Orienting Gaze Toward a Visual Target: Neurophysiological Synthesis with Epistemological Considerations
Abstract
:1. Introduction
2. Fundamental and Epistemological Issues
2.1. Distinguishing the Medium of Cerebral Activity from Physical Space
2.2. The Spatiotemporal Transformation
2.3. Gaze Direction as a Poly-Equilibrium
2.4. Movement Onset as a Kind of Symmetry Breaking
2.5. The Wanderings of the “Brain Machine”
3. Orienting Gaze Toward a Moving Target
3.1. The Interceptive Saccade
3.2. The Postsaccadic Slow Eye Movement (Pursuit)
3.3. About the “Predictive” Power of the Brain
4. Neurophysiological Explanations
4.1. Extraocular Muscles
4.2. Binocular Synergy
4.2.1. Horizontal Eye Movements
4.2.2. Vertical Eye Movements
4.2.3. Synergy of Horizontal and Vertical Saccades
4.3. The Synergy of Eye and Head Movements
4.3.1. Reticulo-Vestibulo-Reticular Synergies
The Reticulospinal Channel
The Vestibulospinal Channels
4.3.2. Inhibition of Vestibulo-Ocular and Vestibulo-Collic Reflexes
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABD | abducens nucleus |
AIN | abducens internuclear neuron |
cFN | caudal fastigial nucleus |
dPGRF | dorsal paragigantocellularis reticular formation |
EBN | excitatory burst neuron |
E-MN | eye motoneuron |
EVN-1(2) | excitatory vestibular neuron of type 1 (type 2) |
FEF | frontal eye field |
IBN | inhibitory burst neuron |
iNC | interstitial nucleus of Cajal |
IO | inferior oblique |
IR | inferior rectus |
IVN-1(2) | inhibitory vestibular neuron of type 1 (type 2) |
LR | lateral rectus |
MLF | medial longitudinal fasciculus |
MN | motoneuron |
MR | medial rectus |
MVN | medial vestibular nucleus |
MVST | medial vestibulospinal tract |
N-MN | neck motoneuron |
NOT | nucleus of the optic tract |
NPH | nucleus prepositus hypoglossi |
NRGC | nucleus reticularis gigantocellularis |
NRPC | nucleus reticularis pontis caudalis |
OMN | oculomotor nucleus |
ppRF | paramedian pontine reticular formation |
RIP | raphe interpositus |
riMLF | rostral intersitial nucleus of MLF |
EN-RSN | eye–neck reticulospinal neuron |
SC | superior colliculus |
SO | superior oblique |
TRO | trochlear nucleus |
References
- Pavlov, I.P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex; Dover Publications: New York, NY, USA, 1960. [Google Scholar]
- Sokolov, E.N. Higher nervous functions: The orienting reflex. Ann. Rev. Physiol. 1963, 25, 545–580. [Google Scholar] [CrossRef]
- Lynn, R. Attention, Arousal and the Orientation Reaction; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Bertenthal, B.; von Hofsten, C. Eye, head and trunk control: The foundation for manual development. Neurosci. Biobehav. Rev. 1998, 22, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Koceja, D.M.; Allway, D.; Earles, D.R. Age differences in postural sway during volitional head movement. Arch. Phys. Med. Rehab. 1999, 80, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Stoffregen, T.A.; Bardy, B.G.; Bonnet, C.T.; Pagulayan, R.J. Postural stabilization of visually guided eye movements. Ecol. Psychol. 2006, 18, 191–222. [Google Scholar] [CrossRef]
- Torres, B.; Luque, M.A.; Pérez-Pérez, M.P.; Herrero, L. Visual orienting response in goldfish: A multidisciplinary study. Brain Res. Bull. 2005, 66, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Kostyk, S.K.; Grobstein, P. Neuronal organization underlying visually elicited prey orienting in the frog—I. Effects of various unilateral lesions. Neuroscience 1987, 21, 41–55. [Google Scholar] [CrossRef]
- Werner, C.; Himstedt, W. Mechanism of head orientation during prey capture in Salamander. Zool. Jahrbücher 1985, 89, 359–368. [Google Scholar]
- Knudsen, E.I.; Blasdel, G.G.; Konishi, M. Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J. Comp. Physiol. 1979, 133, 1–11. [Google Scholar] [CrossRef]
- Goffart, L.; Pélisson, D. Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. I. Gaze dysmetria. J. Neurophysiol. 1998, 79, 1942–1958. [Google Scholar] [CrossRef] [PubMed]
- Freedman, E.G.; Sparks, D.L. Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J. Neurophysiol. 1997, 77, 2328–2348. [Google Scholar] [CrossRef]
- McCluskey, M.K.; Cullen, K.E. Eye, head, and body coordination during large gaze shifts in rhesus monkeys: Movement kinematics and the influence of posture. J. Neurophysiol. 2007, 97, 2976–2991. [Google Scholar] [CrossRef] [PubMed]
- Collewijn, H.; Erkelens, C.J.; Steinman, R.M. Binocular co-ordination of human horizontal saccadic eye movements. J. Physiol. 1988, 404, 157–182. [Google Scholar] [CrossRef] [PubMed]
- Collewijn, H.; Erkelens, C.J.; Steinman, R.M. Binocular co-ordination of human vertical saccadic eye movements. J. Physiol. 1988, 404, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Guitton, D.; Volle, M. Gaze control in humans: Eye-head coordination during orienting movements to targets within and beyond the oculomotor range. J. Neurophysiol. 1987, 58, 427–459. [Google Scholar] [CrossRef]
- Lea, J.Y.; Mueller, C.G. Saccadic head movements in mantids. J. Comp. Physiol. 1977, 114, 115–128. [Google Scholar] [CrossRef]
- Rossel, S. Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. 1980, 139, 307–331. [Google Scholar] [CrossRef]
- Olberg, R.M.; Seaman, R.C.; Coats, M.I.; Henry, A.F. Eye movements and target fixation during dragonfly prey-interception flights. J. Comp. Physiol. A 2007, 193, 685–693. [Google Scholar] [CrossRef]
- Consi, T.R.; Passani, M.B.; Macagno, E.R. Eye movements in Daphnia magna: Regions of the eye are specialized for different behaviors. J. Comp. Physiol. A 1990, 166, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Pélisson, D.; Guitton, D.; Munoz, D.P. Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp. Brain Res. 1989, 78, 654–658. [Google Scholar] [CrossRef]
- Pélisson, D.; Goffart, L.; Guitton, D. On-line compensation of gaze shifts perturbed by micro-stimulation of the superior colliculus in the cat with unrestrained head. Exp. Brain Res. 1995, 106, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L.; Mays, L.E. Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position. J. Neurophysiol. 1983, 49, 45–63. [Google Scholar] [CrossRef]
- Sparks, D.L.; Mays, L.E.; Porter, J.D. Eye movements induced by pontine stimulation: Interaction with visually triggered saccades. J. Neurophysiol. 1987, 58, 300–318. [Google Scholar] [CrossRef]
- Keller, E.L.; Gandhi, N.J.; Shieh, J.M. Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Vis. Neurosci. 1996, 13, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, N.J.; Keller, E.L. Comparison of saccades perturbed by stimulation of the rostral superior colliculus, the caudal superior colliculus, and the omnipause neuron region. J. Neurophysiol. 1999, 82, 3236–3253. [Google Scholar] [CrossRef]
- Gandhi, N.J.; Sparks, D.L. Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region. J. Neurophysiol. 2007, 98, 360–373. [Google Scholar] [CrossRef]
- Schiller, P.H.; Sandell, J.H. Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp. Brain Res. 1983, 49, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Kurylo, D.D. Interaction of visually guided saccades with saccades induced by electrical stimulation of the posterior parietal cortex in the monkey. Vision Res. 1991, 31, 2065–2073. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.L.; Slakey, D.P.; Crandall, W.F. Microstimulation of the primate cerebellar vermis during saccadic eye movements. Brain Res. 1983, 288, 131–143. [Google Scholar] [CrossRef]
- Noda, H.; Murakami, S.; Warabi, T. Effects of fastigial stimulation upon visually-directed saccades in macaque monkeys. Neurosci. Res. 1991, 10, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, B.L.; Porter, J.D.; Sparks, D.L. Corollary discharge provides accurate eye position information to the oculomotor system. Science 1983, 221, 1193–1195. [Google Scholar] [CrossRef]
- Lewis, R.; Zee, D.; Hayman, M.; Tamargo, R. Oculomotor function in the rhesus monkey after deafferentation of the extraocular muscles. Exp. Brain Res. 2001, 141, 349–358. [Google Scholar] [CrossRef]
- Goffart, L. Cerebralization of mathematical quantities and physical features in neural science: A critical evaluation. Eur. Phys. J. Web Conf. 2024, 300, 01007. [Google Scholar] [CrossRef]
- Collewijn, H.; Erkelens, C.J.; Steinman, R.M. Trajectories of the human binocular fixation point during conjugate and non-conjugate gaze-shifts. Vision Res. 1997, 37, 1049–1069. [Google Scholar] [CrossRef] [PubMed]
- Pellionisz, A.; Llinás, R. Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience 1982, 7, 2949–2970. [Google Scholar] [CrossRef]
- McIlwain, J.T. Large receptive fields and spatial transformations in the visual system. Int. Rev. Physiol. 1976, 10, 223–248. [Google Scholar]
