Machine Learning Applications in Road Pavement Management: A Review, Challenges and Future Directions
Abstract
:1. Introduction
- Holistic Perspective: We move beyond focusing on individual aspects of pavement management to offer an overview of how ML is being applied across condition assessment, performance prediction, and M&R Decision-Making, demonstrating its multifaceted impact on the field;
- Integration of Recent Advancements: We incorporate the latest developments in AI, including emerging algorithms like LLMs and generative AI, to assess their potential applications and future directions within pavement management;
- Critical Analysis of Challenges and Opportunities: We identify and critically analyze both the technical challenges impeding the wider adoption of ML (e.g., data quality, model interpretability, and ethical considerations) and the significant opportunities it presents for creating smarter, more efficient, and sustainable pavement management practices.
2. Background
2.1. Traditional Road Pavement Management Systems
2.1.1. Pavement Condition Assessment
2.1.2. Pavement Performance Prediction
2.1.3. Maintenance and Rehabilitation Optimization
2.1.4. Limitations of Traditional Road Pavement Management Systems
2.2. Machine Learning Fundamentals and Techniques
Common Machine Learning Techniques for Pavement Management
3. Methodology
- Pavement Condition Assessment: The search targeted articles employing AI techniques to assess pavement conditions, focusing on condition assessment, evaluation, distress analysis, and defect detection;
- Pavement Performance Prediction: This category included papers applying AI to predict pavement performance, focusing on performance prediction and deterioration modeling;
- M&R Decision-Making: The final topic involves articles that utilize AI in some stages of M&R Decision-Making, especially in optimization, planning, and strategy.
4. Applications of Machine Learning in Road Pavement Management
4.1. ML Applied to Pavement Condition Assessment
4.2. ML Applied to Pavement Performance Prediction
4.3. ML Applied to Maintenance and Rehabilitation Decision-Making
5. Challenges of Applying ML to Road Pavement Management
5.1. Technical Challenges
5.2. Ethical and Societal Considerations
6. Discussion
7. Conclusions
- Development of Standardized Datasets: Creating publicly available standardized datasets for pavement condition, performance, and maintenance history is necessary to enable robust model training and benchmarking, facilitating the development of more generalizable and reliable ML models;
- Hybrid and Explainable ML Models: Exploring the development of hybrid models that combine the strengths of different ML techniques, as well as incorporating explainable AI (XAI) methods, can enhance model transparency and build confidence in ML-driven decision-making;
- Integration with Smart Infrastructure: Further research is needed to seamlessly integrate ML with other smart infrastructure technologies, such as IoT sensors, Big Data analytics, and digital twins, to create intelligent Pavement Management Systems;
- Climate Change Adaptation: Investigating the use of ML to predict the impact of climate change on pavement performance and develop adaptive management strategies is crucial for ensuring the long-term resilience of road infrastructure;
- Lifecycle Cost Analysis of ML-Based Systems: Conducting comprehensive lifecycle cost analyses of ML-based Pavement Management Systems is vital to assess their economic viability and demonstrate their long-term cost-effectiveness to stakeholders.
Author Contributions
Funding
Conflicts of Interest
References
- Kulkarni, R.B.; Miller, R.W. Pavement Management Systems: Past, Present, and Future. Transp. Res. Rec. 2003, 349, 65–71. [Google Scholar] [CrossRef]
- Uddin, W. Pavement Management Systems; Fwa, T., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Shahin, M.Y. Pavement Management for Airports, Roads, and Parking Lots; Chapman & Hall: New York, NY, USA, 1994; ISBN 978-0-412-99201-8. [Google Scholar]
- Santos, J.; Ferreira, A. Pavement Design Optimization Considering Costs and Preventive Interventions. J. Transp. Eng. 2012, 138, 911–923. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, P.; Rastogi, R. Critical Review of Flexible Pavement Performance Models. KSCE J. Civ. Eng. 2014, 18, 1455–1462. [Google Scholar] [CrossRef]
- Adlinge, S.S.; Gupta, A.K. Pavement Deterioration and Its Causes. Int. J. Innov. Res. Dev. 2013, 2, 437–450. [Google Scholar]
- Golabi, K.; Kulkarni, R.B.; Way, G.B. A Statewide Pavement Management System. Interfaces 1982, 12, 5–21. [Google Scholar] [CrossRef]
- Peraka, N.S.P.; Biligiri, K.P. Pavement Asset Management Systems and Technologies: A Review. Autom. Constr. 2020, 119, 103336. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Kaul, V.; Mersereau, R.M. Critical Assessment of Pavement Distress Segmentation Methods. J. Transp. Eng. 2010, 136, 11–19. [Google Scholar] [CrossRef]
