Syndromic Retinitis Pigmentosa: A Narrative Review
Abstract
:1. Introduction
2. Ciliopathies
2.1. Bardet–Biedl Syndrome (BBS, OMIM: 209900-619471)
2.2. Alström Syndrome (AS, OMIM: 203800)
2.3. Joubert Syndrome (JBTS, OMIM: 213300)
2.4. Senior–Løken Syndrome (SLS, OMIM: 266900)
2.5. Jeune Syndrome (OMIM: 208500)
2.6. Kearns–Sayre Disease (OMIM: 530000)
2.7. Usher Syndrome (OMIM: 276900)
3. Metabolic Diseases with Retinal Dystrophy
3.1. Lipid Abnormalities
3.1.1. Bassen–Kornzweig Syndrome (OMIM: 200100)
3.1.2. Hooft Disease (OMIM: 236300)
3.1.3. Familial Combined Hypolipidemia (OMIM: 144250)
3.2. Peroxisomal Diseases
3.2.1. Classic Refsum Disease (OMIM: 266500)
3.2.2. Zellweger Syndrome (OMIM: 214100)
3.2.3. Neonatal Adrenoleukodystrophy (NALD, OMIM: 601539)
3.2.4. Juvenile Adrenoleukodystrophy (ALD, OMIM: 300100)
3.2.5. Infantile Refsum Disease (IRD, OMIM: 266510)
3.2.6. Neuronal Ceroid Lipofuscinosis (OMIM: 256730)
- The infantile form (Santavouri–Haltia disease) presents with symptoms around 6 to 8 months of age [120].
- The late infantile form (Jansky–Bielschowsky disease) starts between 2 and 4 years of age. The first signs are ataxia and mental retardation, and the disease typically leads to death between 8 and 12 years of age [121].
- The juvenile form (Batten disease, Spielmeyer–Vogt disease) appears between 5 and 8 years of age, with progressive vision loss, seizures, and mental retardation. This is the most frequent form [122].
- The adult form (Kufs disease) begins before 30 to 40 years of age and is considered the milder form of the disease [123].
3.2.7. HARP Syndrome (OMIM: 234200)
3.3. Mucopolysaccharidoses (MPSs)
3.3.1. Hurler Syndrome (OMIM: 607014)
3.3.2. Hunter Syndrome (OMIM: 309900)
3.3.3. Sanfilippo Syndrome (OMIM: 252900)
3.4. Other Rare Metabolic Diseases with Retinal Involvement
3.4.1. Methylmalonic Aciduria with Homocystinuria (MMACHC, OMIM: 277400)
3.4.2. Cystinosis (OMIM: 219800)
4. Neurological Disorders with Retinal Dystrophy
4.1. Hereditary Ataxias
4.1.1. Friedreich Ataxia (OMIM: 229300)
4.1.2. Marie’s Ataxia (Olivopontocerebellar Atrophy, OMIM: 164400)
4.2. Other Neurological Diseases
4.2.1. Flynn–Aird Syndrome (OMIM: 136300)
4.2.2. Sjögren–Larson Syndrome (SLS, OMIM: 270200)
5. Mitochondrial Diseases
5.1. NARP Syndrome (OMIM: 551500)
5.2. MILS Disease (Maternally Inherited Leigh’s Syndrome, OMIM: 500017)
5.3. Myotonic Dystrophy (OMIM: 160900)
6. Dysmorphic Syndromes
6.1. Cohen Syndrome (OMIM: 216550)
6.2. Cockayne Syndrome (OMIM: 216400)
6.3. Rud’s Syndrome (OMIM: 308200)
6.4. Alport Syndrome (OMIM: 301050)
6.5. Alagille Syndrome (OMIM: 118450)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shivanna, M.; Anand, M.; Chakrabarti, S.; Khanna, H. Ocular Ciliopathies: Genetic and Mechanistic Insights into Developing Therapies. Curr. Med. Chem. 2019, 26, 3120–3131. [Google Scholar] [CrossRef] [PubMed]
- Bujakowska, K.M.; Liu, Q.; Pierce, E.A. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb. Perspect. Biol. 2017, 9, a028274. [Google Scholar] [CrossRef] [PubMed]
- Gerth-Kahlert, C.; Koller, S. Retinale Ziliopathien [Ciliopathies]. Klin. Monbl Augenheilkd. 2018, 235, 264–272. [Google Scholar] [CrossRef]
- Guardiola, G.; Ramos, F.; Izquierdo, N. Retinitis Pigmentosa and Polydactyly in a Patient with a Heterozygous Mutation on the BBS1 Gene. Int. Med. Case Rep. J. 2021, 14, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, E.; Delvallee, C.; Mary, L.; Stoetzel, C.; Geoffroy, V.; Marks-Delesalle, C.; Holder-Espinasse, M.; Ghoumid, J.; Dollfus, H.; Muller, J. Identification and Characterization of Known Biallelic Mutations in the IFT27 (BBS19) Gene in a Novel Family with Bardet-Biedl Syndrome. Front. Genet. 2019, 10, 21. [Google Scholar] [CrossRef]
- Melluso, A.; Secondulfo, F.; Capolongo, G.; Capasso, G.; Zacchia, M. Bardet-Biedl Syndrome: Current Perspectives and Clinical Outlook. Ther. Clin. Risk Manag. 2023, 19, 115–132. [Google Scholar] [CrossRef]
- Julia, L.; Brady, S.; Yanovski, J. An evaluation of setmelanotide injection for chronic weight management in adult and pediatric patients with obesity due to Bardet–Biedl syndrome. Expert. Opin. Pharmacother. 2023, 24, 667–674. [Google Scholar] [CrossRef]
- Nachury, M. 352-OR: Regulation of Melanocortin Receptor 4 (MC4R) Ciliary Trafficking. Diabetes 2023, 72, 352-OR. [Google Scholar] [CrossRef]
- Berbari, N.; Jacqueline, S.L.; Bishop, G.; Askwith, C.; Mykytyn, K. Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc. Natl. Acad. Sci. USA 2008, 105, 4242–4246. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lechtreck, K.F. The Bardet-Biedl syndrome protein complex is an adapter expanding the cargo range of intraflagellar transport trains for ciliary export. Proc. Natl. Acad. Sci. USA 2018, 115, E934–E943. [Google Scholar] [CrossRef] [PubMed]
- Argente, J.; Beales, P.; Clément, K.; Dollfus, H.; Forsythe, E.; Haqq, A.; Haws, R.; Martos-Moreno, G.; Mittleman, R.; Yanovski, J.; et al. ODP606 Long-term efficacy of setmelanotide in patients with Bardet-Biedl syndrome. J. Endocr. Soc. 2022, 6, A14. [Google Scholar] [CrossRef]
- Manara, E.; Paolacci, S.; D’Esposito, F.; Abeshi, A.; Ziccardi, L.; Falsini, B.; Colombo, L.; Iarossi, G.; Pilotta, A.; Boccone, L.; et al. Mutation profile of BBS genes in patients with Bardet-Biedl syndrome: An Italian study. Ital. J. Pediatr. 2019, 45, 72. [Google Scholar] [CrossRef]
- Putoux, A.; Attie-Bitach, T.; Martinovic, J.; Gubler, M.C. Phenotypic variability of Bardet-Biedl syndrome: Focusing on the kidney. Pediatr. Nephrol. 2012, 27, 7–15. [Google Scholar] [CrossRef]
- Forsythe, E.; Sparks, K.; Best, S.; Borrows, S.; Hoskins, B.; Sabir, A.; Barrett, T.; Williams, D.; Mohammed, S.; Goldsmith, D.; et al. Risk Factors for Severe Renal Disease in Bardet-Biedl Syndrome. J. Am. Soc. Nephrol. 2017, 28, 963–970. [Google Scholar] [CrossRef]
- Mujahid, S.; Hunt, K.F.; Cheah, Y.S.; Forsythe, E.; Hazlehurst, J.M.; Sparks, K.; Mohammed, S.; Tomlinson, J.W.; Amiel, S.A.; Carroll, P.V.; et al. The Endocrine and Metabolic Characteristics of a Large Bardet-Biedl Syndrome Clinic Population. J. Clin. Endocrinol. Metab. 2018, 103, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Long, Y.; Ren, J.; Wang, G.; Yin, X.; Li, S. Ocular Characteristics of Patients With Bardet-Biedl Syndrome Caused by Pathogenic BBS Gene Variation in a Chinese Cohort. Front. Cell Dev. Biol. 2021, 9, 635216. [Google Scholar] [CrossRef] [PubMed]
- Weihbrecht, K.; Goar, W.A.; Pak, T.; Garrison, J.E.; DeLuca, A.P.; Stone, E.M.; Scheetz, T.E.; Sheffield, V.C. Keeping an Eye on Bardet-Biedl Syndrome: A Comprehensive Review of the Role of Bardet-Biedl Syndrome Genes in the Eye. Med. Res. Arch. 2017, 5, 18. [Google Scholar]
- Denniston, A.K.; Beales, P.L.; Tomlins, P.J.; Good, P.; Langford, M.; Foggensteiner, L.; Williams, D.; Tsaloumas, M.D. Evaluation of visual function and needs in adult patients with bardet-biedl syndrome. Retina 2014, 34, 2282–2289. [Google Scholar] [CrossRef]