- Ottes, F.P.; Van Gisbergen, J.A.; Eggermont, J.J. Metrics of saccade responses to visual double stimuli: Two different modes. Vision Res. 1984, 24, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, P.W.; Sparks, D.L. Representation of averaging saccades in the superior colliculus of the monkey. Exp. Brain Res. 1993, 95, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, M.L.; Mendoza-Halliday, D.; Martinez-Trujillo, J.C. Sustained activity encoding working memories: Not fully distributed. Trends Neurosci. 2017, 40, 328–346. [Google Scholar] [CrossRef]
- Jaffe, R.J.; Constantinidis, C. Working memory: From neural activity to the sentient mind. Comprehens. Physiol. 2021, 11, 2547. [Google Scholar] [CrossRef]
- Funahashi, S.; Bruce, C.J.; Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 1989, 61, 331–349. [Google Scholar] [CrossRef]
- Gnadt, J.W.; Bracewell, R.M.; Andersen, R.A. Sensorimotor transformation during eye movements to remembered visual targets. Vision Res. 1991, 31, 693–715. [Google Scholar] [CrossRef]
- Funahashi, S.; Bruce, C.J.; Goldman-Rakic, P.S. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. J. Neurosci. 1993, 13, 1479–1497. [Google Scholar] [CrossRef]
- White, J.M.; Sparks, D.L.; Stanford, T.R. Saccades to remembered target locations: An analysis of systematic and variable errors. Vision Res. 1994, 34, 79–92. [Google Scholar] [CrossRef]
- Barton, E.J.; Sparks, D.L. Saccades to remembered targets exhibit enhanced orbital position effects in monkeys. Vision Res. 2001, 41, 2393–2406. [Google Scholar] [CrossRef]
- Kirchner, J.; Watson, T.; Bauer, J.; Lappe, M. Eyeball translations affect saccadic eye movements beyond brainstem control. J. Neurophysiol. 2023, 130, 1334–1343. [Google Scholar] [CrossRef]
- O’Regan, J.K. Solving the “real” mysteries of visual perception: The world as an outside memory. Can J. Psychol. 1992, 46, 461–488. [Google Scholar] [CrossRef] [PubMed]
- Pulte, H. From axioms to conventions and hypotheses: The foundations of mechanics and the roots of Carl Neumann’s “Principles of the Galilean-Newtonian theory”. In The Significance of the Hypothetical in the Natural Sciences; Heidelberger, M., Schiemann, G., Eds.; Gruyter: Berlin, Germany, 2009; pp. 77–98. [Google Scholar] [CrossRef]
- De Paz, M. From jurisprudence to mechanics: Jacobi, Reech, and Poincaré on convention. Sci. Context 2018, 31, 223–250. [Google Scholar] [CrossRef] [PubMed]
- Bourrelly, C.; Quinet, J.; Cavanagh, P.; Goffart, L. Learning the trajectory of a moving visual target and evolution of its tracking in the monkey. J. Neurophysiol. 2016, 116, 2739–2751. [Google Scholar] [CrossRef] [PubMed]
- Goffart, L.; Bourrelly, C.; Quinet, J. Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes. Prog. Brain Res. 2017, 236, 243–268. [Google Scholar] [CrossRef] [PubMed]
- Botschko, Y.; Yarkoni, M.; Joshua, M. Smooth pursuit eye movement of monkeys naive to laboratory setups with pictures and artificial stimuli. Front. Syst. Neurosci. 2018, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, H.H. Motor functions of cerebellum and basal ganglia: The cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik 1971, 8, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A. Models of the saccadic eye movement control system. Kybernetik 1973, 14, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, K.; Noda, H. Burst discharges of mossy fibers in the oculomotor vermis of macaque monkeys during saccadic eye movements. Neurosci. Res. 1992, 15, 102–114. [Google Scholar] [CrossRef]
- Zee, D.S.; Optican, L.M.; Cook, J.D.; Robinson, D.A.; Engel, W.K. Slow saccades in spinocerebellar degeneration. Arch. Neurol. 1976, 33, 243–251. [Google Scholar] [CrossRef]
- Robinson, D.A. Oculomotor control signals. In Basic Mechanisms of Ocular Motility and Their Clinical Implications; Lennerstrand, G., Bachy-Rita, P., Eds.; Pergamon: Oxford, UK, 1975; pp. 337–374. [Google Scholar]
- Jürgens, R.; Becker, W.; Kornhuber, H.H. Natural and drug-induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback. Biol. Cybern. 1981, 39, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L.; Holland, R.; Guthrie, B.L. Size and distribution of movement fields in the monkey superior colliculus. Brain Res. 1976, 113, 21–34. [Google Scholar] [CrossRef]
- Lee, C.; Rohrer, W.H.; Sparks, D.L. Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 1988, 332, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Commands for coordinated eye and head movements in the primate superior colliculus. In The Oculomotor System: New Approaches for Studying Sensorimotor Integration; Hall, W.C., Moschovakis, A.K., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 303–318. [Google Scholar]
- Sparks, D.L.; Lee, C.; Rohrer, W.H. Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harbor Symp. Quant. Biol. 1990, 55, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Grantyn, A.; Dalezios, Y.; Moschovakis, A.K. The local loop of the saccadic system closes downstream of the superior colliculus. Neuroscience 2006, 143, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Munoz, D.P.; Guitton, D.; Pélisson, D. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges. J. Neurophysiol. 1991, 66, 1642–1666. [Google Scholar] [CrossRef]
- Munoz, D.P.; Wurtz, R.H. Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. J. Neurophysiol. 1995, 73, 2334–2348. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.W.; Keller, E.L.; Gandhi, N.J.; Das, S. Two-dimensional saccade-related population activity in superior colliculus in monkey. J. Neurophysiol. 1998, 80, 798–817. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Lee, C. Properties of saccade-related neurons in the cat superior colliculus: Patterns of movement fields and discharge timing. Exp. Brain Res. 2000, 131, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Moschovakis, A.K.; Gregoriou, G.G.; Savaki, H.E. Functional imaging of the primate superior colliculus during saccades to visual targets. Nat. Neurosci. 2001, 4, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Soetedjo, R.; Kaneko, C.R.; Fuchs, A.F. Evidence against a moving hill in the superior colliculus during saccadic eye movements in the monkey. J. Neurophysiol. 2002, 87, 2778–2789. [Google Scholar] [CrossRef] [PubMed]
- Port, N.L.; Sommer, M.A.; Wurtz, R.H. Multielectrode evidence for spreading activity across the superior colliculus movement map. J. Neurophysiol. 2000, 84, 344–357. [Google Scholar] [CrossRef]
- Parr, T.; Friston, K.J. Active inference and the anatomy of oculomotion. Neuropsychologia 2018, 111, 334–343. [Google Scholar] [CrossRef]
- Sparks, D.L.; Mays, L.E. Movement fields of saccade-related burst neurons in the monkey superior colliculus. Brain Res. 1980, 190, 39–50. [Google Scholar] [CrossRef]
- Hafed, Z.M.; Goffart, L.; Krauzlis, R.J. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 2009, 323, 940–943. [Google Scholar] [CrossRef]
- Hafed, Z.M.; Krauzlis, R.J. Similarity of superior colliculus involvement in microsaccade and saccade generation. J. Neurophysiol. 2012, 107, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Munoz, D.P.; Wurtz, R.H. Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J. Neurophysiol. 1993, 70, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Goffart, L.; Hafed, Z.M.; Krauzlis, R.J. Visual fixation as equilibrium: Evidence from superior colliculus inactivation. J. Neurosci. 2012, 32, 10627–10636. [Google Scholar] [CrossRef]
- Krauzlis, R.J.; Goffart, L.; Hafed, Z.M. Neuronal control of fixation and fixational eye movements. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160205. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, C.R. Effect of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. J. Neurophysiol. 1996, 75, 2229–2242. [Google Scholar] [CrossRef]
- Soetedjo, R.; Kaneko, C.R.; Fuchs, A.F. Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J. Neurophysiol. 2002, 87, 679–695. [Google Scholar] [CrossRef] [PubMed]
- Corneil, B.; Munoz, D. Overt responses during covert orienting. Neuron 2014, 82, 1230–1243. [Google Scholar] [CrossRef]
- Edelman, J.A.; Keller, E.L. Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades. J. Neurophysiol. 1996, 76, 908–926. [Google Scholar] [CrossRef] [PubMed]
- Dorris, M.C.; Pare, M.; Munoz, D.P. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J. Neurosci. 1997, 17, 8566–8579. [Google Scholar] [CrossRef]
- Sparks, D.L.; Rohrer, W.H.; Zhang, Y. The role of the superior colliculus in saccade initiation: A study of express saccades and the gap effect. Vision Res. 2000, 40, 2763–2777. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.A.; Levy, R.; Boehnke, S.; White, B.J.; Itti, L.; Munoz, D.P. Linking visual response properties in the superior colliculus to saccade behavior. Eur. J. Neurosci. 2012, 35, 1738–1752. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset. Brain Res. 1978, 156, 1–16. [Google Scholar] [CrossRef]