- Schnebele, E.; Tanyu, B.F.; Cervone, G.; Waters, N. Review of Remote Sensing Methodologies for Pavement Management and Assessment. Eur. Transp. Res. Rev. 2015, 7, 7. [Google Scholar] [CrossRef]
- Kargah-Ostadi, N.; Zhou, Y.; Rahman, T. Developing Performance Prediction Models for Pavement Management Systems in Local Governments in Absence of Age Data. Transp. Res. Rec. 2019, 2673, 334–341. [Google Scholar] [CrossRef]
- Benmhahe, B.; Chentoufi, J.A. Automated Pavement Distress Detection, Classification and Measurement: A Review. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 708–718. [Google Scholar] [CrossRef]
- Yao, L.; Leng, Z.; Jiang, J.; Ni, F. Modelling of Pavement Performance Evolution Considering Uncertainty and Interpretability: A Machine Learning Based Framework. Int. J. Pavement Eng. 2022, 23, 5211–5226. [Google Scholar] [CrossRef]
- Mers, M.; Yang, Z.; Hsieh, Y.-A.; Tsai, Y. Recurrent Neural Networks for Pavement Performance Forecasting: Review and Model Performance Comparison. Transp. Res. Rec. J. Transp. Res. Board 2023, 2677, 610–624. [Google Scholar] [CrossRef]
- Jordan, M.; Mitchell, T. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of Artificial Intelligence in Transport: An Overview. Sustainability 2019, 11, 189. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Z. Review of Applications of Artificial Intelligence Algorithms in Pavement Management. J. Transp. Eng. Part B Pavements 2022, 148, 03122001. [Google Scholar] [CrossRef]
- Coenen, T.B.J.; Golroo, A. A Review on Automated Pavement Distress Detection Methods. Cogent Eng. 2017, 4, 1374822. [Google Scholar] [CrossRef]
- Sholevar, N.; Golroo, A.; Esfahani, S.R. Machine Learning Techniques for Pavement Condition Evaluation. Autom. Constr. 2022, 136, 104190. [Google Scholar] [CrossRef]
- El Hakea, A.H.; Fakhr, M.W. Recent Computer Vision Applications for Pavement Distress and Condition Assessment. Autom. Constr. 2023, 146, 104664. [Google Scholar] [CrossRef]
- Soni, J.; Gujar, R.; Shah, D.; Parmar, P. A Review on Strategic Pavement Maintenance with Machine Learning Techniques. In Intelligent Infrastructure in Transportation and Management; Shah, J., Arkatkar, S.S., Jadhav, P., Eds.; Studies in Infrastructure and Control; Springer: Singapore, 2022; pp. 141–151. ISBN 978-9-81-166935-4. [Google Scholar]
- Gopalakrishnan, K. Deep Learning in Data-Driven Pavement Image Analysis and Automated Distress Detection: A Review. Data 2018, 3, 28. [Google Scholar] [CrossRef]
- Ragnoli, A.; De Blasiis, M.; Di Benedetto, A. Pavement Distress Detection Methods: A Review. Infrastructures 2018, 3, 58. [Google Scholar] [CrossRef]
- Du, Z.; Yuan, J.; Xiao, F.; Hettiarachchi, C. Application of Image Technology on Pavement Distress Detection: A Review. Measurement 2021, 184, 109900. [Google Scholar] [CrossRef]
- Zakeri, H.; Nejad, F.M.; Fahimifar, A. Image Based Techniques for Crack Detection, Classification and Quantification in Asphalt Pavement: A Review. Arch. Computat. Methods Eng. 2017, 24, 935–977. [Google Scholar] [CrossRef]
- Hsieh, Y.-A.; Tsai, Y.J. Machine Learning for Crack Detection: Review and Model Performance Comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Justo-Silva, R.; Ferreira, A.; Flintsch, G. Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models. Sustainability 2021, 13, 5248. [Google Scholar] [CrossRef]
- Tamagusko, T.; Ferreira, A. Machine Learning for Prediction of the International Roughness Index on Flexible Pavements: A Review, Challenges, and Future Directions. Infrastructures 2023, 8, 170. [Google Scholar] [CrossRef]
- Yao, L.; Dong, Q.; Jiang, J.; Ni, F. Deep Reinforcement Learning for Long-term Pavement Maintenance Planning. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1230–1245. [Google Scholar] [CrossRef]
- Liu, J.; Kong, X.; Xia, F.; Bai, X.; Wang, L.; Qing, Q.; Lee, I. Artificial Intelligence in the 21st Century. IEEE Access 2018, 6, 34403–34421. [Google Scholar] [CrossRef]
- Luitse, D.; Denkena, W. The Great Transformer: Examining the Role of Large Language Models in the Political Economy of AI. Big Data Soc. 2021, 8, 205395172110477. [Google Scholar] [CrossRef]
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A Survey of Large Language Models. arXiv 2023, arXiv:2303.18223. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ferreira, A.; de Picado-Santos, L.; Wu, Z.; Flintsch, G. Selection of Pavement Performance Models for Use in the Portuguese PMS. Int. J. Pavement Eng. 2011, 12, 87–97. [Google Scholar] [CrossRef]
- Pavement Engineering Principles and Practice, 4th ed.; Mallick, R.B.; El-Korchi, T. (Eds.) CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-081255-8. [Google Scholar]
- Haas, R.C.G.; Hudson, W.R.; Falls, L.C. Pavement Asset Management; Scrivener Publishing; Wiley: Salem, MA, USA/Hoboken, NJ, USA, 2015; ISBN 978-1-119-03870-2. [Google Scholar]