- Alstrom, C.H.; Hallgren, B.; Nilsson, L.B.; Asander, H. Retinal degeneration combined with obesity, diabetes mellitus and neurogenous deafness: A specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet-Biedl syndrome: A clinical, endocrinological and genetic examination based on a large pedigree. Acta Psychiatr. Neurol. Scand. Suppl. 1959, 129, 1–35. [Google Scholar]
- Marshall, J.D.; Maffei, P.; Collin, G.B.; Naggert, J.K. Alstrom syndrome: Genetics and clinical overview. Curr. Genom. 2011, 12, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.R.; Munonye, I.; Sanu, K.P.; Islam, N.; Gadaga, C. A review of Alstrom syndrome: A rare monogenic ciliopathy. Intractable Rare Dis. Res. 2021, 10, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Collin, G.B.; Marshall, J.D.; Ikeda, A.; So, W.V.; Russell-Eggitt, I.; Maffei, P.; Beck, S.; Boerkoel, C.F.; Sicolo, N.; Martin, M.; et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat. Genet. 2002, 31, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Vega, R.; Nelms, K.; Gekakis, N.; Goodnow, C.; McNamara, P.; Wu, H.; Hong, N.A.; Glynne, R. A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet. 2007, 3, e8. [Google Scholar] [CrossRef] [PubMed]
- Charles, S.J.; Moore, A.T.; Yates, J.R.; Green, T.; Clark, P. Alstrom’s syndrome: Further evidence of autosomal recessive inheritance and endocrinological dysfunction. J. Med. Genet. 1990, 27, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.B.; Jan, J.E.; Couch, R.M.; Wong, L.T.; Dimmick, J.E.; Rigg, J.M. Hepatic dysfunction in Alstrom disease. Am. J. Med. Genet. 1991, 40, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Quiros-Tejeira, R.E.; Vargas, J.; Ament, M.E. Early-onset liver disease complicated with acute liver failure in Alstrom syndrome. Am. J. Med. Genet. 2001, 101, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, T.; Kellom, E.R.; Sullivan, R.; Ver Hoeve, J.N.; Schmitt, M.A. Ocular evaluation and genetic test for an early Alstrom Syndrome diagnosis. Am. J. Ophthalmol. Case Rep. 2020, 20, 100873. [Google Scholar] [CrossRef] [PubMed]
- Joubert, M.; Eisenring, J.J.; Robb, J.P.; Andermann, F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 1969, 19, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Romani, M.; Micalizzi, A.; Valente, E.M. Joubert syndrome: Congenital cerebellar ataxia with the molar tooth. Lancet Neurol. 2013, 12, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, J.M.; Baraitser, M. Joubert syndrome: A review. Am. J. Med. Genet. 1992, 43, 726–731. [Google Scholar] [CrossRef]
- Valente, E.M.; Dallapiccola, B.; Bertini, E. Joubert syndrome and related disorders. Handb. Clin. Neurol. 2013, 113, 1879–1888. [Google Scholar] [CrossRef]
- Parisi, M.; Glass, I. Joubert Syndrome. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Ivarsson, S.A.; Bjerre, I.; Brun, A.; Ljungberg, O.; Maly, E.; Taylor, I. Joubert syndrome associated with Leber amaurosis and multicystic kidneys. Am. J. Med. Genet. 1993, 45, 542–547. [Google Scholar] [CrossRef]
- Parisi, M.A. Clinical and molecular features of Joubert syndrome and related disorders. Am. J. Med. Genet. C Semin. Med. Genet. 2009, 151C, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Parisi, M.A.; Doherty, D.; Eckert, M.L.; Shaw, D.W.; Ozyurek, H.; Aysun, S.; Giray, O.; Al Swaid, A.; Al Shahwan, S.; Dohayan, N.; et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J. Med. Genet. 2006, 43, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Kowal, T.J.; Ning, K.; Koo, E.B.; Wu, A.Y.; Mahajan, V.B.; Sun, Y. Review of Ocular Manifestations of Joubert Syndrome. Genes 2018, 9, 605. [Google Scholar] [CrossRef]
- Tusa, R.J.; Hove, M.T. Ocular and oculomotor signs in Joubert syndrome. J. Child Neurol. 1999, 14, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.O.; Oystreck, D.T.; Seidahmed, M.Z.; AlDrees, A.; Elmalik, S.A.; Alorainy, I.A.; Salih, M.A. Ophthalmic features of Joubert syndrome. Ophthalmology 2008, 115, 2286–2289. [Google Scholar] [CrossRef] [PubMed]
- Senior, B.; Friedmann, A.I.; Braudo, J.L. Juvenile familial nephropathy with tapetoretinal degeneration. A new oculorenal dystrophy. Am. J. Ophthalmol. 1961, 52, 625–633. [Google Scholar] [CrossRef]
- Caridi, G.; Murer, L.; Bellantuono, R.; Sorino, P.; Caringella, D.A.; Gusmano, R.; Ghiggeri, G.M. Renal-retinal syndromes: Association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am. J. Kidney Dis. 1998, 32, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Otto, E.; Hoefele, J.; Ruf, R.; Mueller, A.M.; Hiller, K.S.; Wolf, M.T.; Schuermann, M.J.; Becker, A.; Birkenhager, R.; Sudbrak, R.; et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am. J. Hum. Genet. 2002, 71, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Proesmans, W.; Van Damme, B.; Macken, J. Nephronophthisis and tapetoretinal degeneration associated with liver fibrosis. Clin. Nephrol. 1975, 3, 160–164. [Google Scholar] [PubMed]
- Schuman, J.S.; Lieberman, K.V.; Friedman, A.H.; Berger, M.; Schoeneman, M.J. Senior-Loken syndrome (familial renal-retinal dystrophy) and Coats’ disease. Am. J. Ophthalmol. 1985, 100, 822–827. [Google Scholar] [CrossRef]
- Wolf, M.T. Nephronophthisis and related syndromes. Curr. Opin. Pediatr. 2015, 27, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Warady, B.A.; Cibis, G.; Alon, U.; Blowey, D.; Hellerstein, S. Senior-Loken syndrome: Revisited. Pediatrics 1994, 94, 111–112. [Google Scholar] [CrossRef]
- Baujat, G.; Huber, C.; El Hokayem, J.; Caumes, R.; Do Ngoc Thanh, C.; David, A.; Delezoide, A.L.; Dieux-Coeslier, A.; Estournet, B.; Francannet, C.; et al. Asphyxiating thoracic dysplasia: Clinical and molecular review of 39 families. J. Med. Genet. 2013, 50, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Keppler-Noreuil, K.M.; Adam, M.P.; Welch, J.; Muilenburg, A.; Willing, M.C. Clinical insights gained from eight new cases and review of reported cases with Jeune syndrome (asphyxiating thoracic dystrophy). Am. J. Med. Genet. A 2011, 155A, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Ronquillo, C.C.; Bernstein, P.S.; Baehr, W. Senior-Loken syndrome: A syndromic form of retinal dystrophy associated with nephronophthisis. Vision. Res. 2012, 75, 88–97. [Google Scholar] [CrossRef]
- Wilson, D.J.; Weleber, R.G.; Beals, R.K. Retinal dystrophy in Jeune’s syndrome. Arch. Ophthalmol. 1987, 105, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Birtel, J.; von Landenberg, C.; Gliem, M.; Gliem, C.; Reimann, J.; Kunz, W.S.; Herrmann, P.; Betz, C.; Caswell, R.; Nesbitt, V.; et al. Mitochondrial Retinopathy. Ophthalmol. Retina 2022, 6, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.H.; Aycinena, A.R.P.; Sharma, T. Mitochondrial Disorder: Kearns-Sayre Syndrome. In Atlas of Inherited Retinal Diseases; Tsang, S.H., Sharma, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 161–162. [Google Scholar]