- Robinson, D.A. Implications of neural networks for how we think about brain function. Behav. Brain Sci. 1992, 15, 644–655. [Google Scholar] [CrossRef]
- Munoz, D.P.; Guitton, D. Fixation and orientation control by the tecto-reticulo-spinal system in the cat whose head is unrestrained. Rev. Neurol. 1989, 145, 567–579. [Google Scholar] [PubMed]
- Guitton, D.; Munoz, D.P. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses. J. Neurophysiol. 1991, 66, 1605–1623. [Google Scholar] [CrossRef]
- Munoz, D.P.; Guitton, D. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. II. Sustained discharges during motor preparation and fixation. J. Neurophysiol. 1991, 66, 1624–1641. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Sugiuchi, Y.; Na, J.; Shinoda, Y. Brainstem circuits triggering saccades and fixation. J. Neurosci. 2022, 42, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Robinson, F.R.; Straube, A.; Fuchs, A.F. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J. Neurophysiol. 1993, 70, 1741–1758. [Google Scholar] [CrossRef]
- Ohtsuka, K.; Sato, H.; Noda, H. Saccadic burst neurons in the fastigial nucleus are not involved in compensating for orbital nonlinearities. J. Neurophysiol. 1994, 71, 1976–1980. [Google Scholar] [CrossRef] [PubMed]
- Goffart, L.; Chen, L.L.; Sparks, D.L. Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J. Neurophysiol. 2004, 92, 3351–3367. [Google Scholar] [CrossRef]
- Guerrasio, L.; Quinet, J.; Büttner, U.; Goffart, L. Fastigial oculomotor region and the control of foveation during fixation. J. Neurophysiol. 2010, 103, 1988–2001. [Google Scholar] [CrossRef]
- Sato, H.; Noda, H. Saccadic dysmetria induced by transient functional decortication of the cerebellar vermis. Exp. Brain Res. 1992, 88, 455–458. [Google Scholar] [CrossRef]
- Quinet, J.; Goffart, L. Saccade dysmetria in head-unrestrained gaze shifts after muscimol inactivation of the caudal fastigial nucleus in the monkey. J. Neurophysiol. 2005, 93, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Kurkin, S.; Akao, T.; Fukushima, J.; Shichinohe, N.; Kaneko, C.R.; Belton, T.; Fukushima, K. No-go neurons in the cerebellar oculomotor vermis and caudal fastigial nuclei: Planning tracking eye movements. Exp. Brain Res. 2014, 232, 191–210. [Google Scholar] [CrossRef] [PubMed]
- Noda, H.; Sugita, S.; Ikeda, Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J. Comp. Neurol. 1990, 302, 330–348. [Google Scholar] [CrossRef]
- McFarland, J.L.; Fuchs, A.F. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J. Neurophysiol. 1992, 68, 319–332. [Google Scholar] [CrossRef]
- May, P.J.; Hartwich-Young, R.; Nelson, J.D.; Sparks, D.L.; Porter, J.D. Cerebellotectal pathways in the macaque: Implications for collicular generation of saccades. Neuroscience 1990, 36, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z.M.; Goffart, L.; Krauzlis, R.J. Superior colliculus inactivation causes stable offsets in eye position during tracking. J. Neurosci. 2008, 28, 8124–8137. [Google Scholar] [CrossRef]
- Harting, J.K. Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta). J. Comp. Neurol. 1977, 173, 583–612. [Google Scholar] [CrossRef] [PubMed]
- Glickstein, M.; May, J.; Mercier, B. Visual corticopontine and tectopontine projections in the macaque. Arch. Ital. Biol. 1990, 128, 273–293. Available online: https://architalbiol.org/index.php/aib/article/view/128273/823 (accessed on 17 December 2024). [PubMed]
- Glickstein, M.; Gerrits, N.; Kralj-Hans, I.; Mercier, B.; Stein, J.; Voogd, J. Visual pontocerebellar projections in the macaque. J. Comp. Neurol. 1994, 349, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Thier, P.; Möck, M. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. Progr. Brain Res. 2006, 151, 293–320. [Google Scholar]
- Bourrelly, C.; Quinet, J.; Goffart, L. Pursuit disorder and saccade dysmetria after caudal fastigial inactivation in the monkey. J. Neurophysiol. 2018, 120, 1640–1654. [Google Scholar] [CrossRef]
- Bourrelly, C.; Quinet, J.; Goffart, L. Bilateral control of interceptive saccades: Evidence from the ipsipulsion of vertical saccades after caudal fastigial inactivation. J. Neurophysiol. 2021, 125, 2068–2083. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Peterson, B.W.; Uchino, Y.; Coulter, J.D.; Wilson, V.J. Direct fastigiospinal fibers in the cat. Brain Res. 1977, 126, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Wilson, V.J.; Uchino, Y.; Susswein, A.; Fukushima, K. Properties of direct fastiogiospinal fibers in the cat. Brain Res. 1977, 126, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Sugiuchi, Y.; Shinoda, Y. Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons. J. Neurophysiol. 2014, 111, 849–867. [Google Scholar] [CrossRef] [PubMed]
- Latto, R.; Cowey, A. Fixation changes after frontal eye-field lesions in monkeys. Brain Res. 1971, 30, 25–36. [Google Scholar] [CrossRef]
- Dias, E.C.; Segraves, M.A. Muscimol-induced inactivation of monkey frontal eye field: Effects on visually and memory-guided saccades. J. Neurophysiol. 1999, 81, 2191–2214. [Google Scholar] [CrossRef] [PubMed]
- Paré, M.; Wurtz, R.H. Progression in neuronal processing for saccadic eye movements from parietal cortex area LIP to superior colliculus. J. Neurophysiol. 2001, 85, 2545–2562. [Google Scholar] [CrossRef]
- Wurtz, R.H.; Sommer, M.A.; Paré, M.; Ferraina, S. Signal transformations from cerebral cortex to superior colliculus for the generation of saccades. Vision Res. 2001, 41, 3399–3412. [Google Scholar] [CrossRef]
- Lynch, J.C.; McLaren, J.W. Deficits of visual attention and saccadic eye movements after lesions of parietooccipital cortex in monkeys. J. Neurophysiol. 1989, 61, 74–90. [Google Scholar] [CrossRef]
- Li, C.S.R.; Mazzoni, P.; Andersen, R.A. Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades. J. Neurophysiol. 1999, 81, 1827–1838. [Google Scholar] [CrossRef] [PubMed]
- Wardak, C.; Olivier, E.; Duhamel, J.R. Saccadic target selection deficits after lateral intraparietal area inactivation in monkeys. J. Neurosci. 2002, 22, 9877–9884. [Google Scholar] [CrossRef] [PubMed]
- Ventre, J.; Faugier-Grimaud, S. Effects of posterior parietal lesions (area 7) on VOR in monkeys. Exp. Brain Res. 1986, 62, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.E.; Morgan, S.C.; Pexman, J.H.W.; Hill, M.D.; Buchan, A.M. CT assessment of conjugate eye deviation in acute stroke. Neurology 2003, 60, 135–137. [Google Scholar] [CrossRef]
- Becker, E.; Karnath, H.O. Neuroimaging of eye position reveals spatial neglect. Brain 2010, 133, 909–914. [Google Scholar] [CrossRef]
- Fruhmann Berger, M.; Johannsen, L.; Karnath, H.O. Time course of eye and head deviation in spatial neglect. Neuropsychology 2008, 22, 697. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, J.I.; Damm, I.; Ivanov, I.V.; Trauzettel-Klosinski, S. Eye movements during saccadic and fixation tasks in patients with homonymous hemianopia. J. Neuro-Ophthalm. 2014, 34, 354–361. [Google Scholar] [CrossRef]
- Snodderly, D.M. Effects of light and dark environments on macaque and human fixational eye movements. Vision Res. 1987, 27, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Barash, S.; Melikyan, A.; Sivakov, A.; Tauber, M. Shift of visual fixation dependent on background illumination. J. Neurophysiol. 1998, 79, 2766–2781. [Google Scholar] [CrossRef] [PubMed]
- Goffart, L.; Quinet, J.; Chavane, F.; Masson, G. Influence of background illumination on fixation and visually guided saccades in the rhesus monkey. Vision Res. 2006, 46, 149–162. [Google Scholar] [CrossRef]
- Van Essen, D.C.; Newsome, W.T.; Maunsell, J.H. The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Res. 1984, 24, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z.M.; Chen, C.Y. Sharper, stronger, faster upper visual field representation in primate superior colliculus. Curr. Biol. 2016, 26, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Goffart, L.; Bourrelly, C.; Quinton, J.C. Neurophysiology of visually guided eye movements: Critical review and alternative viewpoint. J. Neurophysiol. 2018, 120, 3234–3245. [Google Scholar] [CrossRef]
- Goffart, L. Kinematics and the neurophysiological study of visually-guided eye movements. Prog. Brain Res. 2019, 249, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Goffart, L.; Quinet, J.; Bourrelly, C. Neurophysiology of gaze orientation: Core neuronal networks. In Encyclopedia of the Human Brain, 2nd ed.; Grafman, J.H., Ed.; Elsevier: New York, NY, USA, 2005; Volume 1, pp. 681–699. [Google Scholar] [CrossRef]
- Isa, T.; Itouji, T.; Sasaki, S. Control of head movements in the cat: Two separate pathways from the superior colliculus to neck motoneurones and their roles in orienting movements. In Vestibular and Brain Stem Control of Eye, Head and Body Movements; Shimazu, H., Shinoda, Y., Eds.; Scientific Societies Press: Tokyo, Japan, 1992; pp. 275–284. [Google Scholar] [CrossRef]