- Marcelino, P.; de Lurdes Antunes, M.; Fortunato, E.; Gomes, M.C. Machine Learning Approach for Pavement Performance Prediction. Int. J. Pavement Eng. 2021, 22, 341–354. [Google Scholar] [CrossRef]
- Jorge, D.; Ferreira, A. Road Network Pavement Maintenance Optimisation Using the HDM-4 Pavement Performance Prediction Models. Int. J. Pavement Eng. 2012, 13, 39–51. [Google Scholar] [CrossRef]
- Huyan, J.; Li, W.; Tighe, S.; Xu, Z.; Zhai, J. CrackU-net: A Novel Deep Convolutional Neural Network for Pixelwise Pavement Crack Detection. Struct. Control Health Monit. 2020, 27. [Google Scholar] [CrossRef]
- Majidifard, H.; Adu-Gyamfi, Y.; Buttlar, W.G. Deep Machine Learning Approach to Develop a New Asphalt Pavement Condition Index. Constr. Build. Mater. 2020, 247, 118513. [Google Scholar] [CrossRef]
- Tang, J.; Chen, C.; Huang, Z.; Zhang, X.; Li, W.; Huang, M.; Deng, L. Crack Unet: Crack Recognition Algorithm Based on Three-Dimensional Ground Penetrating Radar Images. Sensors 2022, 22, 9366. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; El-Diraby, T.E. Role of Data Analytics in Infrastructure Asset Management: Overcoming Data Size and Quality Problems. J. Transp. Eng. Part B Pavements 2020, 146, 04020022. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; El-Diraby, T.E. Examining the Relationship between Two Road Performance Indicators: Pavement Condition Index and International Roughness Index. Transp. Geotech. 2021, 26, 100441. [Google Scholar] [CrossRef]
- Hoque, Z. Highway Condition Surveys and Serviceability Evaluation. Fwa, T., Ed.; Taylor & Francis: Abingdon, UK, 2006. [Google Scholar]
- Sayers, M.W.; Gillespie, T.D.; Queiroz, C.A.V. The International Road Roughness Experiment (IRRE): Establishing Correlation and a Calibration Standard for Measurements; World Bank Group: Washington, DC, USA, 1986. [Google Scholar]
- Hall, K.; Muñoz, C. Estimation of Present Serviceability Index from International Roughness Index. Transp. Res. Rec. 1999, 1655, 93–99. [Google Scholar] [CrossRef]
- Wu, W.; Qurishee, M.A.; Owino, J.; Fomunung, I.; Onyango, M.; Atolagbe, B. Coupling Deep Learning and UAV for Infrastructure Condition Assessment Automation. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–7. [Google Scholar]
- Spencer, B.F.; Hoskere, V.; Narazaki, Y. Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. Engineering 2019, 5, 199–222. [Google Scholar] [CrossRef]
- Zhu, J.; Zhong, J.; Ma, T.; Huang, X.; Zhang, W.; Zhou, Y. Pavement Distress Detection Using Convolutional Neural Networks with Images Captured via UAV. Autom. Constr. 2022, 133, 103991. [Google Scholar] [CrossRef]
- Paterson, W.D.O. Road Deterioration and Maintenance Effects: Models for Planning and Management; The Highway Design and Maintenance Standards Series; World Bank Group: Washington, DC, USA, 1987. [Google Scholar]
- Chi, S.; Hwang, J.; Arellano, M.; Zhang, Z.; Murphy, M. Development of Network-Level Project Screening Methods Supporting the 4-Year Pavement Management Plan in Texas. J. Manag. Eng. 2013, 29, 482–494. [Google Scholar] [CrossRef]
- Kim, D.; Chi, S.; Kim, J. Selecting Network-Level Project Sections for Sustainable Pavement Management in Texas. Sustainability 2018, 10, 686. [Google Scholar] [CrossRef]
- Pantuso, A.; Loprencipe, G.; Bonin, G.; Teltayev, B.B. Analysis of Pavement Condition Survey Data for Effective Implementation of a Network Level Pavement Management Program for Kazakhstan. Sustainability 2019, 11, 901. [Google Scholar] [CrossRef]
- Gomes Correia, M.; Bonates, T.d.O.E.; Prata, B.d.A.; Nobre Júnior, E.F. An Integer Linear Programming Approach for Pavement Maintenance and Rehabilitation Optimization. Int. J. Pavement Eng. 2022, 23, 2710–2727. [Google Scholar] [CrossRef]
- Sinha, K.C.; Labi, S.; Agbelie, B.R.D.K. Transportation Infrastructure Asset Management in the New Millennium: Continuing Issues, and Emerging Challenges and Opportunities. Transp. A Transp. Sci. 2017, 13, 591–606. [Google Scholar] [CrossRef]
- Gomes Correia, M.; Ferreira, A. Road Asset Management and the Vehicles of the Future: An Overview, Opportunities, and Challenges. Int. J. ITS Res. 2023, 21, 376–393. [Google Scholar] [CrossRef]
- Carnahan, J.V. Analytical Framework for Optimizing Pavement Maintenance. J. Transp. Eng. 1988, 114, 307–322. [Google Scholar] [CrossRef]
- Chen, L.; Bai, Q. Optimization in Decision Making in Infrastructure Asset Management: A Review. Appl. Sci. 2019, 9, 1380. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, M. Multi-Objective Optimization for Pavement Maintenance and Rehabilitation Decision-Making: A Critical Review and Future Directions. Autom. Constr. 2021, 130, 103840. [Google Scholar] [CrossRef]
- Bogus, S.M.; Migliaccio, G.C.; Cordova, A.A. Assessment of Data Quality for Evaluations of Manual Pavement Distress. Transp. Res. Rec. 2010, 2170, 1–8. [Google Scholar] [CrossRef]