- Saldana-Martinez, A.; Munoz, M.L.; Perez-Ramirez, G.; Montiel-Sosa, J.F.; Montoya, J.; Emperador, S.; Ruiz-Pesini, E.; Cuevas-Covarrubias, S.; Lopez-Valdez, J.; Ramirez, R.G. Whole sequence of the mitochondrial DNA genome of Kearns Sayre Syndrome patients: Identification of deletions and variants. Gene 2019, 688, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Zeviani, M.; Moraes, C.T.; DiMauro, S.; Nakase, H.; Bonilla, E.; Schon, E.A.; Rowland, L.P. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 1998, 51, 1525-1525-a. [Google Scholar] [CrossRef]
- Kearns, T.P. External Ophthalmoplegia, Pigmentary Degeneration of the Retina, and Cardiomyopathy: A Newly Recognized Syndrome. Trans. Am. Ophthalmol. Soc. 1965, 63, 559–625. [Google Scholar] [PubMed]
- Kearns, T.P.; Sayre, G.P. Retinitis pigmentosa, external ophthalmophegia, and complete heart block: Unusual syndrome with histologic study in one of two cases. AMA Arch. Ophthalmol. 1958, 60, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, M. Cellular and Molecular Responses to Mitochondrial DNA Deletions in Kearns-Sayre Syndrome: Some Underlying Mechanisms. Mol. Neurobiol. 2024, 61, 5665–5679. [Google Scholar] [CrossRef]
- Wilichowski, E.K.G.; Abicht, A.; Mayr, H.; Horvath, R.; Sperl, W.; Gärtner, J.G.P. 188: Autosomal recessive Kearns-Sayre syndrome in a girl with altered mitochondrial DNA transcription caused by RRM2B gene defect. Neuromuscul. Disord. 2014, 24, 866. [Google Scholar] [CrossRef]
- Jager, B.V.; Fred, H.L.; Butler, R.B.; Carnes, W.H. Occurrence of retinal pigmentation, ophthalmoplegia, ataxia, deafness and heart block. Report of a case, with findings at autopsy. Am. J. Med. 1960, 29, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.N.; Barnett, D. Endocrine dysfunction in Kearns-Sayre syndrome. Clin. Endocrinol. 1992, 37, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Koerner, F.; Schlote, W. Chronic progressive external ophthalmoplegia: Association with retinal pigmentary changes and evidence in favor of ocular myopathy. Arch. Ophthalmol. 1972, 88, 155–166. [Google Scholar] [CrossRef]
- Delmaghani, S.; El-Amraoui, A. The genetic and phenotypic landscapes of Usher syndrome: From disease mechanisms to a new classification. Hum. Genet. 2022, 141, 709–735. [Google Scholar] [CrossRef]
- Petit, C. Usher syndrome: From genetics to pathogenesis. Annu. Rev. Genom. Hum. Genet. 2001, 2, 271–297. [Google Scholar] [CrossRef] [PubMed]
- Keats, B.J.; Corey, D.P. The usher syndromes. Am. J. Med. Genet. 1999, 89, 158–166. [Google Scholar] [CrossRef]
- Koenekoop, R.K.; Arriaga, M.A.; Trzupek, K.M.; Lentz, J.J. Usher Syndrome Type I. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Fuster-García, C.; García-Bohórquez, B.; Rodríguez-Muñoz, A.; Aller, E.; Jaijo, T.; Millán, J.M.; García-García, G. Usher Syndrome: Genetics of a Human Ciliopathy. Int. J. Mol. Sci. 2021, 22, 6723. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.J.; Lee, E.C.; Kimberling, W.J.; Daiger, S.P.; Pelias, M.Z.; Keats, B.J.; Jay, M.; Bird, A.; Reardon, W.; Guest, M.; et al. Localization of two genes for Usher syndrome type I to chromosome 11. Genomics 1992, 14, 995–1002. [Google Scholar] [CrossRef]
- Kaplan, J.; Gerber, S.; Bonneau, D.; Rozet, J.M.; Delrieu, O.; Briard, M.L.; Dollfus, H.; Ghazi, I.; Dufier, J.L.; Frezal, J.; et al. A gene for Usher syndrome type I (USH1A) maps to chromosome 14q. Genomics 1992, 14, 979–987. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Song, H.; Sokolov, M. Current understanding of usher syndrome type II. Front. Biosci. 2012, 17, 1165–1183. [Google Scholar] [CrossRef]
- Kimberling, W.J.; Weston, M.D.; Moller, C.; Davenport, S.L.; Shugart, Y.Y.; Priluck, I.A.; Martini, A.; Milani, M.; Smith, R.J. Localization of Usher syndrome type II to chromosome 1q. Genomics 1990, 7, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Kelly, F.; Jaijo, T.; Aller, E.; Avila-Fernandez, A.; Lopez-Molina, M.I.; Gimenez, A.; Garcia-Sandoval, B.; Millan, J.M.; Ayuso, C. Clinical aspects of Usher syndrome and the USH2A gene in a cohort of 433 patients. JAMA Ophthalmol. 2015, 133, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Reisser, C.F.; Kimberling, W.J.; Otterstedde, C.R. Hearing loss in Usher syndrome type II is nonprogressive. Ann. Otol. Rhinol. Laryngol. 2002, 111, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Sankila, E.M.; Pakarinen, L.; Kaariainen, H.; Aittomaki, K.; Karjalainen, S.; Sistonen, P.; de la Chapelle, A. Assignment of an Usher syndrome type III (USH3) gene to chromosome 3q. Hum. Mol. Genet. 1995, 4, 93–98. [Google Scholar] [CrossRef]
- Pakarinen, L.; Tuppurainen, K.; Laippala, P.; Mantyjarvi, M.; Puhakka, H. The ophthalmological course of Usher syndrome type III. Int. Ophthalmol. 1995, 19, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Lennie, P.; Van Hemel, S. (Eds.) Visual Impairments: Determining Eligibility for Social Security Benefits; The National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Bassen, F.A.; Kornzweig, A.L. Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood 1950, 5, 381–387. [Google Scholar] [CrossRef]
- Burnett, J.R.; Hooper, A.J.; Hegele, R.A. Abetalipoproteinemia; Updated 19 May 2022; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Pons, V.; Rolland, C.; Nauze, M.; Danjoux, M.; Gaibelet, G.; Durandy, A.; Sassolas, A.; Levy, E.; Terce, F.; Collet, X.; et al. A severe form of abetalipoproteinemia caused by new splicing mutations of microsomal triglyceride transfer protein (MTTP). Hum. Mutat. 2011, 32, 751–759. [Google Scholar] [CrossRef]
- Salt, H.B.; Wolff, O.H.; Lloyd, J.K.; Fosbrooke, A.S.; Cameron, A.H.; Hubble, D.V. On having no beta-lipoprotein. A syndrome comprising a-beta-lipoproteinaemia, acanthocytosis, and steatorrhoea. Lancet 1960, 2, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Kott, E.; Delpre, G.; Kadish, U.; Dziatelovsky, M.; Sandbank, U. Abetalipoproteinemia (Bassen-Kornzweig syndrome). Muscle involvement. Acta Neuropathol. 1977, 37, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Sobrevilla, L.A.; Goodman, M.L.; Kane, C.A. Demyelinating Central Nervous System Disease, Macular Atrophy and Acanthocytosis (Bassen-Kornzweig Syndrome). Am. J. Med. 1964, 37, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Dische, M.R.; Porro, R.S. The cardiac lesions in Bassen-Kornzweig syndrome. Report of a case, with autopsy findings. Am. J. Med. 1970, 49, 568–571. [Google Scholar] [CrossRef]
- Collins, J.C.; Scheinberg, I.H.; Giblin, D.R.; Sternlieb, I. Hepatic peroxisomal abnormalities in abetalipoproteinemia. Gastroenterology 1989, 97, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Duker, J.S.; Belmont, J.; Bosley, T.M. Angioid streaks associated with abetalipoproteinemia. Case report. Arch. Ophthalmol. 1987, 105, 1173–1174. [Google Scholar] [CrossRef] [PubMed]
