Discrete Element Bonded-Block Models for Detailed Analysis of Masonry
Abstract
:1. Introduction
2. Bonded-Block Models for Meso-Scale Analysis of Masonry
2.1. Block Geometry and Mechanics
2.2. Micro- and Macro-Properties
2.3. DEM Solution and Numerical Issues
3. A Framework for Joint Constitutive Models with Post-Peak Softening
3.1. Constitutive Models for Masonry Joints and Interfaces
3.2. Proposed Constitutive Framework Based on a Piecewise Linear Weakening
3.3. Tensile Behavior
3.4. Shear Behavior
3.5. Post-Peak Curves
4. Analysis of the Influence of the Governing Parameters in Bonded-Block Models
4.1. Compressive Failure Simulations
4.2. Base Model
4.3. Block Deformability
4.4. Block Size
4.5. Block Shape
4.6. Shear Strength Properties
4.7. Fracture Energy
4.8. Shape of Post-Peak Curve
4.9. Computational Parameters
5. Application: Brick Panel in Shear
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lourenço, P.B. Computations of historical masonry constructions. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
- Roca, P.; Cervera, P.M.; Gariup, G.; Pela, L. Structural Analysis of Masonry Historical Constructions—Classical and Advanced Approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [Google Scholar] [CrossRef] [Green Version]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Sarhosis, V.; Lemos, J.V.; Bagi, K. Discrete element modeling. In Numerical Modeling of Masonry and Historical Structures—From Theory to Application; Ghiassi, B., Milani, G., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 469–501. [Google Scholar]
- Milani, G.; Casolo, S.; Naliato, A.; Tralli, A. Seismic assessment of a medieval masonry tower in northern Italy by limit, nonlinear static, and full dynamic analyses. Int. J. Archit. Herit. 2012, 6, 489–524. [Google Scholar] [CrossRef]
- Caliò, I.; Marletta, M.; Pantò, B. A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings. Eng. Struct. 2012, 40, 327–338. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Grillanda, N.; Tralli, A. A fast and general upper-bound limit analysis approach for out-of-plane loaded masonry walls. Meccanica 2018, 53, 1875–1898. [Google Scholar] [CrossRef]
- Baraldi, D.; Reccia, E.; Cecchi, A. In plane loaded masonry walls: DEM and FEM/DEM models. A critical review. Meccanica 2018, 53, 1613–1628. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.V. Discrete element modeling of masonry structures. Int. J. Archit. Herit. 2007, 1, 190–213. [Google Scholar] [CrossRef]
- Funari, M.F.; Silva, L.C.; Savalle, N.; Lourenço, P.B. A concurrent micro/macro FE-model optimized with a limit analysis tool for the assessment of dry-joint masonry structures. In International Journal for Multiscale Computational Engineering; Begell House Inc.: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Driesen, C.; Degée, H.; Vandoren, B. Efficient modeling of masonry failure using a multiscale domain activation approach. Comput. Struct. 2021, 251, 106543. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Azevedo, N.M.; Lemos, J.V.; Almeida, J.R. Discrete Element Particle Modelling of Stone Masonry. In Computational Modeling of Masonry Structures Using the Discrete Element Method; Sarhosis, V., Bagi, K., Lemos, J., Milani, G., Eds.; IGI Global: Hershey, PA, USA, 2016; pp. 146–169. [Google Scholar]
