New Therapies of Neovascular AMD beyond Anti-VEGF Injections
Abstract
:1. Introduction
2. The Tie2 Pathway
3. Emerging Therapeutics Targeting the Tie2 Pathway
4. Sustained Release: Ranibizumab Port Delivery System
5. Conclusions
Conflicts of Interest
References
- National Eye Institute. Facts About Age-Related Macular Degeneration. Available online: http://www.nei.nih.gov/health/maculardegen/armd_facts.asp (accessed on 9 March 2017).
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Holz, F.G.; Tadayoni, R.; Beatty, S.; Berger, A.; Cereda, M.G.; Hykin, P.; Staurenghi, G.; Wittrup-Jensed, K.; Altemark, A.; Nilsson, J.; et al. Key drivers of visual acuity gains in neovascular age-related macular degeneration in real life: Findings from the AURA study. Br. J. Ophthalmol. 2016, 100, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Otsuji, T.; Nagai, Y.; Sho, K.; Tsumura, A.; Koike, N.; Tsuda, M.; Nishimura, T.; Takahashi, K. Initial non-responders to ranibizumab in the treatment of age-related macular degeneration (AMD). Clin. Ophthalmol. 2013, 7, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Nagai, N.; Izumi-Nagai, K.; Shinoda, H.; Koto, T.; Uchida, A.; Mochimaru, H.; Yuki, K.; Sasaki, M.; Tsubota, K.; et al. Predictive factors for non-response to intravitreal ranibizumab treatment in age-related macular degeneration. Br. J. Ophthalmol. 2014, 98, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Rofagha, S.; Bhisitkul, R.B.; Boyer, D.S.; Radda, S.R.; Zhang, K.; SEVEN-UP Study Group. Seven-Year Outcomes in Ranibizumab-Treated Patients in ANCHOR, MARINA, and HORIZON. Ophthalmology 2013, 120, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Aldrich, T.H.; Jones, P.F.; Acheson, A.; Compton, D.L.; Jain, V.; Ryan, T.E.; Bruno, J.; Radziejewski, C.; Maisonpierre, P.C.; et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996, 87, 1161–1169. [Google Scholar] [CrossRef]
- Maisonpierre, P.C.; Suri, C.; Jones, P.F.; Bartunkova, S.; Wiegan, S.T.; Radziejewski, C.; Compton, D.; McClain, J.; Aldrich, T.H.; Rapadopoulos, N.; et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997, 277, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.T.; Khankin, E.V.; Karumanchi, S.A.; Parikh, S.M. Angio-poietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol. Cell. Biol. 2009, 29, 2011–2022. [Google Scholar] [CrossRef] [PubMed]
- Dumont, D.J.; Gradwohl, G.; Fong, G.H.; Puri, M.C.; Gertsenstein, M.; Auerbach, A.; Breitman, M.L. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994, 8, 1897–1909. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.N.; Tozawa, Y.; Deutsch, U.; Wolburg-Buchholz, K.; Fujiwara, Y.; Gendron-Maguire, M.; Gridley, T.; Wolburg, H.; Risau, W.; Qin, Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995, 376, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Suri, C.; Jones, P.F.; Patan, S.; Bartunkova, S.; Maisonpierre, P.C.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996, 87, 1171–1180. [Google Scholar] [CrossRef]
- Nambu, H.; Umeda, N.; Kachi, S.; Oshima, Y.; Akiyama, H.; Nambu, R.; Campochiaro, P.A. Angiopoietin 1 prevents retinal detachment in an aggressive model of proliferative retinopathy, but has no effect on established neovascularization. J. Cell. Physiol. 2005, 204, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Hackett, S.F.; Ozaki, H.; Strauss, R.W.; Wahlin, K.; Suri, C.; Maisonpierre, P.; Yancopoulos, G.; Campochiaro, P.A. Angiopoietin 2 expression in the retina: Upregulation during physiologic and pathologic neovascularization. J. Cell. Physiol. 2000, 184, 275–284. [Google Scholar] [CrossRef]