- Cogan, D.G.; Rodrigues, M.; Chu, F.C.; Schaefer, E.J. Ocular abnormalities in abetalipoproteinemia. A clinicopathologic correlation. Ophthalmology 1984, 91, 991–998. [Google Scholar] [CrossRef]
- Hooft, C.; De Laey, P.; Herpol, J.; DeLoore, F.; Verbeeck, J. Familial hypolipidaemia and retarded development without steatorrhoea. Another inborn error of metabolism? Helvet Pediatr. Acta 1962, 17, 1–23. [Google Scholar]
- Di Costanzo, A.; Di Leo, E.; Noto, D.; Cefalu, A.B.; Minicocci, I.; Polito, L.; D’Erasmo, L.; Cantisani, V.; Spina, R.; Tarugi, P.; et al. Clinical and biochemical characteristics of individuals with low cholesterol syndromes: A comparison between familial hypobetalipoproteinemia and familial combined hypolipidemia. J. Clin. Lipidol. 2017, 11, 1234–1242. [Google Scholar] [CrossRef]
- De Francois, J.B. Tapeto-retinic degeneration associated with a hypolipemic syndrome. Acta Genet. Med. Gemellol. 1963, 12, 145–157. [Google Scholar]
- Hamel, C.P. Cone rod dystrophies. Orphanet J. Rare Dis. 2007, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.; Hardcastle, A.J.; Hunt, D.M.; Moore, A.T. Progressive cone and cone-rod dystrophies: Phenotypes and underlying molecular genetic basis. Surv. Ophthalmol. 2006, 51, 232–258. [Google Scholar] [CrossRef] [PubMed]
- Stitziel, N.O.; Khera, A.V.; Wang, X.; Bierhals, A.J.; Vourakis, A.C.; Sperry, A.E.; Natarajan, P.; Klarin, D.; Emdin, C.A.; Zekavat, S.M.; et al. ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Burnett, J.R.; Hooper, A.J.; Hegele, R.A. APOB-Related Familial Hypobetalipoproteinemia. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Musunuru, K.; Pirruccello, J.P.; Do, R.; Peloso, G.M.; Guiducci, C.; Sougnez, C.; Garimella, K.V.; Fisher, S.; Abreu, J.; Barry, A.J.; et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 2010, 363, 2220–2227. [Google Scholar] [CrossRef] [PubMed]
- Minicocci, I.; Montali, A.; Robciuc, M.R.; Quagliarini, F.; Censi, V.; Labbadia, G.; Gabiati, C.; Pigna, G.; Sepe, M.L.; Pannozzo, F.; et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: A clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 2012, 97, E1266–E1275. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, P.; Wanders, R. Peroxisomal disorders. Handb. Clin. Neurol. 2013, 113, 1593–1609. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, A.S. Peroxisomal disorders affecting phytanic acid alpha-oxidation: A review. Biochem. Soc. Trans. 2007, 35, 881–886. [Google Scholar] [CrossRef] [PubMed]
- De Munter, S.; Verheijden, S.; Régal, L.; Baes, M. Peroxisomal Disorders: A Review on Cerebellar Pathologies. Brain Pathol. 2015, 25, 663–678. [Google Scholar] [CrossRef]
- Refsum, S. Heredopathia atactica polyneuritiformis. A familial syndrome not hitherto described. A contribution to the clinical study of hereditary diseases of the nervous system. Acta Psych. Neur 1946, 38, 1–303. [Google Scholar]
- Waterham, H.R.; Wanders, R.J.A.; Leroy, B.P. Adult Refsum Disease. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Jansen, G.A.; Waterham, H.R.; Wanders, R.J. Molecular basis of Refsum disease: Sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum. Mutat. 2004, 23, 209–218. [Google Scholar] [CrossRef] [PubMed]
- van den Brink, D.M.; Brites, P.; Haasjes, J.; Wierzbicki, A.S.; Mitchell, J.; Lambert-Hamill, M.; de Belleroche, J.; Jansen, G.A.; Waterham, H.R.; Wanders, R.J. Identification of PEX7 as the second gene involved in Refsum disease. Am. J. Hum. Genet. 2003, 72, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.; Komen, J.C. Peroxisomes, Refsum’s disease and the alpha- and omega-oxidation of phytanic acid. Biochem. Soc. Trans. 2007, 35, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Wanders, R.J.; Jansen, G.A.; Skjeldal, O.H. Refsum disease, peroxisomes and phytanic acid oxidation: A review. J. Neuropathol. Exp. Neurol. 2001, 60, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.G.; Marks, R.; Dykes, P.J.; Reynolds, D. Epidermal abnormalities in Refsum’s disease. Br. J. Dermatol. 1977, 97, 401–406. [Google Scholar] [CrossRef]
- Claridge, K.G.; Gibberd, F.B.; Sidey, M.C. Refsum disease: The presentation and ophthalmic aspects of Refsum disease in a series of 23 patients. Eye 1992, 6, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Ruether, K.; Baldwin, E.; Casteels, M.; Feher, M.D.; Horn, M.; Kuranoff, S.; Leroy, B.P.; Wanders, R.J.; Wierzbicki, A.S. Adult Refsum disease: A form of tapetoretinal dystrophy accessible to therapy. Surv. Ophthalmol. 2010, 55, 531–538. [Google Scholar] [CrossRef]
- Steinberg, S.J.; Raymond, G.V.; Braverman, N.E. Zellweger Spectrum Disorder. In GeneReviews®; University of Washington: Seattle, WA, USA, 2003; pp. 1–15. [Google Scholar]
- Krause, C.; Rosewich, H.; Gartner, J. Rational diagnostic strategy for Zellweger syndrome spectrum patients. Eur. J. Hum. Genet. 2009, 17, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Kheir, A.E. Zellweger syndrome: A cause of neonatal hypotonia and seizures. Sudan. J. Paediatr. 2011, 11, 54–58. [Google Scholar] [PubMed]
- Lyons, C.J.; Castano, G.; McCormick, A.Q.; Applegarth, D. Leopard spot retinal pigmentation in infancy indicating a peroxisomal disorder. Br. J. Ophthalmol. 2004, 88, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Folz, S.J.; Trobe, J.D. The peroxisome and the eye. Surv. Ophthalmol. 1991, 35, 353–368. [Google Scholar] [CrossRef]
- Farrell, D.F. Neonatal adrenoleukodystrophy: A clinical, pathologic, and biochemical study. Pediatr. Neurol. 2012, 47, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.I.; Datta, N.S.; Dobyns, W.B.; Hajra, A.K.; Moser, A.B.; Noetzel, M.J.; Zackai, E.H.; Moser, H.W. Neonatal adrenoleukodystrophy: New cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am. J. Med. Genet. 1986, 23, 869–901. [Google Scholar] [CrossRef]
- Brown, F.R., 3rd; McAdams, A.J.; Cummins, J.W.; Konkol, R.; Singh, I.; Moser, A.B.; Moser, H.W. Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: Similarities in phenotype and accumulation of very long chain fatty acids. Johns Hopkins Med. J. 1982, 151, 344–351. [Google Scholar] [PubMed]
- Distel, B.; Erdmann, R.; Gould, S.J.; Blobel, G.; Crane, D.I.; Cregg, J.M.; Dodt, G.; Fujiki, Y.; Goodman, J.M.; Just, W.W.; et al. A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 1996, 135, 1–3. [Google Scholar] [CrossRef]
- Turk, B.R.; Theda, C.; Fatemi, A.; Moser, A.B. X-linked adrenoleukodystrophy: Pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int. J. Dev. Neurosci. 2020, 80, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Kohlschütter, A.; Santer, R.; Lukacs, Z.; Altenburg, C.; Kemper, M.J.; Rüther, K. A child with night blindness: Preventing serious symptoms of Refsum disease. J. Child Neurol. 2012, 27, 654–656. [Google Scholar] [CrossRef]