- Lorig, L.J.; Cundall, P.A. Modeling of Reinforced Concrete Using the Distinct Element Method. In Fracture of Concrete and Rock; Shah, S.P., Swartz, S.E., Eds.; SEM: Bethel, ME, USA, 1987; pp. 459–471. [Google Scholar]
- Vonk, R.A. Softening of Concrete Loaded in Compression. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1992. [Google Scholar] [CrossRef]
- Garza-Cruz, T.V.; Pierce, M. A 3DEC Model for Heavily Veined Massive Rock Masses. In Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, MN, USA, 1–4 June 2014; American Rock Mechanics Association: Alexandria, VA, USA, 2014; pp. 14–7660. [Google Scholar]
- Lorig, L.; Potyondy, D.; Varun. Quantifying excavation-induced rock mass damage in large open pits. In Slope Stability 2020; Dight, P.M., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2020. [Google Scholar]
- Herbst, M.; Konietzky, H.; Walter, K. 3D microstructural modeling. In Continuum and Distinct Element Numerical Modeling in Geo-Engineering; Hart, R., Detournay, C., Cundall, P., Eds.; Itasca: Minneapolis, MN, USA, 2008; pp. 435–441. [Google Scholar]
- Yoon, J.S.; Hazzard, J. Coupled Fracture Modelling with Distinct Element Methods. In Modelling Rock Fracturing Processes Theories, Methods and Applications; Shen, B., Stephansson, O., Rinne, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 227–254. [Google Scholar] [CrossRef]
- Pina-Henriques, J.; Lourenço, P.B. Masonry compression: A numerical investigation at the meso-level. Eng. Comput. 2006, 23, 382–407. [Google Scholar] [CrossRef] [Green Version]
- Sarhosis, V.; Lemos, J.V. A detailed micro-modelling approach for the structural analysis of masonry assemblages. Comput. Struct. 2018, 206, 66–81. [Google Scholar] [CrossRef]
- Chen, W.; Konietzky, H.; Liu, C.; Fu, H.; Zhang, J. Prediction of Brickwork Failure Using Discrete-Element Method. J. Mater. Civ. Eng. ASCE 2018, 30, 06018012. [Google Scholar] [CrossRef]
- Barattucci, S.; Sarhosis, V.; Bruno, A.G.; D’Altri, A.M.; Miranda, S.; Castellazzi, G. An experimental and numerical study on masonry triplets subjected to monotonic and cyclic shear loadings. Constr. Build. Mater. 2020, 254, 119313. [Google Scholar] [CrossRef]
- Pulatsu, B.; Erdogmus, E.; Lourenço, P.B.; Quey, R. Simulation of uniaxial tensile behavior of quasi-brittle materials using softening contact models in DEM. Int. J. Fract. 2019, 217, 105–125. [Google Scholar] [CrossRef]
- Pulatsu, B.; Erdogmus, E.; Lourenço, P.B.; Lemos, J.V.; Hazzard, J. Discontinuum analysis of the fracture mechanism in masonry prisms and wallettes via discrete element method. Meccanica 2020, 55, 505–523. [Google Scholar] [CrossRef]
- Bretas, E.M.; Lemos, J.V.; Lourenço, P.B. A DEM based tool for the safety analysis of masonry gravity dams. Eng. Struct. 2014, 59, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Cundall, P.A. A discontinuous future for numerical modelling in geomechanics? Proc. Inst. Civ. Eng.-Geotech. Eng. 2001, 149, 41–47. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Rots, J.G. Multisurface interface model for analysis of masonry structures. J. Eng. Mech. 1997, 123, 660–668. [Google Scholar] [CrossRef]
- Macorini, L.; Izzuddin, B.A. A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int. J. Numer. Methods Eng. 2011, 85, 1584–1608. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. 2010, 115, B01202. [Google Scholar] [CrossRef]