- Koch, C.; Georgieva, K.; Kasireddy, V.; Akinci, B.; Fieguth, P. A Review on Computer Vision Based Defect Detection and Condition Assessment of Concrete and Asphalt Civil Infrastructure. Adv. Eng. Inform. 2015, 29, 196–210. [Google Scholar] [CrossRef]
- Madeh Piryonesi, S.; El-Diraby, T.E. Using Machine Learning to Examine Impact of Type of Performance Indicator on Flexible Pavement Deterioration Modeling. J. Infrastruct. Syst. 2021, 27, 04021005. [Google Scholar] [CrossRef]
- Flintsch, G.W.; Chen, C. Soft Computing Applications in Infrastructure Management. J. Infrastruct. Syst. 2004, 10, 157–166. [Google Scholar] [CrossRef]
- Santos, J.; Ferreira, A.; Flintsch, G. A Multi-Objective Optimization-Based Pavement Management Decision-Support System for Enhancing Pavement Sustainability. J. Clean. Prod. 2017, 164, 1380–1393. [Google Scholar] [CrossRef]
- Elbagalati, O.; Elseifi, M.A.; Gaspard, K.; Zhang, Z. Development of an Enhanced Decision-Making Tool for Pavement Management Using a Neural Network Pattern-Recognition Algorithm. J. Transp. Eng. Part B Pavements 2018, 144, 04018018. [Google Scholar] [CrossRef]
- Dietterich, T. Machine Learning. ACM Comput. Surv. 1996, 28, 3. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine Learning on Big Data: Opportunities and Challenges. Neurocomputing 2017, 237, 350–361. [Google Scholar] [CrossRef]
- Lu, Y. Artificial Intelligence: A Survey on Evolution, Models, Applications and Future Trends. J. Manag. Anal. 2019, 6, 1–29. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall series in artificial intelligence, 3rd ed.; Global Edition; Pearson: Upper Saddle River, NJ, USA, 2016; ISBN 978-0-13-604259-4. [Google Scholar]
- Sen, P.C.; Hajra, M.; Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Emerging Technology in Modelling and Graphics; Mandal, J.K., Bhattacharya, D., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 937, pp. 99–111. ISBN 978-9-81-137402-9. [Google Scholar]
- Hoang, N.-D.; Nguyen, Q.-L. A Novel Method for Asphalt Pavement Crack Classification Based on Image Processing and Machine Learning. Eng. Comput. 2019, 35, 487–498. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Barlow, H.B. Unsupervised Learning. Neural Comput. 1989, 1, 295–311. [Google Scholar] [CrossRef]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; Adaptive Computation and Machine Learning; The MIT Press: Cambridge, MA, USA/London, UK, 2012; ISBN 978-0-262-01825-8. [Google Scholar]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. JAIR 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction. IEEE Trans. Neural Netw. 1998, 9, 1054. [Google Scholar] [CrossRef]
- Shwartz-Ziv, R.; Armon, A. Tabular Data: Deep Learning Is Not All You Need. Inf. Fusion 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Chavan, A.; Pimplikar, S.; Deshmukh, A. An Overview of Machine Learning Techniques for Evaluation of Pavement Condition. In Proceedings of the 2022 IEEE 4th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Goa, India, 8 October 2022; pp. 139–143. [Google Scholar]
- Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. In Proceedings of the 9th International Conference on Neural Information Processing Systems (NIPS’96), Denver, CO, USA, 2–5 December 1996; MIT Press: Cambridge, MA, USA, 1996; pp. 155–161. [Google Scholar]
- Lin, J.; Liu, Y. Potholes Detection Based on SVM in the Pavement Distress Image. In Proceedings of the 2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong, China, 10–12 August 2010; pp. 544–547. [Google Scholar]
- Gavilán, M.; Balcones, D.; Marcos, O.; Llorca, D.F.; Sotelo, M.A.; Parra, I.; Ocaña, M.; Aliseda, P.; Yarza, P.; Amírola, A. Adaptive Road Crack Detection System by Pavement Classification. Sensors 2011, 11, 9628–9657. [Google Scholar] [CrossRef]
- Ziari, H.; Maghrebi, M.; Ayoubinejad, J.; Waller, S.T. Prediction of Pavement Performance: Application of Support Vector Regression with Different Kernels. Transp. Res. Rec. 2016, 2589, 135–145. [Google Scholar] [CrossRef]
- Nabipour, N.; Karballaeezadeh, N.; Dineva, A.; Mosavi, A.; Mohammadzadeh, S.D.; Shamshirband, S. Comparative Analysis of Machine Learning Models for Prediction of Remaining Service Life of Flexible Pavement. Mathematics 2019, 7, 1198. [Google Scholar] [CrossRef]
- Chen, C.-T.; Hung, C.-T.; Lin, J.-D.; Sung, P.-H. Application of a Decision Tree Method with a Spatiotemporal Object Database for Pavement Maintenance and Management. J. Mar. Sci. Technol. 2015, 23, 302–307. [Google Scholar] [CrossRef]
- Gong, H.; Sun, Y.; Shu, X.; Huang, B. Use of Random Forests Regression for Predicting IRI of Asphalt Pavements. Constr. Build. Mater. 2018, 189, 890–897. [Google Scholar] [CrossRef]
- Damirchilo, F.; Hosseini, A.; Mellat Parast, M.; Fini, E.H. Machine Learning Approach to Predict International Roughness Index Using Long-Term Pavement Performance Data. J. Transp. Eng. Part B Pavements 2021, 147, 04021058. [Google Scholar] [CrossRef]