- Choksi, V.; Hoeffner, E.; Karaarslan, E.; Yalcinkaya, C.; Cakirer, S. Infantile refsum disease: Case report. AJNR Am. J. Neuroradiol. 2003, 24, 2082–2084. [Google Scholar] [PubMed]
- Rakheja, D.; Narayan, S.B.; Bennett, M.J. Juvenile neuronal ceroid-lipofuscinosis (Batten disease): A brief review and update. Curr. Mol. Med. 2007, 7, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Simonati, A.; Williams, R.E. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues an Overview. Front. Neurol. 2022, 13, 811686. [Google Scholar] [CrossRef] [PubMed]
- Santavuori, P.; Haltia, M.; Rapola, J. Infantile type of so-called neuronal ceroid-lipofuscinosis. Dev. Med. Child Neurol. 1974, 16, 644–653. [Google Scholar] [CrossRef]
- Orlin, A.; Sondhi, D.; Witmer, M.T.; Wessel, M.M.; Mezey, J.G.; Kaminsky, S.M.; Hackett, N.R.; Yohay, K.; Kosofsky, B.; Souweidane, M.M.; et al. Spectrum of ocular manifestations in CLN2-associated batten (Jansky-Bielschowsky) disease correlate with advancing age and deteriorating neurological function. PLoS ONE 2013, 8, e73128. [Google Scholar] [CrossRef] [PubMed]
- Batten, F.E.; Mayou, M.S. Family Cerebral Degeneration with Macular Changes. Proc. R. Soc. Med. 1915, 8, 70–90. [Google Scholar] [CrossRef] [PubMed]
- Constantinidis, J.; Wisniewski, K.E.; Wisniewski, T.M. The adult and a new late adult forms of neuronal ceroid lipofuscinosis. Acta Neuropathol. 1992, 83, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, J.R. Juvenile neuronal ceroid lipofuscinosis (Batten disease): Current insights. Degener. Neurol. Neuromuscul. Dis. 2016, 6, 73–83. [Google Scholar] [CrossRef]
- Bozorg, S.; Ramirez-Montealegre, D.; Chung, M.; Pearce, D.A. Juvenile neuronal ceroid lipofuscinosis (JNCL) and the eye. Surv. Ophthalmol. 2009, 54, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Westaway, S.K.; Levinson, B.; Johnson, M.A.; Gitschier, J.; Hayflick, S.J. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat. Genet. 2001, 28, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Hartig, M.B.; Hortnagel, K.; Garavaglia, B.; Zorzi, G.; Kmiec, T.; Klopstock, T.; Rostasy, K.; Svetel, M.; Kostic, V.S.; Schuelke, M.; et al. Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann. Neurol. 2006, 59, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.; Hayflick, S.J. Neurodegeneration with brain iron accumulation. Folia Neuropathol. 2005, 43, 286–296. [Google Scholar] [PubMed]
- Hayflick, S.J. Unraveling the Hallervorden-Spatz syndrome: Pantothenate kinase-associated neurodegeneration is the name. Curr. Opin. Pediatr. 2003, 15, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Cordoba, M.; Villanueva-Paz, M.; Villalon-Garcia, I.; Povea-Cabello, S.; Suarez-Rivero, J.M.; Talaveron-Rey, M.; Abril-Jaramillo, J.; Vintimilla-Tosi, A.B.; Sanchez-Alcazar, J.A. Precision medicine in pantothenate kinase-associated neurodegeneration. Neural Regen. Res. 2019, 14, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, T.; Luo, R. Clinical characteristics and molecular pathogenesis of pantothenate kinase-associated neurodegenerative disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2019, 36, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.J.; Patterson, M.C.; Papadopoulos, N.M.; Brady, R.O.; Pentchev, P.G.; Barton, N.W. Hypoprebetalipoproteinemia acanthocytosis retinitis pigmentosa and pallidal degeneration (HARP syndrome). Neurology 1992, 42, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Ching, K.H.; Westaway, S.K.; Gitschier, J.; Higgins, J.J.; Hayflick, S.J. HARP syndrome is allelic with pantothenate kinase-associated neurodegeneration. Neurology 2002, 58, 1673–1674. [Google Scholar] [CrossRef] [PubMed]
- Voges, L.; Kupsch, A. Renaming of Hallervorden-Spatz disease: The second man behind the name of the disease. J. Neural. Transm. 2021, 128, 1635–1640. [Google Scholar] [CrossRef]
- Neumann, M.; Adler, S.; Schlüter, O.; Kremmer, E.; Benecke, R.; Kretzschmar, H.A. Alpha-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol. 2000, 100, 568–574. [Google Scholar] [CrossRef]
- Hogarth, P. Neurodegeneration with brain iron accumulation: Diagnosis and management. J. Mov. Disord. 2015, 8, 1–13. [Google Scholar] [CrossRef]
- Jankovic, J.; Kirkpatrick, J.B.; Blomquist, K.A.; Langlais, P.J.; Bird, E.D. Late-onset Hallervorden-Spatz disease presenting as familial parkinsonism. Neurology 1985, 35, 227–234. [Google Scholar] [CrossRef]
- Grimes, D.A.; Lang, A.E.; Bergeron, C. Late adult onset chorea with typical pathology of Hallervorden-Spatz syndrome. J. Neurol. Neurosurg. Psychiatry 2000, 69, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Luckenbach, M.W.; Green, W.R.; Miller, N.R.; Moser, H.W.; Clark, A.W.; Tennekoon, G. Ocular clinicopathologic correlation of Hallervorden-Spatz syndrome with acanthocytosis and pigmentary retinopathy. Am. J. Ophthalmol. 1983, 95, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Casteels, I.; Spileers, W.; Swinnen, T.; Demaerel, P.; Silberstein, J.; Casaer, P.; Missotten, L. Optic atrophy as the presenting sign in Hallervorden-Spatz syndrome. Neuropediatrics 1994, 25, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Goyal, R.B.; Priyadarshini, K.; Kashyap, S.; Sharma, M.; Sinha, R.; Sharma, N. Mucopolysaccharidosis: A broad review. Indian. J. Ophthalmol. 2022, 70, 2249–2261. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, J.L.; Biswas, S.; Wraith, E.; Lloyd, I.C. Mucopolysaccharidoses and the eye. Surv. Ophthalmol. 2006, 51, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Ponzin, D.; Ashworth, J.L.; Fahnehjelm, K.T.; Summers, C.G.; Harmatz, P.R.; Scarpa, M. Diagnosis and management of ophthalmological features in patients with mucopolysaccharidosis. Br. J. Ophthalmol. 2011, 95, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Del Longo, A.; Piozzi, E.; Schweizer, F. Ocular features in mucopolysaccharidosis: Diagnosis and treatment. Ital. J. Pediatr. 2018, 44, 125. [Google Scholar] [CrossRef]
- Ganesh, A.; Bruwer, Z.; Al-Thihli, K. An update on ocular involvement in mucopolysaccharidoses. Curr. Opin. Ophthalmol. 2013, 24, 379–388. [Google Scholar] [CrossRef]
- Tomatsu, S.; Pitz, S.; Hampel, U. Ophthalmological Findings in Mucopolysaccharidoses. J. Clin. Med. 2019, 8, 1467. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.A.; Giugliani, R.; Guffon, N.; Jones, S.A.; Keenan, H.A.; Munoz-Rojas, M.V.; Okuyama, T.; Viskochil, D.; Whitley, C.B.; Wijburg, F.A.; et al. Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): Insights from the International MPS I Registry. Clin. Genet. 2019, 96, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Vijay, S.; Wraith, J.E. Clinical presentation and follow-up of patients with the attenuated phenotype of mucopolysaccharidosis type I. Acta Paediatr. 2005, 94, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C. A Rare Disease in Two Brothers. Proc. R. Soc. Med. 1917, 10, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Hampe, C.S.; Yund, B.D.; Orchard, P.J.; Lund, T.C.; Wesley, J.; McIvor, R.S. Differences in MPS I and MPS II Disease Manifestations. Int. J. Mol. Sci. 2021, 22, 7888. [Google Scholar] [CrossRef]