- Schiller, P.H.; Stryker, M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 1972, 35, 915–924. [Google Scholar] [CrossRef]
- Robinson, D.A. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 1972, 12, 1795–1808. [Google Scholar] [CrossRef] [PubMed]
- Stanford, T.R.; Freedman, E.G.; Sparks, D.L. Site and parameters of microstimulation: Evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. J. Neurophysiol. 1996, 76, 3360–3381. [Google Scholar] [CrossRef]
- Freedman, E.G.; Stanford, T.R.; Sparks, D.L. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol. 1996, 76, 927–952. [Google Scholar] [CrossRef]
- Schiff, D.; Cohen, B.; Raphan, T. Nystagmus induced by stimulation of the nucleus of the optic tract in the monkey. Exp. Brain Res. 1988, 70, 1–14. [Google Scholar] [CrossRef]
- Mustari, M.J.; Fuchs, A.F. Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. J. Neurophysiol. 1990, 64, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Ilg, U.J.; Hoffmann, K.P. Responses of monkey nucleus of the optic tract neurons during pursuit and fixation. Neurosci. Res. 1991, 12, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Ilg, U.J.; Hoffmann, K.P. Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur. J. Neurosci. 1996, 8, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Wurtz, R.H.; Goldberg, M.E. Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. J. Neurophysiol. 1972, 35, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Chubb, M.C.; Fuchs, A.F. Contribution of y group of vestibular nuclei and dentate nucleus of cerebellum to generation of vertical smooth eye movements. J. Neurophysiol. 1982, 48, 75–99. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, R.D.; Robinson, D.A. Signals in vestibular nucleus mediating vertical eye movements in the monkey. J. Neurophysiol. 1984, 51, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
- Chubb, M.C.; Fuchs, A.F.; Scudder, C.A. Neuron activity in monkey vestibular nuclei during vertical vestibular stimulation and eye movements. J. Neurophysiol. 1984, 52, 724–742. [Google Scholar] [CrossRef] [PubMed]
- Scudder, C.A.; Fuchs, A.F. Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys. J. Neurophysiol. 1992, 68, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Böhmer, A.; Straumann, D. Pathomechanism of mammalian downbeat nystagmus due to cerebellar lesion: A simple hypothesis. Neurosci. Lett. 1998, 250, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Marti, S.; Straumann, D.; Büttner, U.; Glasauer, S. A model-based theory on the origin of downbeat nystagmus. Exp. Brain Res. 2008, 188, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Yakushin, S.B.; Gizzi, M.; Reisine, H.; Raphan, T.; Büttner-Ennever, J.; Cohen, B. Functions of the nucleus of the optic tract (NOT). II. Control of ocular pursuit. Exp. Brain Res. 2000, 131, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Takemura, A.; Kawano, K.; Mustari, M.J. Role of the pretectal nucleus of the optic tract in short-latency ocular following responses in monkeys. Exp. Brain Res. 2000, 131, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Strassman, A.; Highstein, S.M.; McCrea, R.A. Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons. J. Comp. Neurol. 1986, 249, 337–357. [Google Scholar] [CrossRef] [PubMed]
- Mustari, M.J.; Fuchs, A.F.; Kaneko, C.R.; Robinson, F.R. Anatomical connections of the primate pretectal nucleus of the optic tract. J. Comp. Neurol. 1994, 349, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Büttner-Ennever, J.A.; Cohen, B.; Horn, A.K.E.; Reisine, H. Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements. J. Comp. Neurol. 1996, 373, 90–107. [Google Scholar] [CrossRef]
- Appell, P.P.; Behan, M. Sources of subcortical GABAergic projections to the superior colliculus in the cat. J. Comp. Neurol. 1990, 302, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A. Models of oculomotor neural organization. In The Control of Eye Movements; Bach-Y-Rita, P., Collins, C.C., Eds.; Academic Press: New York, NY, USA, 1971; pp. 519–538. [Google Scholar]
- Becker, W. Models of oculomotor function: An appraisal of the engineer’s intrusion into oculomotor physiology. Stud. Vis. Inf. Proc. 1995, 6, 23–46. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, H.; Gu, C.; Li, C.; Sparks, D.L. Reliability of oculomotor command signals carried by individual neurons. Proc. Natl. Acad. Sci. USA 2007, 104, 8137–8142. [Google Scholar] [CrossRef] [PubMed]
- Xu-Wilson, M.; Chen-Harris, H.; Zee, D.S.; Shadmehr, R. Cerebellar contributions to adaptive control of saccades in humans. J. Neurosci. 2009, 29, 12930–12939. [Google Scholar] [CrossRef]
- Eggert, T.; Robinson, F.R.; Straube, A. Modeling inter-trial variability of saccade trajectories: Effects of lesions of the oculomotor part of the fastigial nucleus. PLoS Comput. Biol. 2016, 12, e1004866. [Google Scholar] [CrossRef] [PubMed]
- Barmack, N.H. Modification of eye movements by instantaneous changes in the velocity of visual targets. Vision Res. 1970, 10, 1431–1441. [Google Scholar] [CrossRef]
- Cassanello, C.R.; Nihalani, A.T.; Ferrera, V.P. Neuronal responses to moving targets in monkey frontal eye fields. J. Neurophysiol. 2008, 100, 1544–1556. [Google Scholar] [CrossRef]
- Gellman, R.S.; Carl, J.R. Motion processing for saccadic eye movements in humans. Exp. Brain Res. 1991, 84, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.L.; Johnsen, S.S. Velocity prediction in corrective saccades during smooth-pursuit eye movements in monkey. Exp. Brain Res. 1990, 80, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Fleuriet, J.; Hugues, S.; Perrinet, L.; Goffart, L. Saccadic foveation of a moving visual target in the rhesus monkey. J. Neurophysiol. 2011, 105, 883–895. [Google Scholar] [CrossRef]
- Orlando-Dessaints, N.; Goffart, L. Tracking a moving visual target in the rhesus monkey: Influence of the occurrence frequency of the target path. J. Neurophysiol. 2023, 130, 1425–1443. [Google Scholar] [CrossRef]
- Fleuriet, J.; Goffart, L. Saccadic interception of a moving visual target after a spatiotemporal perturbation. J. Neurosci. 2012, 32, 452–461. [Google Scholar] [CrossRef]
- Quinet, J.; Goffart, L. Does the brain extrapolate the position of a transient moving target? J. Neurosci. 2015, 35, 11780–11790. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.S. Human Eye Saccades to Targets of Low Energy. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1995. [Google Scholar]
- Bell, A.H.; Meredith, M.A.; Van Opstal, A.J.; Munoz, D. Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp. Brain Res. 2006, 174, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, C.J.; Gilchrist, I.D.; McSorley, E. The influence of spatial frequency and contrast on saccade latencies. Vision Res. 2004, 44, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Jürgens, R. An analysis of the saccadic system by means of double step stimuli. Vision Res. 1979, 19, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Newsome, W.T.; Wurtz, R.H.; Dursteler, M.R.; Mikami, A. Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci. 1985, 5, 825–840. [Google Scholar] [CrossRef] [PubMed]
- May, J.G.; Keller, E.L.; Suzuki, D.A. Smooth-pursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey. J. Neurophysiol. 1988, 59, 952–977. [Google Scholar] [CrossRef]
- Schiller, P.H.; Lee, K. The effects of lateral geniculate nucleus, area V4, and middle temporal (MT) lesions on visually guided eye movements. Vis. Neurosci. 1994, 11, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.S.; Sharpe, J.A.; Lillakas, L.; Dennis, M.; Steinbach, M.J. Smooth pursuit eye movements in children. Exp. Brain Res. 2006, 169, 139–143. [Google Scholar] [CrossRef]
- Ingster-Moati, I.; Vaivre-Douret, L.; Quoc, E.B.; Albuisson, E.; Dufier, J.L.; Golse, B. Vertical and horizontal smooth pursuit eye movements in children: A neuro-developmental study. Eur. J. Paediatr. Neurol. 2009, 13, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.R.; Hamid, M.A.; Tomsak, R.L.; Chou, S.S.; Leigh, R.J. Selective saccadic palsy caused by pontine lesions: Clinical, physiological, and pathological correlations. Ann. Neurol. 1986, 20, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Kommerell, G.; Henn, V.; Bach, M.; Lücking, C.H. Unilateral lesion of the paramedian pontine reticular formation. Neuro-Ophthalm. 1987, 7, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Pierrot-Deseilligny, C.; Amarenco, P.; Roullet, E.; Marteau, R. Vermal infarct with pursuit eye movement disorders. J. Neurol. Neurosurg. Psychiat. 1990, 53, 519–521. [Google Scholar] [CrossRef]
- Ohtsuka, K.; Igarashi, Y.; Chiba, S. Cerebellar peduncle lesion without saccadic abnormalities. Ophthalmologica 1992, 204, 44–48. [Google Scholar] [CrossRef]