- Guo, R.; Fu, D.; Sollazzo, G. An Ensemble Learning Model for Asphalt Pavement Performance Prediction Based on Gradient Boosting Decision Tree. Int. J. Pavement Eng. 2021, 23, 3633–3646. [Google Scholar] [CrossRef]
- Abukhalil, Y.; Smadi, O. CART Algorithm: A Data-Driven Approach to Automate Maintenance Selection in Pavement Management Systems. J. Infrastruct. Syst. 2022, 28, 04022019. [Google Scholar] [CrossRef]
- Han, C.; Ma, T.; Xu, G.; Chen, S.; Huang, R. Intelligent Decision Model of Road Maintenance Based on Improved Weight Random Forest Algorithm. Int. J. Pavement Eng. 2022, 23, 985–997. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Dhiman, A.; Klette, R. Pothole Detection Using Computer Vision and Learning. IEEE Trans. Intell. Transport. Syst. 2020, 21, 3536–3550. [Google Scholar] [CrossRef]
- Zeiada, W.; Dabous, S.A.; Hamad, K.; Al-Ruzouq, R.; Khalil, M.A. Machine Learning for Pavement Performance Modelling in Warm Climate Regions. Arab. J. Sci. Eng. 2020, 45, 4091–4109. [Google Scholar] [CrossRef]
- Song, L.; Wang, X. Faster Region Convolutional Neural Network for Automated Pavement Distress Detection. Road Mater. Pavement Des. 2021, 22, 23–41. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, J.; Cao, D.; Yao, H. Cost-Effective Assessment of in-Service Asphalt Pavement Condition Based on Random Forests and Regression Analysis. Constr. Build. Mater. 2022, 330, 127219. [Google Scholar] [CrossRef]
- Rita, L.; Peliteiro, M.; Bostan, T.-C.; Tamagusko, T.; Ferreira, A. Using Deep Learning and Google Street View Imagery to Assess and Improve Cyclist Safety in London. Sustainability 2023, 15, 10270. [Google Scholar] [CrossRef]
- Tamagusko, T.; Gomes Correia, M.; Rita, L.; Bostan, T.-C.; Peliteiro, M.; Martins, R.; Santos, L.; Ferreira, A. Data-Driven Approach for Urban Micromobility Enhancement through Safety Mapping and Intelligent Route Planning. Smart Cities 2023, 6, 2035–2056. [Google Scholar] [CrossRef]
- Wang, K.C.P.; Li, Q.; Gong, W. Wavelet-Based Pavement Distress Image Edge Detection with À Trous Algorithm. Transp. Res. Rec. 2007, 2024, 73–81. [Google Scholar] [CrossRef]
- Ying, L.; Salari, E. Beamlet Transform-Based Technique for Pavement Crack Detection and Classification: Beamlet Transform-Based Technique. Comput.-Aided Civ. Infrastruct. Eng. 2010, 25, 572–580. [Google Scholar] [CrossRef]
- Cui, L.; Qi, Z.; Chen, Z.; Meng, F.; Shi, Y. Pavement Distress Detection Using Random Decision Forests. In Data Science; Zhang, C., Huang, W., Shi, Y., Yu, P.S., Zhu, Y., Tian, Y., Zhang, P., He, J., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9208, pp. 95–102. ISBN 978-3-319-24473-0. [Google Scholar]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic Road Crack Detection Using Random Structured Forests. IEEE Trans. Intell. Transport. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Daniel Zhang, Y.; Zhu, Y.J. Road Crack Detection Using Deep Convolutional Neural Network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep Convolutional Neural Networks with Transfer Learning for Computer Vision-Based Data-Driven Pavement Distress Detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Song, W.; Jia, G.; Zhu, H.; Jia, D.; Gao, L. Automated Pavement Crack Damage Detection Using Deep Multiscale Convolutional Features. J. Adv. Transp. 2020, 2020, 6412562. [Google Scholar] [CrossRef]
- Llopis-Castelló, D.; Paredes, R.; Parreño-Lara, M.; García-Segura, T.; Pellicer, E. Automatic Classification and Quantification of Basic Distresses on Urban Flexible Pavement through Convolutional Neural Networks. J. Transp. Eng. Part B Pavements 2021, 147, 04021063. [Google Scholar] [CrossRef]
- Han, C.; Ma, T.; Huyan, J.; Huang, X.; Zhang, Y. CrackW-Net: A Novel Pavement Crack Image Segmentation Convolutional Neural Network. IEEE Trans. Intell. Transport. Syst. 2022, 23, 22135–22144. [Google Scholar] [CrossRef]
- Wen, T.; Lang, H.; Ding, S.; Lu, J.J.; Xing, Y. PCDNet: Seed Operation–Based Deep Learning Model for Pavement Crack Detection on 3D Asphalt Surface. J. Transp. Eng. Part B Pavements 2022, 148, 04022023. [Google Scholar] [CrossRef]
- Ji, A.; Xue, X.; Wang, Y.; Luo, X.; Xue, W. An Integrated Approach to Automatic Pixel-Level Crack Detection and Quantification of Asphalt Pavement. Autom. Constr. 2020, 114, 103176. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Y.; Luo, X.; Yuan, Y. Automatic Defect Detection of Pavement Diseases. Remote Sens. 2022, 14, 4836. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Mandal, V.; Uong, L.; Adu-Gyamfi, Y. Automated Road Crack Detection Using Deep Convolutional Neural Networks. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5212–5215. [Google Scholar]
- Liu, J.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee, V.C.; Ding, L. Automated Pavement Crack Detection and Segmentation Based on Two-step Convolutional Neural Network. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1291–1305. [Google Scholar] [CrossRef]