- Martin, R.; Beck, M.; Eng, C.; Giugliani, R.; Harmatz, P.; Muñoz, V.; Muenzer, J. Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome). Pediatrics 2008, 121, e377–e386. [Google Scholar] [CrossRef] [PubMed]
- Muschol, N.; Giugliani, R.; Jones, S.A.; Muenzer, J.; Smith, N.J.C.; Whitley, C.B.; Donnell, M.; Drake, E.; Elvidge, K.; Melton, L.; et al. Sanfilippo syndrome: Consensus guidelines for clinical care. Orphanet J. Rare Dis. 2022, 17, 391. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, J.; Kerr, N.C.; Byrd, K.W.; Ward, J.C.; Iannaccone, A. Characterization of a Case of Pigmentary Retinopathy in Sanfilippo Syndrome Type IIIA Associated with Compound Heterozygous Mutations in the SGSH Gene. Ophthalmic Genet. 2016, 37, 217–227. [Google Scholar] [CrossRef]
- Almasi, T.; Guey, L.T.; Lukacs, C.; Csetneki, K.; Voko, Z.; Zelei, T. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet J. Rare Dis. 2019, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Manoli, I.; Sloan, J.L.; Venditti, C.P. Isolated Methylmalonic Acidemia. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Forny, P.; Horster, F.; Ballhausen, D.; Chakrapani, A.; Chapman, K.A.; Dionisi-Vici, C.; Dixon, M.; Grunert, S.C.; Grunewald, S.; Haliloglu, G.; et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J. Inherit. Metab. Dis. 2021, 44, 566–592. [Google Scholar] [CrossRef] [PubMed]
- Horster, F.; Baumgartner, M.R.; Viardot, C.; Suormala, T.; Burgard, P.; Fowler, B.; Hoffmann, G.F.; Garbade, S.F.; Kolker, S.; Baumgartner, E.R. Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr. Res. 2007, 62, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Gizicki, R.; Robert, M.C.; Gomez-Lopez, L.; Orquin, J.; Decarie, J.C.; Mitchell, G.A.; Roy, M.S.; Ospina, L.H. Long-term visual outcome of methylmalonic aciduria and homocystinuria, cobalamin C type. Ophthalmology 2014, 121, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Karr, D.; Reznick, L.; Pennesi, M. Presentation and Progression of the Ocular Manifestations of Methylmalonic Acidemia in Children. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1332. [Google Scholar]
- Anikster, Y.; Shotelersuk, V.; Gahl, W.A. CTNS mutations in patients with cystinosis. Hum. Mutat. 1999, 14, 454–458. [Google Scholar] [CrossRef]
- Town, M.; Jean, G.; Cherqui, S.; Attard, M.; Forestier, L.; Whitmore, S.A.; Callen, D.F.; Gribouval, O.; Broyer, M.; Bates, G.P.; et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat. Genet. 1998, 18, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Kleta, R.; Gahl, W.A. Cystinosis: Antibodies and healthy bodies. J. Am. Soc. Nephrol. 2002, 13, 2189–2191. [Google Scholar] [CrossRef] [PubMed]
- Kalatzis, V.; Antignac, C. New aspects of the pathogenesis of cystinosis. Pediatr. Nephrol. 2003, 18, 207–215. [Google Scholar] [CrossRef]
- Elmonem, M.A.; Veys, K.R.; Soliman, N.A.; van Dyck, M.; van den Heuvel, L.P.; Levtchenko, E. Cystinosis: A review. Orphanet J. Rare Dis. 2016, 11, 47. [Google Scholar] [CrossRef]
- Tsilou, E.; Zhou, M.; Gahl, W.; Sieving, P.C.; Chan, C.C. Ophthalmic manifestations and histopathology of infantile nephropathic cystinosis: Report of a case and review of the literature. Surv. Ophthalmol. 2007, 52, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Kozak, I.; Arevalo, J.F.; Shoughy, S.S. Intraretinal Crystals in Nephopathic Cystinosis and Fanconi Syndrome. JAMA Ophthalmol. 2017, 135, e165169. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, V.; Montermini, L.; Lutz, Y.; Cova, L.; Hindelang, C.; Jiralerspong, S.; Trottier, Y.; Kish, S.J.; Faucheux, B.; Trouillas, P.; et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 1997, 6, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Delatycki, M.B.; Bidichandani, S.I. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol. Dis. 2019, 132, 104606. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Giunti, P. Friedreich’s ataxia: Clinical features, pathogenesis and management. Br. Med. Bull. 2017, 124, 19–30. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Farmer, J.; Perlman, S.; Delatycki, M.; Wilmot, G.; Matthews, K.; Yoon, G.; Hoyle, C.; Subramony, S.H.; Zesiewicz, T.; et al. Impact of diabetes in the Friedreich ataxia clinical outcome measures study. Ann. Clin. Transl. Neurol. 2017, 4, 622–631. [Google Scholar] [CrossRef]
- Hanson, E.; Sheldon, M.; Pacheco, B.; Alkubeysi, M.; Raizada, V. Heart disease in Friedreich’s ataxia. World J. Cardiol. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Fortuna, F.; Barboni, P.; Liguori, R.; Valentino, M.L.; Savini, G.; Gellera, C.; Mariotti, C.; Rizzo, G.; Tonon, C.; Manners, D.; et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009, 132, 116–123. [Google Scholar] [CrossRef]
- Carelli, V.; La Morgia, C.; Valentino, M.L.; Barboni, P.; Ross-Cisneros, F.N.; Sadun, A.A. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim. Biophys. Acta 2009, 1787, 518–528. [Google Scholar] [CrossRef]
- Rojas, P.; Ramirez, A.I.; Hoz, R.; Cadena, M.; Ferreras, A.; Monsalve, B.; Salobrar-Garcia, E.; Munoz-Blanco, J.L.; Urcelay-Segura, J.L.; Salazar, J.J.; et al. Ocular Involvement in Friedreich Ataxia Patients and its Relationship with Neurological Disability, a Follow-up Study. Diagnostics 2020, 10, 75. [Google Scholar] [CrossRef]
- Noval, S.; Contreras, I.; Sanz-Gallego, I.; Manrique, R.K.; Arpa, J. Ophthalmic features of Friedreich ataxia. Eye 2012, 26, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Lambie, C.G.; Latham, O.; McDonald, G.L. Olivo-ponto-cerebellar atrophy (Maries’s ataxia). Med. J. Aust. 1947, 2, 626–632. [Google Scholar] [CrossRef]
- Whaley, N.; Fujioka, S.; Wszolek, Z.K. Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics. Orphanet J. Rare Dis. 2011, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Pulst, S.M. Spinocerebellar Ataxia Type 2. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1998. [Google Scholar]
- Fujioka, S.; Sundal, C.; Wszolek, Z.K. Autosomal dominant cerebellar ataxia type III: A review of the phenotypic and genotypic characteristics. Orphanet J. Rare Dis. 2013, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Brusse, E.; Maat-Kievit, J.A.; van Swieten, J.C. Diagnosis and management of early- and late-onset cerebellar ataxia. Clin. Genet. 2007, 71, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Lebre, A.S.; Brice, A. Spinocerebellar ataxia 7 (SCA 7). Cytogenet. Genome Res. 2003, 100, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Jampel, R.S.; Okazaki, H.; Bernstein, H. Ophthalmoplegia and Retinal Degeneration Associated with Spinocerebellar Ataxia. Arch. Ophthalmol. 1961, 66, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Ashizawa, T.; Figueroa, K.P.; Perlman, S.L.; Gomez, C.M.; Wilmot, G.R.; Schmahmann, J.D.; Ying, S.H.; Zesiewicz, T.A.; Paulson, H.L.; Shakkottai, V.G.; et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J. Rare Dis. 2013, 8, 177. [Google Scholar] [CrossRef]