- Büttner, U.; Straube, A.; Spuler, A. Saccadic dysmetria and “intact” smooth pursuit eye movements after bilateral deep cerebellar nuclei lesions. J. Neurol. Neurosurg. Psychiat. 1994, 57, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Segraves, M.A.; Goldberg, M.E.; Deng, S.Y.; Bruce, C.J.; Ungerleider, L.G.; Mishkin, M. The role of striate cortex in the guidance of eye movements in the monkey. J. Neurosci. 1987, 7, 3040–3058. [Google Scholar] [CrossRef] [PubMed]
- MacAvoy, M.G.; Gottlieb, J.P.; Bruce, C.J. Smooth-pursuit eye movement representation in the primate frontal eye field. Cereb. Cortex 1991, 1, 95–102. [Google Scholar] [CrossRef]
- Shi, D.; Friedman, H.R.; Bruce, C.J. Deficits in smooth-pursuit eye movements after muscimol inactivation within the primate’s frontal eye field. J. Neurophysiol. 1998, 80, 458–464. [Google Scholar] [CrossRef]
- Ono, S.; Mustari, M.J. Horizontal smooth pursuit adaptation in macaques after muscimol inactivation of the dorsolateral pontine nucleus (DLPN). J. Neurophysiol. 2007, 98, 2918–2932. [Google Scholar] [CrossRef] [PubMed]
- Daniel, B.M.; Lee, D.N. Development of looking with head and eyes. J. Exp. Child Psychol. 1990, 50, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.S.; Sharpe, J.A.; Eizenman, M.; Lillakas, L.; Westall, C.; To, T.; Deniis, M.; Steinbach, M.J. Saccades in children. Vision Res. 2006, 46, 1432–1439. [Google Scholar] [CrossRef]
- Ego, C.; Orban de Xivry, J.J.; Nassogne, M.C.; Yüksel, D.; Lefèvre, P. The saccadic system does not compensate for the immaturity of the smooth pursuit system during visual tracking in children. J. Neurophysiol. 2013, 110, 358–367. [Google Scholar] [CrossRef]
- Sinno, S.; Najem, F.; Abouchacra, K.S.; Perrin, P.; Dumas, G. Normative values of saccades and smooth pursuit in children aged 5 to 17 years. J. Am. Acad. Audiol. 2020, 31, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Fujita, M. Adaptive modifications of human postsaccadic pursuit eye movements induced by a step-ramp-ramp paradigm. Exp. Brain Res. 1997, 116, 83–96. [Google Scholar] [CrossRef]
- Chou, I.H.; Lisberger, S.G. Spatial generalization of learning in smooth pursuit eye movements: Implications for the coordinate frame and sites of learning. J. Neurosci. 2002, 22, 4728–4739. [Google Scholar] [CrossRef]
- Sun, Z.; Smilgin, A.; Junker, M.; Dicke, P.W.; Thier, P. Short-term adaptation of saccades does not affect smooth pursuit eye movement initiation. J. Vision 2017, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Bucci, M.P.; Ajrezo, L.; Wiener-Vacher, S. Oculomotor tasks affect differently postural control in healthy children. Int. J. Dev. Neurosci. 2015, 46, 1–6. [Google Scholar] [CrossRef]
- Petit, L.; Haxby, J.V. Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J. Neurophysiol. 1999, 82, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Rosano, C.; Krisky, C.M.; Welling, J.S.; Eddy, W.F.; Luna, B.; Thulborn, K.R.; Sweeney, J.A. Pursuit and saccadic eye movement subregions in human frontal eye field: A high-resolution fMRI investigation. Cereb. Cortex 2002, 12, 107–115. [Google Scholar] [CrossRef]
- Yamada, T.; Suzuki, D.A.; Yee, R.D. Smooth pursuit-like eye movements evoked by microstimulation in macaque nucleus reticularis tegmenti pontis. J. Neurophysiol. 1996, 76, 3313–3324. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.A.; Yamada, T.; Yee, R.D. Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis. J. Neurophysiol. 2003, 89, 2146–2158. [Google Scholar] [CrossRef]
- Ono, S.; Das, V.E.; Mustari, M.J. Gaze-related response properties of DLPN and NRTP neurons in the rhesus macaque. J. Neurophysiol. 2004, 91, 2484–2500. [Google Scholar] [CrossRef]
- Bruce, C.J.; Goldberg, M.E.; Bushnell, M.C.; Stanton, G.B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 1985, 54, 714–734. [Google Scholar] [CrossRef]
- Gottlieb, J.P.; Bruce, C.J.; MacAvoy, M.G. Smooth eye movements elicited by microstimulation in the primate frontal eye field. J. Neurophysiol. 1993, 69, 786–799. [Google Scholar] [CrossRef]
- Gottlieb, J.P.; MacAvoy, M.G.; Bruce, C.J. Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field. J. Neurophysiol. 1994, 72, 1634–1653. [Google Scholar] [CrossRef]
- Stanton, G.B.; Friedman, H.R.; Dias, E.C.; Bruce, C.J. Cortical afferents to the smooth-pursuit region of the macaque monkey’s frontal eye field. Exp. Brain Res. 2005, 165, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.R.; Lynch, J.C. Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. J. Neurophysiol. 1996, 76, 2754–2771. [Google Scholar] [CrossRef] [PubMed]
- Mahaffy, S.; Krauzlis, R.J. Neural activity in the frontal pursuit area does not underlie pursuit target selection. Vision Res. 2011, 51, 853–866. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.C.; Tian, J.R. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog. Brain Res. 2006, 151, 461–501. [Google Scholar] [CrossRef] [PubMed]
- Orban de Xivry, J.J.; Lefevre, P. Saccades and pursuit: Two outcomes of a single sensorimotor process. J. Physiol. 2007, 584, 11–23. [Google Scholar] [CrossRef]
- Goettker, A.; Gegenfurtner, K.R. A change in perspective: The interaction of saccadic and pursuit eye movements in oculomotor control and perception. Vision Res. 2021, 188, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Krauzlis, R.J.; Basso, M.A.; Wurtz, R.H. Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. J. Neurophysiol. 2000, 84, 876–891. [Google Scholar] [CrossRef] [PubMed]
- Krauzlis, R.J. Neuronal activity in the rostral superior colliculus related to the initiation of pursuit and saccadic eye movements. J. Neurosci. 2003, 23, 4333–4344. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z.M.; Krauzlis, R.J. Goal representations dominate superior colliculus activity during extrafoveal tracking. J. Neurosci. 2008, 28, 9426–9439. [Google Scholar] [CrossRef]
- Missal, M.; Keller, E.L. Common inhibitory mechanism for saccades and smooth-pursuit eye movements. J. Neurophysiol. 2002, 88, 1880–1892. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.L.; Missal, M. Shared brainstem pathways for saccades and smooth-pursuit eye movements. Ann. N. Y. Acad. Sci. 2003, 1004, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Strassman, A.; Highstein, S.M.; McCrea, R.A. Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons. J. Comp. Neurol. 1986, 249, 358–380. [Google Scholar] [CrossRef]
- Krauzlis, R.J.; Miles, F.A. Role of the oculomotor vermis in generating pursuit and saccades: Effects of microstimulation. J. Neurophysiol. 1998, 80, 2046–2062. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.A.; Keller, E.L. The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity. J. Neurophysiol. 1988, 59, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Noda, H. Posterior vermal Purkinje cells in macaques responding during saccades, smooth pursuit, chair rotation and/or optokinetic stimulation. Neurosci. Res. 1992, 12, 583–595. [Google Scholar] [CrossRef]
- Raghavan, R.T.; Lisberger, S.G. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: Comparison with floccular complex. J. Neurophysiol. 2017, 118, 986–1001. [Google Scholar] [CrossRef]
- Fuchs, A.F.; Robinson, F.R.; Straube, A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J. Neurophysiol. 1994, 72, 2714–2728. [Google Scholar] [CrossRef]
- Lisberger, S.G. Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys. J. Neurophysiol. 1998, 79, 1918–1930. [Google Scholar] [CrossRef]
- Robinson, F.R.; Straube, A.; Fuchs, A.F. Role of the caudal fastigial nucleus in pursuit eye movements. II. Effects of muscimol inactivation. J. Neurophysiol. 1997, 78, 848–859. [Google Scholar] [CrossRef]
- Helmchen, C.; Machner, B.; Schwenke, H.; Sprenger, A. Bilateral lesion of the cerebellar fastigial nucleus: Effects on smooth pursuit acceleration and non-reflexive visually-guided saccades. Front. Neurol. 2022, 13, 883213. [Google Scholar] [CrossRef]
- Klam, F.; Petit, J.; Grantyn, A.; Berthoz, A. Predictive elements in ocular interception and tracking of a moving target by untrained cats. Exp. Brain Res. 2001, 139, 233–247. [Google Scholar] [CrossRef]
- de Brouwer, S.; Yuksel, D.; Blohm, G.; Missal, M.; Lefèvre, P. What triggers catch-up saccades during visual tracking? J. Neurophysiol. 2002, 87, 1646–1650. [Google Scholar] [CrossRef]
- Berthoz, A. Simplexity: Simplifying Principles for a Complex World; Weiss, G., Translator; Yale University Press: New Haven, CT, USA, 2012. [Google Scholar]
- Fuchs, A.F. Saccadic and smooth pursuit eye movements in the monkey. J. Physiol. 1967, 191, 609–631. [Google Scholar] [CrossRef] [PubMed]
- Ron, S.; Vieville, T.; Droulez, J. Target velocity based prediction in saccadic vector programming. Vision Res. 1989, 29, 1103–1114. [Google Scholar] [CrossRef]