- Du, Y.; Pan, N.; Xu, Z.; Deng, F.; Shen, Y.; Kang, H. Pavement Distress Detection and Classification Based on YOLO Network. Int. J. Pavement Eng. 2021, 22, 1659–1672. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, X.; Yang, H.; Wang, L.; Chen, Y.; Wang, D. Novel YOLOv3 Model With Structure and Hyperparameter Optimization for Detection of Pavement Concealed Cracks in GPR Images. IEEE Trans. Intell. Transport. Syst. 2022, 23, 22258–22268. [Google Scholar] [CrossRef]
- Jiang, Y.; Pang, D.; Li, C.; Yu, Y.; Cao, Y. Two-Step Deep Learning Approach for Pavement Crack Damage Detection and Segmentation. Int. J. Pavement Eng. 2023, 24, 2065488. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, M.; Ding, G.; Ding, H.; Hu, P.; Zhao, H. HE-YOLOv5s: Efficient Road Defect Detection Network. Entropy 2023, 25, 1280. [Google Scholar] [CrossRef]
- Yi, C.; Liu, J.; Huang, T.; Xiao, H.; Guan, H. An Efficient Method of Pavement Distress Detection Based on Improved YOLOv7. Meas. Sci. Technol. 2023, 34, 115402. [Google Scholar] [CrossRef]
- Tamagusko, T.; Ferreira, A. Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models. In Proceedings of the MAIREINFRA 2023, Honolulu, HI, USA, 16–19 August 2023; MDPI: Basel, Switzerland, 2023; p. 11. [Google Scholar]
- Tran, V.P.; Tran, T.S.; Lee, H.J.; Kim, K.D.; Baek, J.; Nguyen, T.T. One Stage Detector (RetinaNet)-Based Crack Detection for Asphalt Pavements Considering Pavement Distresses and Surface Objects. J. Civ. Struct. Health Monit. 2021, 11, 205–222. [Google Scholar] [CrossRef]
- Ibragimov, E.; Lee, H.-J.; Lee, J.-J.; Kim, N. Automated Pavement Distress Detection Using Region Based Convolutional Neural Networks. Int. J. Pavement Eng. 2022, 23, 1981–1992. [Google Scholar] [CrossRef]
- Fan, Z.; Li, C.; Chen, Y.; Wei, J.; Loprencipe, G.; Chen, X.; Di Mascio, P. Automatic Crack Detection on Road Pavements Using Encoder-Decoder Architecture. Materials 2020, 13, 2960. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Yuan, D.; Gao, J.; Wang, Z. Pavement Defect Detection with Fully Convolutional Network and an Uncertainty Framework. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 832–849. [Google Scholar] [CrossRef]
- Guan, J.; Yang, X.; Ding, L.; Cheng, X.; Lee, V.C.S.; Jin, C. Automated Pixel-Level Pavement Distress Detection Based on Stereo Vision and Deep Learning. Autom. Constr. 2021, 129, 103788. [Google Scholar] [CrossRef]
- Wen, T.; Ding, S.; Lang, H.; Lu, J.J.; Yuan, Y.; Peng, Y.; Chen, J.; Wang, A. Automated Pavement Distress Segmentation on Asphalt Surfaces Using a Deep Learning Network. Int. J. Pavement Eng. 2022, 1–14. [Google Scholar] [CrossRef]
- He, Y.; Jin, Z.; Zhang, J.; Teng, S.; Chen, G.; Sun, X.; Cui, F. Pavement Surface Defect Detection Using Mask Region-Based Convolutional Neural Networks and Transfer Learning. Appl. Sci. 2022, 12, 7364. [Google Scholar] [CrossRef]
- Nasiruddin Khilji, T.; Lopes Amaral Loures, L.; Rezazadeh Azar, E. Distress Recognition in Unpaved Roads Using Unmanned Aerial Systems and Deep Learning Segmentation. J. Comput. Civ. Eng. 2021, 35, 04020061. [Google Scholar] [CrossRef]
- Lopes Amaral Loures, L.; Rezazadeh Azar, E. Condition Assessment of Unpaved Roads Using Low-Cost Computer Vision–Based Solutions. J. Transp. Eng. Part B Pavements 2023, 149, 04022066. [Google Scholar] [CrossRef]
- Ranyal, E.; Sadhu, A.; Jain, K. Automated Pothole Condition Assessment in Pavement Using Photogrammetry-Assisted Convolutional Neural Network. Int. J. Pavement Eng. 2023, 24, 2183401. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, D.; Lu, Y. ECSNet: An Accelerated Real-Time Image Segmentation CNN Architecture for Pavement Crack Detection. IEEE Trans. Intell. Transport. Syst. 2023, 24, 15105–15112. [Google Scholar] [CrossRef]
- Yang, L.; Bai, S.; Liu, Y.; Yu, H. Multi-Scale Triple-Attention Network for Pixelwise Crack Segmentation. Autom. Constr. 2023, 150, 104853. [Google Scholar] [CrossRef]
- Chen, J.; Wen, Y.; Nanehkaran, Y.A.; Zhang, D.; Zeb, A. Multiscale Attention Networks for Pavement Defect Detection. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Ding, S.; Lang, H.; Chen, J.; Yuan, Y.; Lu, J. Automated Crack Segmentation on 3D Asphalt Surfaces with Richer Attention and Hybrid Pyramid Structures. Int. J. Pavement Eng. 2023, 24, 2246097. [Google Scholar] [CrossRef]
- Eisenbach, M.; Stricker, R.; Seichter, D.; Amende, K.; Debes, K.; Sesselmann, M.; Ebersbach, D.; Stoeckert, U.; Gross, H.-M. How to Get Pavement Distress Detection Ready for Deep Learning? A Systematic Approach. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2039–2047. [Google Scholar]
- Majidifard, H.; Jin, P.; Adu-Gyamfi, Y.; Buttlar, W.G. Pavement Image Datasets: A New Benchmark Dataset to Classify and Densify Pavement Distresses. Transp. Res. Rec. 2020, 2674, 328–339. [Google Scholar] [CrossRef]