- Luis, L.; Costa, J.; Munoz, E.; de Carvalho, M.; Carmona, S.; Schneider, E.; Gordon, C.R.; Valls-Sole, J. Vestibulo-ocular reflex dynamics with head-impulses discriminates spinocerebellar ataxias types 1, 2 and 3 and Friedreich ataxia. J. Vestib. Res. 2016, 26, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Maschke, M.; Oehlert, G.; Xie, T.D.; Perlman, S.; Subramony, S.H.; Kumar, N.; Ptacek, L.J.; Gomez, C.M. Clinical feature profile of spinocerebellar ataxia type 1-8 predicts genetically defined subtypes. Mov. Disord. 2005, 20, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, J.S.; Youn, J.; Seo, D.W.; Jeong, Y.; Kang, J.H.; Park, J.H.; Cho, J.W. Ocular motor characteristics of different subtypes of spinocerebellar ataxia: Distinguishing features. Mov. Disord. 2013, 28, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Flynn, P.; Aird, R.B. A neuroectodermal syndrome of dominant inheritance. J. Neurol. Sci. 1965, 2, 161–182. [Google Scholar] [CrossRef]
- Laurenzi, V.D.; Rogers, G.R.; Hamrock, D.J.; Marekov, L.N.; Steinert, P.M.; Compton, J.G.; Markova, N.; Rizzo, W.B. Sjogren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat. Genet. 1996, 12, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, W.B. Genetics and prospective therapeutic targets for Sjogren-Larsson Syndrome. Expert. Opin. Orphan Drugs 2016, 4, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, W.B.; Carney, G. Sjogren-Larsson syndrome: Diversity of mutations and polymorphisms in the fatty aldehyde dehydrogenase gene (ALDH3A2). Hum. Mutat. 2005, 26, 1–10. [Google Scholar] [CrossRef]
- Sjogren, T. Oligophrenia combined with congenital ichthyosiform erythrodermia, spastic syndrome and macular retinal degeneration; a clinical and genetic study. Acta Genet. Stat. Med. 1956, 6, 80–91. [Google Scholar]
- Fuijkschot, J.; Cruysberg, J.R.; Willemsen, M.A.; Keunen, J.E.; Theelen, T. Subclinical changes in the juvenile crystalline macular dystrophy in Sjogren-Larsson syndrome detected by optical coherence tomography. Ophthalmology 2008, 115, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, M.A.; Cruysberg, J.R.; Rotteveel, J.J.; Aandekerk, A.L.; Van Domburg, P.H.; Deutman, A.F. Juvenile macular dystrophy associated with deficient activity of fatty aldehyde dehydrogenase in Sjogren-Larsson syndrome. Am. J. Ophthalmol. 2000, 130, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Mordel, P.; Schaeffer, S.; Dupas, Q.; Laville, M.A.; Gérard, M.; Chapon, F.; Allouche, S. A 2 bp deletion in the mitochondrial ATP 6 gene responsible for the Nautosomal recessiveP (neuropathy ataxia and retinitis pigmentosa) syndrome. Biochem. Biophys. Res. Commun. 2017, 494, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.G.; Abicht, A.; Häusler, M.; Kleinle, S.; Wiesmann, M.; Schulz, J.B.; Horvath, R.; Weis, J. Novel genetic and neuropathological insights in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (Nautosomal recessiveP). Muscle Nerve 2016, 54, 328–333. [Google Scholar] [CrossRef]
- Juaristi, L.; Irigoyen, C.; Quiroga, J. Neuropathy, Ataxia, and Retinitis Pigmentosa Syndrome: A multidisciplinary diagnosis. Retin. Cases Brief. Rep. 2018, 15, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Neuropathy, Ataxia, and Retinitis Pigmentosa Syndrome. J. Clin. Neuromuscul. Dis. 2023, 24, 140–146. [Google Scholar] [CrossRef]
- Rawle, M.J.; Larner, A.J. Nautosomal recessiveP Syndrome: A 20-Year Follow-Up. Case Rep. Neurol. 2013, 5, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Chowers, I.; Lerman-Sagie, T.; Elpeleg, O.N.; Shaag, A.; Merin, S. Cone and rod dysfunction in the Nautosomal recessiveP Syndrome. Br. J. Ophthalmol. 1999, 83, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Debray, F.G.; Lambert, M.; Lortie, A.; Vanasse, M.; Mitchell, G.A. Long-term outcome of Leigh syndrome caused by the NARP-T8993C mtDNA mutation. Am. J. Med. Genet. A 2007, 143A, 2046–2051. [Google Scholar] [CrossRef]
- Rahman, S.; Blok, R.B.; Dahl, H.H.; Danks, D.M.; Kirby, D.M.; Chow, C.W.; Christodoulou, J.; Thorburn, D.R. Leigh syndrome: Clinical features and biochemical and DNA abnormalities. Ann. Neurol. 1996, 39, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Makino, M.; Horai, S.; Goto, Y.; Nonaka, I. Mitochondrial DNA mutations in Leigh syndrome and their phylogenetic implications. J. Hum. Genet. 2000, 45, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Lake, N.J.; Compton, A.G.; Rahman, S.; Thorburn, D.R. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann. Neurol. 2016, 79, 190–203. [Google Scholar] [CrossRef]
- Ciafaloni, E.; Santorelli, F.M.; Shanske, S.; Deonna, T.; Roulel, E.; Janzer, C.; Pescia, G.; DiMauro, S. Maternally inherited Leigh syndrome. J. Pediatr. 1993, 122, 419–422. [Google Scholar] [CrossRef]
- Rojo, A.; Campos, Y.; Sanchez, J.M.; Bonaventura, I.; Aguilar, M.; Garcia, A.; Gonzalez, L.; Rey, M.J.; Arenas, J.; Olive, M.; et al. NARP-MILS syndrome caused by 8993 T>G mitochondrial DNA mutation: A clinical, genetic and neuropathological study. Acta Neuropathol. 2006, 111, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Udd, B.; Krahe, R. The myotonic dystrophies: Molecular, clinical, and therapeutic challenges. Review. Lancet Neurol. 2012, 11, 891–905. [Google Scholar] [CrossRef] [PubMed]
- Bird, T.D. Myotonic Dystrophy Type 1. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1999. [Google Scholar]
- Ho, G.; Carey, K.A.; Cardamone, M.; Farrar, M.A. Myotonic dystrophy type 1: Clinical manifestations in children and adolescents. Arch. Dis. Child. 2019, 104, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, M.E.; Prevost, C.; Lescault, A.; Laberge, C.; Puymirat, J.; Mathieu, J. Clinical characteristics of myotonic dystrophy type 1 patients with small CTG expansions. Neurology 2006, 66, 1248–1250. [Google Scholar] [CrossRef]
- Darras, B.T.; Volpe, J.J. Muscle involvement and restricted disorders. In Volpe’s Neurology of the Newborn; Volpe, J.J., Inder, T.E., Darras, B.T., Eds.; Elsevier: Philadelphia, PA, USA, 2018; p. 922. [Google Scholar]
- Vasilijevic, J.; Peric, S.; Basta, I.; Kovacevic, I.; Maric, G.; Avram, N.; Gunjic, I.; Bozic, M. Retinal vascular abnormalities in myotonic dystrophy assessed by optical coherence tomography angiography-Cross-sectional study. Eur. J. Ophthalmol. 2024, 35, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Betten, M.G.; Bilchik, R.C.; Smith, M.E. Pigmentary retinopathy of myotonic dystrophy. Am. J. Ophthalmol. 1972, 72, 720–723. [Google Scholar] [CrossRef]