- Hackett, S.F.; Wiegand, S.J.; Yancopoulos, G.; Campochiaro, P. Angiopoietin-2 plays an important role in retinal angiogenesis. J. Cell. Physiol. 2002, 192, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Deering, T.; Oshima, S.; Nambu, H.; Reddy, P.S.; Kaleko, M.; Connelly, S.; Hackett, S.F.; Campochiaro, P.A. Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor. J. Cell. Physiol. 2004, 199, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Oshima, S.; Nambu, H.; Kachi, S.; Takahashi, K.; Umeda, N.; Shen, J.; Dong, A.; Apte, R.S.; Duh, E.; et al. Different effects of angiopoietin 2 in different vascular beds in the eye; new vessels are most sensitive. FASEB J. 2005, 19, 963–965. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, U.; Reiss, Y.; Scharpfenecker, M.; Gruunow, V.; Koidl, S.; Thurston, G.; Gale, N.W.; Witzenrath, M.; Rosseau, S.; Suttorp, N.; et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat. Med. 2006, 12, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, U.; Scharpfenecker, M.; Koidl, S.; Hegen, A.; Grunow, V.; Schmidt, J.M.; Kriz, W.; Thurston, G.; Augustin, H.G. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 2004, 103, 4150–4156. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Suzuma, K.; Suzuma, I.; Ohashi, H.; Ojima, T.; Kurimoto, M.; Murakami, T.; Kimura, T.; Takagi, H. Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am. J. Ophthalmol. 2005, 139, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Loukovaara, S.; Robciuc, A.; Holopainen, J.M.; Lehti, K.; Pessi, T.; Liinamaa, J.; Kukkonen, K.T.; Jauhiainen, M.; Koli, K.; Keski-Oja, J.; et al. Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFbeta1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol. 2013, 91, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Gerald, D.; Chintharlapalli, S.; Augustin, H.G.; Benjamin, L.E. Angiopoietin-2: An attractive target for improved antiangiogenic tumor therapy. Cancer Res. 2013, 73, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Dugel, P. A novel anti-VEGF/anti-angiopoietin2 bispecific monoclonal antibody for wet age-related macular degeneration and diabetic macular edema. In Proceedings of the American Society of Retina Specialists Annual Meeting, San Francisco, CA, USA, 9–14 August 2016. [Google Scholar]
- Chakravarthy, U.; Bailey, C.; Brown, D.; Campochiaro, P.; Chittum, M.; Csaky, K.; Tufail, A.; Yates, P.; Cech, P.; Giraudon, M.; et al. Phase I Trial of Anti–Vascular Endothelial Growth Factor/Anti-angiopoietin 2 Bispecific Antibody RG7716 for Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2017, 1, 474–485. [Google Scholar] [CrossRef]
- Regula, J.T.; von Leithner, P.L.; Foxton, R.; Barathi, V.A.; Cheung, C.M.G.; Tun, S.B.B.; Wey, Y.S.; Iwata, D.; Dostalek, M.; Moelleken, J.; et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol. Med. 2016, 8, 1265–1288. [Google Scholar] [CrossRef] [PubMed]
- Study to Evaluate RO6867461 (RG7716) for Extended Curability in the Treatment of Neovascular Age-Related Macular Degeneration (nAMD) (STAIRWAY). ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03038880 (accessed on 13 March 2018).
- AVENUE: A Proof-Of-Concept Study of RG7716 in Participants with Choroidal Neovascularization (CNV) Secondary to Age-Related Macular Degeneration (AMD). ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/record/NCT02484690 (accessed on 13 March 2018).
- Rubio, R. Long-Acting Anti-VEGF Delivery. Retina Today, 2014. Available online: http://www.retinatoday.com/2014/08/long-acting-anti-vegf-delivery(accessed on 18 March 2018).
- Helzner, J. Sustained-Release Delivery of Lucentis Studied. Retinal Physician, 2016. Available online: http://www.retinalphysician.com/issues/2016/jan-feb/subspecialty-news(accessed on 13 March 2018).
- Study of the Efficacy and Safety of the Ranibizumab Port Delivery System (RPDS) for Sustained Delivery of Ranibizumab in Participants With Subfoveal Neovascular Age-Related Macular Degeneration (AMD) (LADDER). Clinicaltrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02510794 (accessed on 13 March 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gahn, G.M.; Khanani, A.M. New Therapies of Neovascular AMD beyond Anti-VEGF Injections. Vision 2018, 2, 15. https://doi.org/10.3390/vision2010015
Gahn GM, Khanani AM. New Therapies of Neovascular AMD beyond Anti-VEGF Injections. Vision. 2018; 2(1):15. https://doi.org/10.3390/vision2010015
Chicago/Turabian StyleGahn, Greggory M., and Arshad M. Khanani. 2018. "New Therapies of Neovascular AMD beyond Anti-VEGF Injections" Vision 2, no. 1: 15. https://doi.org/10.3390/vision2010015
APA StyleGahn, G. M., & Khanani, A. M. (2018). New Therapies of Neovascular AMD beyond Anti-VEGF Injections. Vision, 2(1), 15. https://doi.org/10.3390/vision2010015