- Van Gelder, P.; Lebedev, S.; Liu, P.M.; Tsui, W.H. Anticipatory saccades in smooth pursuit: Task effects and pursuit vector after saccades. Vision Res. 1995, 35, 667–678. [Google Scholar] [CrossRef]
- Goffart, L.; Cecala, A.L.; Gandhi, N.J. The superior colliculus and the steering of saccades toward a moving visual target. J. Neurophysiol. 2017, 118, 2890–2901. [Google Scholar] [CrossRef]
- Keller, E.L.; Gandhi, N.J.; Weir, P.T. Discharge of superior collicular neurons during saccades made to moving targets. J. Neurophysiol. 1996, 76, 3573–3577. [Google Scholar] [CrossRef] [PubMed]
- Paré, M.; Wurtz, R.H. Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J. Neurophysiol. 1997, 78, 3493–3497. [Google Scholar] [CrossRef] [PubMed]
- Churan, J.; Kaminiarz, A.; Schwenk, J.C.; Bremmer, F. Coding of interceptive saccades in parietal cortex of macaque monkeys. Brain Struct. Funct. 2021, 226, 2707–2723. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.A.; Wurtz, R.H. Frontal eye field neurons orthodromically activated from the superior colliculus. J. Neurophysiol. 1998, 80, 3331–3335. [Google Scholar] [CrossRef] [PubMed]
- Shidara, M.; Kawano, K.; Gomi, H.; Kawato, M. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 1993, 365, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Das, V.E.; Economides, J.R.; Ono, S.; Mustari, M.J. Information processing by parafoveal cells in the primate nucleus of the optic tract. Exp. Brain Res. 2001, 140, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.; Das, V.E.; Economides, J.R.; Mustari, M.J. Modeling of smooth pursuit-related neuronal responses in the DLPN and NRTP of the rhesus macaque. J. Neurophysiol. 2005, 93, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Dicke, P.W.; Thier, P. Differential kinematic encoding of saccades and smooth-pursuit eye movements by fastigial neurons. Neurosci. Bull. 2022, 38, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Smilgin, A.; Junker, M.; Dicke, P.W.; Thier, P. The same oculomotor vermal Purkinje cells encode the different kinematics of saccades and of smooth pursuit eye movements. Scient. Rep. 2017, 7, 40613. [Google Scholar] [CrossRef] [PubMed]
- Mays, L.E.; Sparks, D.L. Dissociation of visual and saccade-related responses in superior colliculus neurons. J. Neurophysiol. 1980, 43, 207–232. [Google Scholar] [CrossRef]
- Sparks, D.L.; Porter, J.D. Spatial localization of saccade targets. II. Activity of superior colliculus neurons preceding compensatory saccades. J. Neurophysiol. 1983, 49, 64–74. [Google Scholar] [CrossRef]
- Sparks, D.L. Conceptual issues related to the role of the superior colliculus in the control of gaze. Cur. Opin. Neurobiol. 1999, 9, 698–707. [Google Scholar] [CrossRef]
- Leigh, R.J.; Zee, D.S. The Neurology of Eye Movements; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Rucker, J.C.; Lavin, P.J. Neuro-ophthalmology: Ocular motor system. In Bradley’s Neurology in Clinical Practice E-Book; Elsevier: Amsterdam, The Netherlands, 2021; Volume 18, pp. 1–43. [Google Scholar]
- Büttner-Ennever, J.A. Neuroanatomy of the Oculomotor System; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Raphan, T.; Cohen, B. Brainstem mechanisms for rapid and slow eye movements. Annu. Rev. Physiol. 1978, 40, 527–552. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.F.; Kaneko, C.R.; Scudder, C.A. Brainstem control of saccadic eye movements. Annu. Rev. Neurosci. 1985, 8, 307–337. [Google Scholar] [CrossRef]
- Henn, V.; Henn, K.; Vilis, T.; Cohen, B. Brainstem regions related to saccade generation. Rev. Oculom. Res. 1989, 3, 105–212. [Google Scholar]
- Sparks, D.L.; Mays, L.E. Signal transformations required for the generation of saccadic eye movements. Annu. Rev. Neurosci. 1990, 13, 309–336. [Google Scholar] [CrossRef]
- Keller, E.L.; Heinen, S.J. Generation of smooth-pursuit eye movements: Neuronal mechanisms and pathways. Neurosci. Res. 1991, 11, 79–107. [Google Scholar] [CrossRef]
- Moschovakis, A.K.; Scudder, C.A.; Highstein, S.M. The microscopic anatomy and physiology of the mammalian saccadic system. Prog. Neurobiol. 1996, 50, 133–254. [Google Scholar] [CrossRef]
- Scudder, C.A.; Kaneko, C.R.S.; Fuchs, A.F. The brainstem burst generator for saccadic eye movements: A modern synthesis. Exp. Brain Res. 2002, 142, 439–462. [Google Scholar] [CrossRef]
- Horn, A.K.; Leigh, R.J. The anatomy and physiology of the ocular motor system. Handb. Clin. Neurol. 2011, 102, 21–69. [Google Scholar] [CrossRef]
- Mustari, M.J.; Ono, S.; Das, V.E. Signal processing and distribution in cortical-brainstem pathways for smooth pursuit eye movements. Ann. N. Y. Acad. Sci. 2009, 1164, 147–154. [Google Scholar] [CrossRef]
- Spencer, R.F.; McNeer, K.W. The periphery: Extraocular muscles and motor neurones. In Eye Movements; Carpenter, R.H.S., Ed.; MacMillan Press: London, UK, 1991; Volume 8, pp. 175–199. [Google Scholar]
- von Helmholtz, H. Treatise on Physiological Optics; Southall, J.P.C., Ed.; Optical Society of America: Washington, DC, USA, 1924. [Google Scholar]
- Simpson, J.I.; Graf, W. Eye-muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. Ann. N. Y. Acad. Sci. 1981, 374, 20–30. [Google Scholar] [CrossRef]
- Cox, P.G.; Jeffery, N. Morphology of the mammalian vestibulo-ocular reflex: The spatial arrangement of the human fetal semicircular canals and extraocular muscles. J. Morphol. 2007, 268, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.G.; Jeffery, N. Geometry of the semicircular canals and extraocular muscles in rodents, lagomorphs, felids and modern humans. J. Anat. 2008, 213, 583–596. [Google Scholar] [CrossRef]
- Schiller, P.H. The discharge characteristics of single units in the oculomotor and abducens nuclei of the unanesthetized monkey. Exp. Brain Res. 1970, 10, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.F.; Scudder, C.A.; Kaneko, C.R. Discharge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus. J. Neurophysiol. 1988, 60, 1874–1895. [Google Scholar] [CrossRef] [PubMed]
- Sylvestre, P.A.; Cullen, K.E. Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. J. Neurophysiol. 1999, 82, 2612–2632. [Google Scholar] [CrossRef] [PubMed]
- Luschei, E.S.; Fuchs, A.F. Activity of brain stem neurons during eye movements of alert monkeys. J. Neurophysiol. 1972, 35, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.L. Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol. 1974, 37, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Van Gisbergen, J.A.M.; Robinson, D.A.; Gielen, S.A. Quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 1981, 45, 417–442. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.K.; Büttner-Ennever, J.A.; Suzuki, Y.; Henn, V. Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining. J. Comp. Neurol. 1995, 359, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Henn, V.; Lang, W.; Hepp, K.; Reisine, H. Experimental gaze palsies in monkeys and their relation to human pathology. Brain 1984, 107, 619–636. [Google Scholar] [CrossRef]
- Cohen, B.; Komatsuzaki, A. Eye movements induced by stimulation of the pontine reticular formation: Evidence for integration in oculomotor pathways. Exp. Neurol. 1972, 36, 101–117. [Google Scholar] [CrossRef]
- Anderson, S.R.; Porrill, J.; Sklavos, S.; Gandhi, N.J.; Sparks, D.L.; Dean, P. Dynamics of primate oculomotor plant revealed by effects of abducens microstimulation. J. Neurophysiol. 2009, 101, 2907–2923. [Google Scholar] [CrossRef] [PubMed]
- Scudder, C.A.; Fuchs, A.F.; Langer, T.P. Characteristics and functional identification of saccadic inhibitory burst neurons in the alert monkey. J. Neurophysiol. 1988, 59, 1430–1454. [Google Scholar] [CrossRef]
- Cullen, K.E.; Guitton, D. Analysis of primate IBN spike trains using system identification techniques. I. Relationship to eye movement dynamics during head-fixed saccades. J. Neurophysiol. 1997, 78, 3259–3282. [Google Scholar] [CrossRef]
- Kojima, Y.; Iwamoto, Y.; Robinson, F.R.; Noto, C.T.; Yoshida, K. Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey. J. Neurophysiol. 2008, 99, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L.; Barton, E.J. Neural control of saccadic eye movements. Cur. Opn. Neurobiol. 1993, 3, 966–972. [Google Scholar] [CrossRef]
- Goffart, L. Saccadic eye movements: Basic neural processes. Ref. Mod. Neurosci. Biobehav. Psychol. 2017, 1–8. [Google Scholar] [CrossRef]
- Takahashi, M.; Shinoda, Y. Brain stem neural circuits of horizontal and vertical saccade systems and their frame of reference. Neuroscience 2018, 392, 281–328. [Google Scholar] [CrossRef] [PubMed]
- Keller, E.L.; McPeek, R.M.; Salz, T. Evidence against direct connections to PPRF EBNs from SC in the monkey. J. Neurophysiol. 2000, 84, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Roldan, M.; Reinoso-Suarez, F. Cerebellar projections to the superior colliculus in the cat. J. Neurosci. 1981, 1, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, K.; Noda, H. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J. Neurophysiol. 1991, 65, 1422–1434. [Google Scholar] [CrossRef]