- Gao, F.Q.; Stead, D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Itasca. UDEC—Universal Distinct Element Code: Theory and Background; Version 6.0; Itasca Consulting Group: Minneapolis, MN, USA, 2014. [Google Scholar]
- Cundall, P.A. Distinct element models of rock and soil structure. In Analytical and Computational Methods in Engineering Rock Mechanics; Brown, E.T., Ed.; George Allen & Unwin: Sydney, Australia, 1987; pp. 129–163. [Google Scholar]
- Gambarotta, L.; Lagomarsino, S. Damage models for the seismic response of brick masonry shear walls. Part I: The mortar joint model and its applications. Earthq. Eng. Struct Dyn. 1997, 26, 423–439. [Google Scholar] [CrossRef]
- Lourenço, P.B. Recent advances in masonry modelling: Micromodelling and homogenization. In Multiscale Modeling in Solid Mechanics—Computational Approaches; Galvanetto, U., Ferri Aliabadi, M.H., Eds.; Imperial College Press: London, UK, 2009; pp. 251–294. [Google Scholar] [CrossRef] [Green Version]
- Resende, R.; Lemos, J.V.; Dinis, P.B. Application of a discontinuity model with softening to the analysis of dam foundations using the discrete element method. In Numerical Modelling of Discrete Materials in Geotechnical Engineering, Civil Engineering and Earth Sciences; Konietzky, H., Ed.; CRC Press: London, UK, 2004; pp. 249–255. [Google Scholar] [CrossRef]
- Pulatsu, B.; Erdogmus, E.; Lourenço, P.B.; Lemos, J.V.; Tuncay, K. Simulation of the in-plane structural behavior of unreinforced masonry walls and buildings using DEM. Structures 2020, 27, 2274–2287. [Google Scholar] [CrossRef]
- Yuen, T.Y.P.; Deb, T.; Zhang, H.; Liu, Y. A fracture energy based damage-plasticity interfacial constitutive law for discrete finite element modelling of masonry structures. Comput. Struct. 2019, 220, 92–113. [Google Scholar] [CrossRef]
- Bisoffi-Sauve, M.; Morel, S.; Dubois, F. Modelling mixed mode fracture of mortar joints in masonry buildings. Eng. Struct. 2019, 182, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.V.; Lourenço, P.B. Implementation and validation of a constitutive model for the cyclic behaviour of interface elements. Comput. Struct. 2004, 82, 1451–1461. [Google Scholar] [CrossRef] [Green Version]
- van der Pluijm, R. Material properties of masonry and its components under tension and shear. In Proceedings of the 6th Canadian Masonry Symposium, Saskatoon, SK, Canada, 15–17 June 1992. [Google Scholar]
- van der Pluijm, R. Shear behaviour of bed joints. In Proceedings of the 6th North American Masonry Conference, Philadelphia, PA, USA, 6–9 June 1993. [Google Scholar]
- Sarhosis, V.; Forgács, T.; Lemos, J.V. Stochastic strength prediction of masonry structures: A methodological approach or a way forward? RILEM Tech. Lett. 2019, 4, 122–129. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Ivars, D.M. Simulating spalling with a flat-jointed material. In Applied Numerical Modeling in Geomechanics—2020; Billaux, D., Hazzard, J., Nelson, M., Schöpfer, M., Eds.; Itasca: Minneapolis, MN, USA, 2020; Paper 03-01. [Google Scholar]
- Vermeltfoort, A.T.; Raijmakers, T.M.J. Deformation Controlled Meso Shear Tests on Masonry Piers—Part 2; Draft Report; Department of BKO, TU Eindhoven: Eindhoven, The Netherlands, 1993. [Google Scholar]