- Arya, D.; Maeda, H.; Ghosh, S.K.; Toshniwal, D.; Sekimoto, Y. RDD2020: An Annotated Image Dataset for Automatic Road Damage Detection Using Deep Learning. Data Brief 2021, 36, 107133. [Google Scholar] [CrossRef]
- Kaya, O.; Ceylan, H.; Kim, S.; Waid, D.; Moore, B.P. Statistics and Artificial Intelligence-Based Pavement Performance and Remaining Service Life Prediction Models for Flexible and Composite Pavement Systems. Transp. Res. Rec. 2020, 2674, 448–460. [Google Scholar] [CrossRef]
- Gong, H.; Sun, Y.; Hu, W.; Polaczyk, P.A.; Huang, B. Investigating Impacts of Asphalt Mixture Properties on Pavement Performance Using LTPP Data through Random Forests. Constr. Build. Mater. 2019, 204, 203–212. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Li, Q.; Fang, N.; Wang, P.; Ding, L.; Li, S. A Hybrid Model for Prediction in Asphalt Pavement Performance Based on Support Vector Machine and Grey Relation Analysis. J. Adv. Transp. 2020, 2020, 7534970. [Google Scholar] [CrossRef]
- Naseri, H.; Jahanbakhsh, H.; Foomajd, A.; Galustanian, N.; Karimi, M.M.; Waygood, E.O.D. A Newly Developed Hybrid Method on Pavement Maintenance and Rehabilitation Optimization Applying Whale Optimization Algorithm and Random Forest Regression. Int. J. Pavement Eng. 2023, 24, 2147672. [Google Scholar] [CrossRef]
- Hossain, M.I.; Gopisetti, L.S.P.; Miah, M.S. International Roughness Index Prediction of Flexible Pavements Using Neural Networks. J. Transp. Eng. Part B Pavements 2019, 145, 04018058. [Google Scholar] [CrossRef]
- Choi, S.; Do, M. Development of the Road Pavement Deterioration Model Based on the Deep Learning Method. Electronics 2019, 9, 3. [Google Scholar] [CrossRef]
- Younos, M.A.; Abd El-Hakim, R.T.; El-Badawy, S.M.; Afify, H.A. Multi-Input Performance Prediction Models for Flexible Pavements Using LTPP Database. Innov. Infrastruct. Solut. 2020, 5, 27. [Google Scholar] [CrossRef]
- Abdelaziz, N.; Abd El-Hakim, R.T.; El-Badawy, S.M.; Afify, H.A. International Roughness Index Prediction Model for Flexible Pavements. Int. J. Pavement Eng. 2020, 21, 88–99. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Sirhan, M.; Bekhor, S.; Sidess, A. Implementation of Deep Neural Networks for Pavement Condition Index Prediction. J. Transp. Eng. Part B Pavements 2022, 148, 04021070. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.D.; Hu, X.; Liu, J. An Efficient and Explainable Ensemble Learning Model for Asphalt Pavement Condition Prediction Based on LTPP Dataset. IEEE Trans. Intell. Transport. Syst. 2022, 23, 22084–22093. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, H.; Li, S. Prediction of International Roughness Index Based on Stacking Fusion Model. Sustainability 2022, 14, 6949. [Google Scholar] [CrossRef]
- Ekmekci, M.; Sinanmis, R.; Woods, L. Predictive Modeling for Highway Pavement Rutting: A Comparative Analysis of Auto-Machine Learning and Structural Equation Models. Transp. Res. Rec. J. Transp. Res. Board 2023, 2678, 03611981231198838. [Google Scholar] [CrossRef]
- Bosurgi, G.; Trifirò, F. A Model Based on Artificial Neural Networks and Genetic Algorithms for Pavement Maintenance Management. Int. J. Pavement Eng. 2005, 6, 201–209. [Google Scholar] [CrossRef]
- Ferreira, A.J.L.; Meneses, S.C.N.; Vicente, F.A.A. Alternative Decision-Aid Tool for Pavement Management. Proc. Inst. Civ. Eng.-Transp. 2009, 162, 3–17. [Google Scholar] [CrossRef]
- Ferreira, A.J.L.; Meneses, S.C.N.; Vicente, F.A.A. Pavement-Management System for Oliveira Do Hospital, Portugal. Proc. Inst. Civ. Eng.-Transp. 2009, 162, 157–169. [Google Scholar] [CrossRef]
- Meneses, S.; Ferreira, A.; Collop, A. Multi-Objective Decision-Aid Tool for Pavement Management. Proc. Inst. Civ. Eng.-Transp. 2013, 166, 79–94. [Google Scholar] [CrossRef]
- Hafez, M.; Ksaibati, K.; Atadero, R.A. Optimizing Expert-Based Decision-Making of Pavement Maintenance Using Artificial Neural Networks with Pattern-Recognition Algorithms. Transp. Res. Rec. 2019, 2673, 90–100. [Google Scholar] [CrossRef]
- Han, C.; Ma, T.; Chen, S. Asphalt Pavement Maintenance Plans Intelligent Decision Model Based on Reinforcement Learning Algorithm. Constr. Build. Mater. 2021, 299, 124278. [Google Scholar] [CrossRef]
- Morales, F.J.; Reyes, A.; Caceres, N.; Romero, L.M.; Benitez, F.G.; Morgado, J.; Duarte, E. A Machine Learning Methodology to Predict Alerts and Maintenance Interventions in Roads. Road Mater. Pavement Des. 2021, 22, 2267–2288. [Google Scholar] [CrossRef]
- Naseri, H.; Ehsani, M.; Golroo, A.; Moghadas Nejad, F. Sustainable Pavement Maintenance and Rehabilitation Planning Using Differential Evolutionary Programming and Coyote Optimisation Algorithm. Int. J. Pavement Eng. 2022, 23, 2870–2887. [Google Scholar] [CrossRef]
