Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primary Data
2.2. AMS-02 Trigger Rates
- Fast Trigger Charged (FTC), which evaluates the possible presence of events with charged particles;
- Fast Trigger big-Z (FTZ), which evaluates the possible presence of events with highly-charged particles;
- Fast Trigger ECAL (FTE), which evaluates the possible presence of events with electromagnetic interactions in the ECAL.
- 0
- unbiased trigger for events with charged particles;
- 1
- trigger for events with single charged particles;
- 2
- trigger for events with normal ions;
- 3
- trigger for events with slow ions;
- 4
- trigger for events with electrons;
- 5
- trigger for events with photons;
- 6
- unbiased trigger for events with electromagnetic interactions.
2.3. Impact of the Geomagnetic Field
2.4. Detection of SEPs
3. Results
3.1. Background Rejection
3.2. Efficiency of the Real-Time Monitoring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMI | AMS Monitoring Interface |
AMS | Alpha Magnetic Spectrometer |
CME | Coronal Mass Ejection |
CR | Cosmic Rays |
CSN2 | Commissione Scientifica Nazionale 2 |
ECAL | electromagnetic calorimeter |
FT | fast trigger |
FTC | fast trigger charged |
FTE | fast trigger ECAL |
FTZ | fast trigger big-Z |
INFN | Istituto Nazionale di Fisica Nucleare |
IGRF | International Geomagnetic Reference Field |
ISS | International Space Station |
LEO | Low-Earth Orbit |
LV1 | level 1 |
RICH | Ring Imaging Cherenkov |
SAA | South Atlantic Anomaly |
SEP | Solar Energetic Particle |
TRD | Transition Radiation Detector |
ToF | Time-of-Flight |
References
- Longair, M. High Energy Astrophysics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Raouafi, N.E.; Patsourakos, S.; Pariat, E.; Young, P.R.; Sterling, A.C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C.R.; Archontis, V.; et al. Solar Coronal Jets: Observations, Theory, and Modeling. Space Sci. Rev. 2016, 201, 1–53. [Google Scholar]
- Kahler, S.W.; Sheeley, N.R., Jr.; Howard, R.A.; Koomen, M.J.; Michels, D.J.; McGuire, R.V.; Von Rosenvinge, T.T.; Reames, D.V. Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 1984, 89, 9683–9693. [Google Scholar] [CrossRef]
- AMS-02. Available online: https://ams02.space/ (accessed on 15 October 2023).
- Faldi, F.; Bertucci, B.; Tomassetti, N.; Vagelli, V. Real-time monitoring of solar energetic particles outside the ISS with the AMS-02 instrument. Rend. Lincei. Sci. Fis. Nat. 2023, 34, 339–345. [Google Scholar] [CrossRef]
- Hashmani, R.; Konyushikhin, M.; Shan, B.; Cai, X.; Demirköz, M.B. New monitoring interface for the AMS experiment. NIM-A 2023, 1046, 167704. [Google Scholar] [CrossRef]
- AMI SEP Repository. Available online: https://gitlab.cern.ch/aserpoll/ami-sep (accessed on 15 October 2023).
- AMI SEP Grafana App. Available online: https://ami-sep-monitor.app.cern.ch (accessed on 15 October 2023).
- McIlwain, C. Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 1961, 66, 3681–3691. [Google Scholar] [CrossRef]
- Lin, C. Trigger Logic Design Specification, 2005. Internal Document of AMS-02 Collaboration (n. AMS-JT-JLV1-LOGIC-R02c). Available online: https://ams.cern.ch/AMS/DAQsoft/trigger_logic_v02c.pdf (accessed on 15 October 2023).
- Shea, M.; Smart, D.; Gentile, L. Estimating cosmic ray vertical cutoff rigidities as a function of the McIlwain L-parameter for different epochs of the geomagnetic field. Phys. Earth Planet. Inter. 1987, 48, 200–205. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar]
- Major SEP Events. Available online: https://cdaw.gsfc.nasa.gov/CME_list/sepe/ (accessed on 15 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serpolla, A.; Duranti, M.; Formato, V.; Oliva, A. Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station. Instruments 2023, 7, 38. https://doi.org/10.3390/instruments7040038
Serpolla A, Duranti M, Formato V, Oliva A. Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station. Instruments. 2023; 7(4):38. https://doi.org/10.3390/instruments7040038
Chicago/Turabian StyleSerpolla, Andrea, Matteo Duranti, Valerio Formato, and Alberto Oliva. 2023. "Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station" Instruments 7, no. 4: 38. https://doi.org/10.3390/instruments7040038
APA StyleSerpolla, A., Duranti, M., Formato, V., & Oliva, A. (2023). Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station. Instruments, 7(4), 38. https://doi.org/10.3390/instruments7040038