- D’Altri, A.M.; Miranda, S.; Castellazzi, G.; Sarhosis, V. A 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels. Comput. Struct. 2018, 206, 18–30. [Google Scholar] [CrossRef] [Green Version]
Linear | Bilinear A | Bilinear B | Trilinear | |||||
---|---|---|---|---|---|---|---|---|
Points | ||||||||
1 (peak) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 + Bn | 0 | 1 + Bn/3 | 1/2 | 1 + Bn/2 | 1/3 | 1 + Bn/3 | 1/2 |
3 | - | - | 1 + 4Bn/3 | 0 | 1 + 3Bn/2 | 0 | 1 + 2Bn/3 | 1/4 |
4 | - | - | - | - | - | - | 1 + 5Bn/3 | 0 |
Joint Property | Value | |
---|---|---|
Normal stiffness | kn | 1326 GPa/m |
Shear stiffness | ks | 552 GPa/m |
Tensile strength | tp | 3.5 MPa |
Residual tensile strength | tr | 0 |
Peak cohesion | cp | 10.0 MPa |
Residual cohesion | cr | 0 |
Friction angle | ϕ | 25° |
Fracture energy mode I | Gn | 0.09 N/mm |
Fracture energy mode II | Gs | 0.50 N/mm |
Input Micro-Properties | Macro-Property Results | |||||
---|---|---|---|---|---|---|
Normal Stiffness (GPa/m) | Shear Stiffness (GPa/m) | Inner-Block Young’s Modulus (GPa) | Global Young’s Modulus (GPa) | Peak Strength (MPa) (Base Model) | Peak Strength (MPa) (Average of 4 Models) | |
Rigid | 1326 | 552 | - | 9.97 | 35.3 | 35.5 |
30% | 1894 | 789 | 33.3 | 9.98 | 36.4 | 37.2 |
50% | 2652 | 1105 | 20.0 | 9.97 | 36.8 | 37.7 |
90% | 13,259 | 5525 | 11.1 | 10.03 | 38.3 | 39.7 |
Mean Strength (MPa) | Average Deviation (MPa) | Mean Strength (MPa) | Average Deviation (MPa) | Mean Strength (MPa) | Average Deviation (MPa) | |
---|---|---|---|---|---|---|
Block size | 5 mm | 10 mm | 20 mm | |||
Rigid | 38.4 | 0.86 | 35.5 | 0.83 | 33.2 | 1.0 |
50% block deformability | 40.0 | 1.2 | 37.7 | 1.5 | 34.7 | 1.1 |
Block Shape | Friction Angle | Rigid Blocks | 50% Block Deformability | ||
---|---|---|---|---|---|
Base Model | Mean 4 Models | Base Model | Mean 4 Models | ||
Voronoi | 25° | 35.3 | 35.5 | 36.8 | 37.7 |
Triangular | 25° | 27.4 | 27.5 | 28.5 | 28.7 |
Triangular | 35° | 35.3 | 34.1 | 34.5 | 35.1 |
Linear | Bilinear A | Bilinear B | Trilinear |
---|---|---|---|
36.9 | 35.3 | 35.3 | 34.9 |
Mortar Joints pv = 0.3 MPa | Mortar Joints pv = 2.12 MPa | Intra-Unit Joints | |
---|---|---|---|
Normal stiffness (GPa/m) | 82 | 82 | 8350 |
Shear stiffness (GPa/m) | 36 | 36 | 3630 |
Tensile strength (MPa) | 0.16 | 0.25 | 2.0 |
Peak cohesion (MPa) | 0.224 | 0.375 | 0.8 |
Residual cohesion (MPa) | 0 | 0 | 0.2 |
Friction angle (degrees) | 36.9° | 36.9° | 22° |
G I (N/mm) | 0.018 | 0.018 | 0.080 |
G II (N/mm) | 0.125 | 0.050 | 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemos, J.V.; Sarhosis, V. Discrete Element Bonded-Block Models for Detailed Analysis of Masonry. Infrastructures 2022, 7, 31. https://doi.org/10.3390/infrastructures7030031
Lemos JV, Sarhosis V. Discrete Element Bonded-Block Models for Detailed Analysis of Masonry. Infrastructures. 2022; 7(3):31. https://doi.org/10.3390/infrastructures7030031
Chicago/Turabian StyleLemos, José V., and Vasilis Sarhosis. 2022. "Discrete Element Bonded-Block Models for Detailed Analysis of Masonry" Infrastructures 7, no. 3: 31. https://doi.org/10.3390/infrastructures7030031
APA StyleLemos, J. V., & Sarhosis, V. (2022). Discrete Element Bonded-Block Models for Detailed Analysis of Masonry. Infrastructures, 7(3), 31. https://doi.org/10.3390/infrastructures7030031