- Fuchs, A.F.; Robinson, F.R.; Straube, A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J. Neurophysiol. 1993, 70, 1723–1740. [Google Scholar] [CrossRef] [PubMed]
- Helmchen, C.; Straube, A.; Büttner, U. Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Exp. Brain Res. 1994, 98, 474–482. [Google Scholar] [CrossRef]
- Kleine, J.F.; Guan, Y.; Büttner, U. Saccade-related neurons in the primate fastigial nucleus: What do they encode? J. Neurophysiol. 2003, 90, 3137–3154. [Google Scholar] [CrossRef] [PubMed]
- Robinson, F.R.; Fuchs, A.F. The role of the cerebellum in voluntary eye movements. Ann. Rev. Neurosci. 2001, 24, 981–1004. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.F.; Brettler, S.; Ling, L. Head-free gaze shifts provide further insights into the role of the medial cerebellum in the control of primate saccadic eye movements. J. Neurophysiol. 2010, 103, 2158–2173. [Google Scholar] [CrossRef] [PubMed]
- Quinet, J.; Goffart, L. Head-unrestrained gaze shifts after muscimol injection in the caudal fastigial nucleus of the monkey. J. Neurophysiol. 2007, 98, 3269–3283. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A. Oculomotor unit behavior in the monkey. J. Neurophysiol. 1970, 33, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Walton, M.M. Reduced activity of vertically acting motoneurons during convergence. J. Neurophysiol. 2022, 128, 671–680. [Google Scholar] [CrossRef]
- Büttner, U.; Büttner-Ennever, J.A.; Henn, V. Vertical eye movement related unit activity in the rostral mesencephalic reticular formation of the alert monkey. Brain Res. 1977, 130, 239–252. [Google Scholar] [CrossRef] [PubMed]
- King, W.M.; Fuchs, A.F. Reticular control of vertical saccadic eye movements by mesencephalic burst neurons. J. Neurophysiol. 1979, 42, 861–876. [Google Scholar] [CrossRef]
- Moschovakis, A.K.; Scudder, C.A.; Highstein, S.M. The structure of the primate oculomotor burst generator. I. Medium-lead burst neurons with upward on-directions. J. Neurophysiol. 1991, 65, 203–217. [Google Scholar] [CrossRef]
- Fuchs, A.F.; Luschei, E.S. The activity of single trochlear nerve fibers during eye movements in the alert monkey. Exp. Brain Res. 1971, 13, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Moschovakis, A.K.; Scudder, C.A.; Highstein, S.M.; Warren, J.D.M. The structure of the primate oculomotor burst generator. II. Medium-lead burst neurons with downward on-directions. J. Neurophysiol. 1991, 65, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.K.; Helmchen, C.; Wahle, P. GABAergic neurons in the rostral mesencephalon of the macaque monkey that control vertical eye movements. Ann. N. Y. Acad. Sci. 2003, 1004, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Büttner-Ennever, J.A.; Straumann, D.; Hepp, K.; Hess, B.J.M.; Henn, V. Deficits in torsional and vertical rapid eye movements and shift of Listing’s plane after uni-and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Exp. Brain Res. 1995, 106, 215–232. [Google Scholar] [CrossRef]
- Straumann, D.; Zee, D.S.; Solomon, D.; Lasker, A.G.; Roberts, D.C. Transient torsion during and after saccades. Vision Res. 1995, 35, 3321–3334. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.D.; Vilis, T. Symmetry of oculomotor burst neuron coordinates about Listing’s plane. J. Neurophysiol. 1992, 68, 432–448. [Google Scholar] [CrossRef] [PubMed]
- Kremmyda, O.; Büttner-Ennever, J.A.; Büttner, U.; Glasauer, S. Torsional deviations with voluntary saccades caused by a unilateral midbrain lesion. Case Rep. 2009, 2009, bcr0820080807. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, K.; Noda, H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J. Neurophysiol. 1995, 74, 1828–1840. [Google Scholar] [CrossRef]
- Soetedjo, R.; Fuchs, A.F. Complex spike activity of Purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J. Neurosci. 2006, 26, 7741–7755. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Noda, H. Divergent axon collaterals from fastigial oculomotor region to mesodiencephalic junction and paramedian pontine reticular formation in macaques. Neurosc. Res. 1991, 11, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, Y.; Yoshida, K. Saccadic dysmetria following inactivation of the primate fastigial oculomotor region. Neurosci. Lett. 2002, 325, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Goffart, L.; Chen, L.L.; Sparks, D.L. Saccade dysmetria during functional perturbation of the caudal fastigial nucleus in the monkey. Ann. N. Y. Acad. Sci. 2003, 1004, 220–228. [Google Scholar] [CrossRef]
- Takagi, M.; Zee, D.S.; Tamargo, R.J. Effects of lesions of the oculomotor vermis on eye movements in primate: Saccades. J. Neurophysiol. 1998, 80, 1911–1931. [Google Scholar] [CrossRef]
- Nitta, T.; Akao, T.; Kurkin, S.; Fukushima, K. Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys. Cereb. Cortex 2008, 18, 1042–1057. [Google Scholar] [CrossRef]
- Helmchen, C.; Glasauer, S.; Büttner, U. Pathological torsional eye deviation during voluntary saccades: A violation of Listing’s law. J. Neurol. Neurosurg. Psychiat. 1997, 62, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Fetter, M.; Anastasopoulos, D.; Haslwanter, T. Three-dimensional properties of saccadic eye movements in patients with cerebellar ataxia. In Current Oculomotor Research: Physiological and Psychological Aspects; Springer: Boston, MA, USA, 1999; pp. 391–396. [Google Scholar] [CrossRef]
- Strassman, A.; Evinger, C.; McCrea, R.A.; Baker, R.G.; Highstein, S.M. Anatomy and physiology of intracellularly labelled omnipause neurons in the cat and squirrel monkey. Exp. Brain Res. 1987, 67, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Ohgaki, T.; Markham, C.H.; Schneider, J.S.; Curthoys, I.S. Anatomical evidence of the projection of pontine omnipause neurons to midbrain regions controlling vertical eye movements. J. Comp. Neurol. 1989, 289, 610–625. [Google Scholar] [CrossRef] [PubMed]
- Grantyn, A.; Brandi, A.M.; Dubayle, D.; Graf, W.; Ugolini, G.; Hadjidimitrakis, K.; Moschovakis, A. Density gradients of trans-synaptically labeled collicular neurons after injections of rabies virus in the lateral rectus muscle of the rhesus monkey. J. Comp. Neurol. 2002, 451, 346–361. [Google Scholar] [CrossRef]
- Nichols, M.J.; Sparks, D.L. Component stretching during oblique stimulation-evoked saccades: The role of the superior colliculus. J. Neurophysiol. 1996, 76, 582–600. [Google Scholar] [CrossRef]
- Sparks, D.L.; Barton, E.J.; Gandhi, N.J.; Nelson, J. Studies of the role of the paramedian pontine reticular formation in the control of head-restrained and head-unrestrained gaze shifts. Ann. N. Y. Acad. Sci. 2002, 956, 85–98. [Google Scholar] [CrossRef]
- Barton, E.J.; Nelson, J.S.; Gandhi, N.J.; Sparks, D.L. Effects of partial lidocaine inactivation of the paramedian pontine reticular formation on saccades of macaques. J. Neurophysiol. 2003, 90, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Bizzi, E.; Kalil, R.E.; Morasso, P. Two modes of active eye-head coordination in monkeys. Brain Res. 1972, 40, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Volle, M.; Guitton, D. Human gaze shifts in which head and eyes are not initially aligned. Exp. Brain Res. 1993, 94, 463–470. [Google Scholar] [CrossRef]
- Tomlinson, R.D.; Bahra, P.S. Combined eye-head gaze shifts in the primate. I. Metrics. J. Neurophysiol. 1986, 56, 1542–1557. [Google Scholar] [CrossRef]
- Becker, W.; Jürgens, R. Gaze saccades to visual targets: Does head movement change the metrics. In The Head-Neck Sensory Motor System; Oxford University Press: New York, NY, USA, 1992; pp. 427–433. [Google Scholar]
- Quinet, J.; Goffart, L. Influence of head restraint on visually triggered saccades in the Rhesus monkey. Ann. N. Y. Acad. Sci. 2003, 1004, 404–408. [Google Scholar] [CrossRef]
- Richmond, F.J.; Singh, K.; Corneil, B.D. Neck muscles in the rhesus monkey. I. Muscle morphometry and histochemistry. J. Neurophysiol. 2001, 86, 1717–1728. [Google Scholar] [CrossRef]
- Lestienne, F.G.; Le Goff, B.; Liverneaux, P.A. Head movement trajectory in three-dimensional space during orienting behavior toward visual targets in rhesus monkeys. Exp. Brain Res. 1995, 102, 393–406. [Google Scholar] [CrossRef]
- Corneil, B.D.; Olivier, E.; Richmond, F.J.; Loeb, G.E.; Munoz, D.P. Neck muscles in the rhesus monkey. II. Electromyographic patterns of activation underlying postures and movements. J. Neurophysiol. 2001, 86, 1729–1749. [Google Scholar] [CrossRef]
- Paré, M.; Crommelinck, M.; Guitton, D. Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity. Exp. Brain Res. 1994, 101, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Freedman, E.G.; Sparks, D.L. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: Evidence for a gaze displacement command. J. Neurophysiol. 1997, 78, 1669–1690. [Google Scholar] [CrossRef]