- Ouederni, M.; Halouani, S.; Sassi, H.; Maamouri, R.; Cheour, M. Pattern macular dystrophy associated with Steinert myotonic dystrophy: A case report. J. Fr. Ophtalmol. 2021, 44, e579–e581. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard-Biosca, E.; Berges-Marti, M.; Azarfane, B.; Cilveti, E.; Distefano, L.; García-Arumí, J. Fundus flavimaculatus-like in myotonic dystrophy: A case report. BMC Ophthalmol. 2021, 21, 240. [Google Scholar] [CrossRef] [PubMed]
- Voermans, N.C.; Erasmus, C.E.; Ockeloen, C.W.; Van Engelen, B.G.; Eggink, C.A. Primary Cataract as a Key to Recognition of Myotonic Dystrophy Type 1. Eur. J. Ophthalmol. 2015, 25, e46–e49. [Google Scholar] [CrossRef] [PubMed]
- Kersten, H.M.; Roxburgh, R.H.; Child, N.; Polkinghorne, P.J.; Frampton, C. Epiretinal membrane: A treatable cause of visual disability in myotonic dystrophy type 1. J. Neurol. 2014, 261, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Udd, B.; Meola, G.; Krahe, R.; Thornton, C.; Ranum, L.P.; Bassez, G.; Kress, W.; Schoser, B.; Moxley, R. 140th ENMC International Workshop: Myotonic Dystrophy DM2/PROMM and other myotonic dystrophies with guidelines on management. Neuromuscul. Disord. 2006, 16, 403–413. [Google Scholar] [CrossRef]
- Day, J.W.; Ricker, K.; Jacobsen, J.F.; Rasmussen, L.J.; Dick, K.A.; Kress, W.; Schneider, C.; Koch, M.C.; Beilman, G.J.; Dalton, J.C.; et al. Myotonic dystrophy type 2: Molecular, diagnostic and clinical spectrum. Neurology 2003, 60, 657–664. [Google Scholar] [CrossRef]
- Kersten, H.M.; Danesh-Meyer, H.V.; Roxburgh, R.H. Ophthalmic findings in myotonic dystrophy type 2: A case series. J. Neurol. 2016, 263, 2552–2554. [Google Scholar] [CrossRef] [PubMed]
- Kolehmainen, J.; Black, G.C.; Saarinen, A.; Chandler, K.; Clayton-Smith, J.; Träskelin, A.L.; Perveen, R.; Kivitie-Kallio, S.; Norio, R.; Warburg, M.; et al. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am. J. Hum. Genet. 2003, 72, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Kivitie-Kallio, S.; Norio, R. Cohen syndrome: Essential features, natural history, and heterogeneity. Am. J. Med. Genet. 2001, 102, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Falk, M.J.; Wensel, C.; Traboulsi, E.I. Cohen Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2006. [Google Scholar]
- North, C.; Patton, M.A.; Baraitser, M.; Winter, R.M. The clinical features of the Cohen syndrome: Further case reports. J. Med. Genet. 1985, 22, 131–134. [Google Scholar] [CrossRef]
- Chandler, K.E.; Biswas, S.; Lloyd, I.C.; Parry, N.; Clayton-Smith, J.; Black, G.C.M. The ophthalmic findings in Cochen Syndrome. Br. J. Ophthalmol. 2002, 86, 1395–1398. [Google Scholar] [CrossRef] [PubMed]
- Nance, M.A.; Berry, S.A. Cockayne syndrome: Review of 140 cases. Am. J. Med. Genet. 1992, 42, 68–84. [Google Scholar] [CrossRef]
- Laugel, V. Cockayne Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- James, J.; Jose, J. Cockayne syndrome with intracranial calcification, hypomyelination, and cerebral atrophy. J. Neurosci. Rural. Pract. 2017, 8, 120–121. [Google Scholar] [CrossRef]
- Stowe, R.C.; Jimenez-Gomez, A.; Balasa, A.; Clark, G.D. Cockayne Syndrome Complicated by Moyamoya Vasculopathy and Stroke. Pediatr. Neurol. 2018, 86, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Natale, V.; Raquer, H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J. Rare Dis. 2017, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Jen, M.; Nallasamy, S. Ocular manifestations of genetic skin disorders. Clin. Dermatol. 2016, 34, 242–275. [Google Scholar] [CrossRef]
- Larbrisseau, A.; Carpenter, S. RUD syndrome: Congenital ichthyosis, hypogonadism, retinitis pigmentosa, mental retardation and hypertrophic polyneuropathy. Neuropediatrics 1982, 3, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Bird, T.D.; Fong, C.T.; Mefford, H.C. Hereditary Ataxia Overview. In GeneReviews®; Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J.H., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Kaufman, L.M. A syndrome of retinitis pigmentosa, congenital ichthyosis, hypergonadotropic hypogonadism, small stature, mental retardation, cranial dysmorphism, and abnormal electroencephalogram. Ophthalmic Genet. 1998, 19, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Kashtan, C.E. Alport Syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Eds.; University of Washington: Seattle, WA, USA, 2019. [Google Scholar]
- Nozu, K.; Nakanishi, K.; Abe, Y.; Udagawa, T.; Okada, S.; Okamoto, T.; Kaito, H.; Kanemoto, K.; Kobayashi, A.; Tanaka, E.; et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin. Exp. Nephrol. 2019, 23, 158–168. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J. Renal, auricular, and ocular outcomes of Alport syndrome and their current management. Pediatr. Nephrol. 2018, 33, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Savige, J.; Sheth, S.; Leys, A.; Nicholson, A.; Mack, H.G.; Colville, D. Ocular features in Alport syndrome: Pathogenesis and clinical significance. Clin. J. Am. Soc. Nephrol. 2015, 10, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Colville, D.; Wang, Y.Y.; Tan, R.; Savige, J. The retinal “lozenge” or “dull macular reflex” in Alport syndrome may be associated with a severe retinopathy and early-onset renal failure. Br. J. Ophthalmol. 2009, 93, 383–386. [Google Scholar] [CrossRef]
- Alagille, D.; Odièvre, M.; Gautier, M.; Dommergues, J.P. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J. Pediatr. 1975, 86, 63–71. [Google Scholar] [CrossRef]
- Krantz, I.D.; Piccoli, D.A.; Spinner, N.B. Alagille syndrome. J. Med. Genet. 1997, 34, 152–157. [Google Scholar] [CrossRef]
- Jyoub, M.D.; Kamath, B.M. Alagille Syndrome: Current Understanding of Pathogenesis, and Challenges in Diagnosis and Management. Clin. Liver Dis. 2022, 26, 355–370. [Google Scholar] [CrossRef]
- Mitchell, E.; Gilbert, M.; Loomes, K.M. Alagille Syndrome. Clin. Liver Dis. 2018, 22, 625–641. [Google Scholar] [CrossRef]
- Johnson, B. Ocular pathologic features of arteriohepatic dysplasia (Allagille syndrome). Am. J. Ophthalmol. 1990, 110, 504. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janáky, M.; Braunitzer, G. Syndromic Retinitis Pigmentosa: A Narrative Review. Vision 2025, 9, 7. https://doi.org/10.3390/vision9010007
Janáky M, Braunitzer G. Syndromic Retinitis Pigmentosa: A Narrative Review. Vision. 2025; 9(1):7. https://doi.org/10.3390/vision9010007
Chicago/Turabian StyleJanáky, Márta, and Gábor Braunitzer. 2025. "Syndromic Retinitis Pigmentosa: A Narrative Review" Vision 9, no. 1: 7. https://doi.org/10.3390/vision9010007
APA StyleJanáky, M., & Braunitzer, G. (2025). Syndromic Retinitis Pigmentosa: A Narrative Review. Vision, 9(1), 7. https://doi.org/10.3390/vision9010007