch, G.; et al. Recovery time of a plasma-wakefield accelerator. Nature 2022, 603, 58. [Google Scholar] [CrossRef]
- Lau, Y.Y. Classification of beam breakup instabilities in linear accelerators. Phys. Rev. Lett. 1989, 63, 1141. [Google Scholar] [CrossRef]
- Whittum, D.H.; Sharp, W.M.; Simon, S.Y.; Lampe, M.; Joyce, G. Electron-hose instability in the ion-focused regime. Phys. Rev. Lett. 1991, 67, 991. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Cook, A.M.; Scott, A.; Thompson, M.C.; Yoder, R.B. Effects of ion motion in intense beam-driven plasma wakefield accelerators. Phys. Rev. Lett. 2005, 95, 195002. [Google Scholar] [CrossRef]
- Lebedev, V.; Burov, A.; Nagaitsev, S. Efficiency versus instability in plasma accelerators. Phys. Rev. Accel. Beams 2017, 20, 121301. [Google Scholar] [CrossRef]
- Panofsky, W.; Bander, M. Asymptotic theory of beam break-up in linear accelerators. Rev. Sci. Instrum. 1968, 39, 206. [Google Scholar] [CrossRef]
- Ruth, R.D.; Chao, A.W.; Wilson, P.B.; Morton, P.L. A plasma wake field accelerator. Part. Accel. 1984, 17, 171. [Google Scholar]
- Chen, P.; Dawson, J.M. The plasma wake field accelerator. AIP Conf. Proc. 1985, 130, 201. [Google Scholar]
- Tajima, T.; Dawson, J.M. Laser electron accelerator. Phys. Rev. Lett. 1979, 43, 267. [Google Scholar] [CrossRef]
- Lu, W.; Huang, C.; Zhou, M.; Mori, W.B.; Katsouleas, T. Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime. Phys. Rev. Lett. 2006, 96, 165002. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Lu, W.; Huang, C.; Xu, X.; Hogan, M.J.; Joshi, C.; Mori, W.B. Ion motion induced emittance growth of matched electron beams in plasma wakefields. Phys. Rev. Lett. 2017, 118, 244801. [Google Scholar] [CrossRef]
- Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P. Emittance preservation in plasma-based accelerators with ion motion. Phys. Rev. Accel. Beams 2017, 20, 111301. [Google Scholar]
- Lotov, K.V. Fine wakefield structure in the blowout regime of plasma wakefield accelerators. Phys. Rev. ST Accel. Beams 2003, 6, 061301. [Google Scholar] [CrossRef]
- Jain, N.; Palastro, J.; Antonsen, T.M.; Mori, W.B.; An, W. Plasma wakefield acceleration studies using the quasi-static code WAKE. Phys. Plasmas 2015, 22, 023103. [Google Scholar] [CrossRef]
- Diederichs, S.; Benedett, C.; Esarey, C.E.; Thévenet, M.; Sinn, A.; Osterhoff, J.; Schroeder, C.B. Temperature effects in plasma-based positron acceleration schemes using electron filaments. Phys. Plasmas 2023, 30, 073104. [Google Scholar]
- Burov, A.; Nagaitsev, S.; Lebedev, V. Beam breakup mitigation by ion mobility in plasma acceleration. arXiv 2018, arXiv:1808.03860. [Google Scholar]
- Diederichs, S. HiPACE++: A portable, 3D quasi-static particle-in-cell code. Comput. Phys. Commun. 2022, 278, 108421. [Google Scholar] [CrossRef]
- Chen, J.B.B.; Schulte, D.; Adli, E. Modeling and simulation of transverse wakefields in PWFA. J. Phys. Conf. Ser. 2020, 1596, 012057. [Google Scholar] [CrossRef]
- Mehrling, T.J.; Fonseca, R.A.; Ossa, A.M.D.L.; Vieira, J. Mitigation of the Hose Instability in Plasma-Wakefield Accelerators. Phys. Rev. Lett. 2017, 118, 174801. [Google Scholar] [CrossRef] [PubMed]
- Mehrling, T.J.; Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P. Suppression of beam hosing in plasma accelerators with ion motion. Phys. Rev. Lett. 2018, 121, 264802. [Google Scholar] [CrossRef] [PubMed]
Plasma Density [] | 2cm |
Initial Energy [E] | 25 GeV |
Number of Particles, driver [N] | 2.0 |
Number of Particles, trailing [N] | 5.0 |
Bunch Separation [] | 200 m |
Bunch Length, driver [] | 40.0 m |
Bunch Length, trailing [] | 5.0 m |
Transverse Size, both beams [] | 0.69 m |
Normalized Emittance, both beams [] | 2.0 mm mrad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, G.J. Effects of Plasma Temperature in the Blowout Regime for Plasma Accelerators. Instruments 2023, 7, 37. https://doi.org/10.3390/instruments7040037
Cao GJ. Effects of Plasma Temperature in the Blowout Regime for Plasma Accelerators. Instruments. 2023; 7(4):37. https://doi.org/10.3390/instruments7040037
Chicago/Turabian StyleCao, Gevy Jiawei. 2023. "Effects of Plasma Temperature in the Blowout Regime for Plasma Accelerators" Instruments 7, no. 4: 37. https://doi.org/10.3390/instruments7040037
APA StyleCao, G. J. (2023). Effects of Plasma Temperature in the Blowout Regime for Plasma Accelerators. Instruments, 7(4), 37. https://doi.org/10.3390/instruments7040037