- Rodgers, C.K.; Munoz, D.P.; Scott, S.H.; Paré, M. Discharge properties of monkey tectoreticular neurons. J. Neurophysiol. 2006, 95, 3502–3511. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.Y.; Guitton, D. Firing patterns in superior colliculus of head-unrestrained monkey during normal and perturbed gaze saccades reveal short-latency feedback and a sluggish rostral shift in activity. J. Neurosci. 2009, 29, 7166–7180. [Google Scholar] [CrossRef]
- Knight, T.A.; Fuchs, A.F. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: Effects of microstimulation. J. Neurophysiol. 2007, 97, 618–634. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Tehovnik, E.J. Cortical control of eye and head movements: Integration of movements and percepts. Eur. J. Neurosci. 2007, 25, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Knight, T.A. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: Neuronal activity. Neuroscience 2012, 225, 213–236. [Google Scholar] [CrossRef]
- Thomson, D.B.; Loeb, G.E.; Richmond, F.J. Effect of neck posture on the activation of feline neck muscles during voluntary head turns. J. Neurophysiol. 1994, 72, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
- Highstein, S.M.; Holstein, G.R. The anatomy of the vestibular nuclei. Prog. Brain Res. 2006, 151, 157–203. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.W.; Maunz, R.A.; Pitts, N.G.; Mackel, R.G. Patterns of projection and branching of reticulospinal neurons. Exp. Brain Res. 1975, 23, 333–351. [Google Scholar] [CrossRef]
- Isa, T.; Sasaki, S. Effects of lesion of paramedian pontomedullary reticular formation by kainic acid injection on the visually triggered horizontal orienting movements in the cat. Neurosci. Lett. 1988, 87, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Grantyn, A.; Berthoz, A. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat: I. Behavioral properties. Exp. Brain Res. 1987, 66, 339–354. [Google Scholar] [CrossRef]
- Grantyn, A.; Berthoz, A. Burst activity of identified tecto-reticulo-spinal neurons in the alert cat. Exp. Brain Res. 1985, 57, 417–421. [Google Scholar] [CrossRef]
- Grantyn, A. How visual inputs to the ponto-bulbar reticular formation are used in the synthesis of premotor signals during orienting. Prog. Brain Res. 1989, 80, 159–170. [Google Scholar] [CrossRef]
- Alstermark, B.; Pinter, M.J.; Sasaki, S. Pyramidal effects in dorsal neck motoneurones of the cat. J. Physiol. 1985, 363, 287–302. [Google Scholar] [CrossRef]
- Escudero, M.; de la Cruz, R.R.; Delgado-Garcia, J.M. A physiological study of vestibular and prepositus hypoglossi neurons projecting to the abducens nucleus in the alert cat. J. Physiol. 1992, 458, 539–560. [Google Scholar] [CrossRef]
- Grantyn, A.; Kuze, B.; Brandi, A.M.; Thomas, M.A.; Quenech’du, N. Direct projections of omnipause neurons to reticulospinal neurons: A double-labeling light microscopic study in the cat. J. Comp. Neurol. 2010, 518, 4792–4812. [Google Scholar] [CrossRef] [PubMed]
- Paré, M.; Guitton, D. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat. J. Neurophysiol. 1998, 79, 3060–3076. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.O.; Ling, L.; Fuchs, A.F. Action of the brain stem saccade generator during horizontal gaze shifts. I. Discharge patterns of omnidirectional pause neurons. J. Neurophysiol. 1999, 81, 1284–1295. [Google Scholar] [CrossRef]
- Wilson, V.J.; Yoshida, M. Monosynaptic inhibition of neck motoneurons by the medial vestibular nucleus. Exp. Brain Res. 1969, 9, 365–380. [Google Scholar] [CrossRef]
- Wilson, V.J.; Yoshida, M. Comparison of effects of stimulation of Deiters’ nucleus and medial longitudinal fasciculus on neck, forelimb, and hindlimb motoneurons. J. Neurophysiol. 1969, 32, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Wilson, V.J.; Maeda, M. Connections between semicircular canals and neck motoneurons in the cat. J. Neurophysiol. 1974, 37, 346–357. [Google Scholar] [CrossRef]
- Isu, N.; Yokota, J. Morphophysiological study on the divergent projection of axon collaterals of medial vestibular nucleus neurons in the cat. Exp. Brain Res. 1983, 53, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, S.; Susswein, A.; Uchino, Y.; Wilson, V.J. Synaptic actions of individual vestibular neurones on cat neck motoneurones. J. Physiol. 1977, 272, 367–382. [Google Scholar] [CrossRef]
- Suzuki, J.I.; Cohen, B. Head, eye, body and limb movements from semicircular canal nerves. Exp. Neurol. 1964, 10, 393–405. [Google Scholar] [CrossRef]
- Baker, R.G.; Mano, N.; Shimazu, H. Postsynaptic potentials in abducens motoneurons induced by vestibular stimulation. Brain Res. 1969, 15, 577–580. [Google Scholar] [CrossRef]
- Hikosaka, O.; Igusa, Y.; Imai, H. Inhibitory connections of nystagmus-related reticular burst neurons with neurons in the abducens, prepositus hypoglossi and vestibular nuclei in the cat. Exp. Brain Res. 1980, 39, 301–311. [Google Scholar] [CrossRef]
- McCrea, R.A.; Yoshida, K.; Berthoz, A.; Baker, R. Eye movement related activity and morphology of second order vestibular neurons terminating in the cat abducens nucleus. Exp. Brain Res. 1980, 40, 468–473. [Google Scholar] [CrossRef]
- Berthoz, A.; Droulez, J.; Vidal, P.P.; Yoshida, K. Neural correlates of horizontal vestibulo-ocular reflex cancellation during rapid eye movements in the cat. J. Physiol. 1989, 419, 717–751. [Google Scholar] [CrossRef]
- Boyle, R.; Goldberg, J.M.; Highstein, S.M. Vestibular nerve inputs to vestibulospinal and vestibulo-ocular neurons of the squirrel monkey. In The Head-Neck Sensory Motor System; Berthoz, A., Graf, W., Vidal, P.P., Eds.; Oxford University Press: New York, NY, USA, 1992; pp. 255–258. [Google Scholar]
- Anastasopoulos, D.; Mergner, T. Canal-neck interaction in vestibular nuclear neurons of the cat. Exp. Brain Res. 1982, 46, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Hannaford, B.; Stark, L. Roles of the elements of the triphasic control signal. Exp. Neurol. 1985, 90, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Roucoux, A.; Crommelinck, M.; Decostre, M.F. Neck muscle activity in eye-head coordinated movements. Prog. Brain Res. 1989, 80, 351–362. [Google Scholar] [CrossRef]
- Munoz, D.P.; Wurtz, R.H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 1995, 73, 2313–2333. [Google Scholar] [CrossRef] [PubMed]
- Munoz, D.P.; Waitzman, D.M.; Wurtz, R.H. Activity of neurons in monkey superior colliculus during interrupted saccades. J. Neurophysiol. 1996, 75, 2562–2580. [Google Scholar] [CrossRef] [PubMed]
- Everling, S.; Paré, M.; Dorris, M.C.; Munoz, D.P. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: Implications for control of fixation and saccade behavior. J. Neurophysiol. 1998, 79, 511–528. [Google Scholar] [CrossRef]
- Goossens, H.H.L.M.; Van Opstal, A.J. Blink-perturbed saccades in monkey. II. Superior colliculus activity. J. Neurophysiol. 2000, 83, 3430–3452. [Google Scholar] [CrossRef]
- Keller, E.L.; Gandhi, N.J.; Vijay Sekaran, S. Activity in deep intermediate layer collicular neurons during interrupted saccades. Exp. Brain Res. 2000, 130, 227–237. [Google Scholar] [CrossRef]
- Moschovakis, A.K. Are laws that govern behavior embedded in the structure of the CNS? The case of Hering’s law. Vision Res. 1995, 35, 3207–3216. [Google Scholar] [CrossRef]
- McDougal, D.H.; Gamlin, P.D. Autonomic Control of the Eye. Comprehens. Physiol. 2014, 5, 439–473. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, Y.; Zhang, H. Ocular autonomic nervous system: An update from anatomy to physiological functions. Vision 2022, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Moruzzi, G.; Magoun, H.W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1949, 1, 455–473. [Google Scholar] [CrossRef]
- de la Cruz, F.; Bär, K.J.; Schumann, A. Brainstem nuclei in autonomic control and arousal. In Encyclopedia of the Human Brain, 2nd ed.; Grafman, J.H., Ed.; Elsevier: New York, NY, USA, 2005; Volume 1, pp. 232–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goffart, L. Orienting Gaze Toward a Visual Target: Neurophysiological Synthesis with Epistemological Considerations. Vision 2025, 9, 6. https://doi.org/10.3390/vision9010006
Goffart L. Orienting Gaze Toward a Visual Target: Neurophysiological Synthesis with Epistemological Considerations. Vision. 2025; 9(1):6. https://doi.org/10.3390/vision9010006
Chicago/Turabian StyleGoffart, Laurent. 2025. "Orienting Gaze Toward a Visual Target: Neurophysiological Synthesis with Epistemological Considerations" Vision 9, no. 1: 6. https://doi.org/10.3390/vision9010006
APA StyleGoffart, L. (2025). Orienting Gaze Toward a Visual Target: Neurophysiological Synthesis with Epistemological Considerations. Vision, 9(1), 6. https://doi.org/10.3390/vision9010006