- Jooste, F.J.; Costello, S.B.; Rainsford, S. Prediction of Network Level Pavement Treatment Types Using Multi-Classification Machine Learning Algorithms. Road Mater. Pavement Des. 2023, 24, 410–426. [Google Scholar] [CrossRef]
- Jain, A.; Patel, H.; Nagalapatti, L.; Gupta, N.; Mehta, S.; Guttula, S.; Mujumdar, S.; Afzal, S.; Sharma Mittal, R.; Munigala, V. Overview and Importance of Data Quality for Machine Learning Tasks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 23 August 2020; ACM: New York, NY, USA, 2020; pp. 3561–3562. [Google Scholar]
- Gupta, N.; Mujumdar, S.; Patel, H.; Masuda, S.; Panwar, N.; Bandyopadhyay, S.; Mehta, S.; Guttula, S.; Afzal, S.; Sharma Mittal, R.; et al. Data Quality for Machine Learning Tasks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual Event, Singapore, 14 August 2021; ACM: New York, NY, USA, 2021; pp. 4040–4041. [Google Scholar]
- Sessions, V.; Valtorta, M. The Effects of Data Quality on Machine Learning Algorithms. arXiv 2006, arXiv:2207.14529. [Google Scholar]
- Kariluoto, A.; Kultanen, J.; Soininen, J.; Parnanen, A.; Abrahamsson, P. Quality of Data in Machine Learning. In Proceedings of the 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Hainan, China, 6–10 December 2021; pp. 216–221. [Google Scholar]
- Baxter, J. A Model of Inductive Bias Learning. J. Artif. Intell. Res. 2000, 12, 149–198. [Google Scholar] [CrossRef]
- Chakraborty, J.; Majumder, S.; Menzies, T. Bias in Machine Learning Software: Why? How? What to Do? In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece, 20 August 2021; ACM: New York, NY, USA, 2021; pp. 429–440. [Google Scholar]
- Flintsch, G.W.; McGhee, K.K. Transportation Research Board; National Cooperative Highway Research Program Synthesis Program; Transportation Research Board Quality Management of Pavement Condition Data Collection; National Academies Press: Washington, DC, USA, 2009; p. 14325. ISBN 978-0-309-28019-8. [Google Scholar]
- Zwaan, R.A.; Etz, A.; Lucas, R.E.; Donnellan, M.B. Making Replication Mainstream. Behav. Brain Sci. 2017, 41, e120. [Google Scholar] [CrossRef]
- Ioannidis, J.P. How to Make More Published Research True. PLoS Med. 2014, 11, e1001747. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.-L.; Chen, S.-C.; Iyengar, S.S. A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv. 2019, 51, 1–36. [Google Scholar] [CrossRef]
- Buhrmester, V.; Münch, D.; Arens, M. Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey. MAKE 2021, 3, 966–989. [Google Scholar] [CrossRef]
- Barocas, S.; Selbst, A.D. Big Data’s Disparate Impact. SSRN J. 2016, 104, 671–732. [Google Scholar] [CrossRef]
- Hoffmann, A.L. Where Fairness Fails: Data, Algorithms, and the Limits of Antidiscrimination Discourse. Inf. Commun. Soc. 2019, 22, 900–915. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Ye, J.; Qu, G. Privacy Threats and Protection in Machine Learning. In Proceedings of the 2020 on Great Lakes Symposium on VLSI, Virtual Event, China, 7 September 2020; ACM: New York, NY, USA, 2020; pp. 531–536. [Google Scholar]
- Tamagusko, T.; Correia, M.G.; Huynh, M.A.; Ferreira, A. Deep Learning Applied to Road Accident Detection with Transfer Learning and Synthetic Images. Transp. Res. Procedia 2022, 64, 90–97. [Google Scholar] [CrossRef]
- Mortensen, D.T.; Pissarides, C.A. Technological Progress, Job Creation, and Job Destruction. Rev. Econ. Dyn. 1998, 1, 733–753. [Google Scholar] [CrossRef]
- Bessen, J.E. Automation and Jobs: When Technology Boosts Employment. SSRN J. 2018. [Google Scholar] [CrossRef]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Roscher, R.; Bohn, B.; Duarte, M.F.; Garcke, J. Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access 2020, 8, 42200–42216. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Kai, L.; Li, F.-F. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
Topic | Criteria | Query |
---|---|---|
Common for all topics | Peer-reviewed articles 1. Written in English 1. Published after 2018. | The period is added to the query using: PY = 2018–2023 |
Pavement condition assessment | Employs AI techniques to assess pavement conditions. | TS = (“pavement*“ AND (“condition assessment” OR “condition evaluation” OR “distress analysis” OR “defect detection”)) AND TS = (“machine learning” OR “artificial intelligence” OR “deep learning” OR “neural network*”) AND PY = 2018–2023 |
Pavement performance prediction | Apply AI for pavement performance prediction. | TS = (“pavement*” AND (“performance prediction” OR “deterioration model*”)) AND TS = (“machine learning” OR “artificial intelligence” OR “deep learning” OR “neural network*”) AND PY = 2018–2023 |
M&R Decision-Making | Uses AI at some stage of M&R Decision-Making | TS = (“pavement*” AND “maintenance” AND (“optimization” OR “planning” OR “strategy optimization” OR “decision making”)) AND TS = (“machine learning” OR “artificial intelligence” OR “deep learning” OR “neural network*”) AND PY = 2018–2023 |
Algorithm | Key References | Application | Key Findings |
---|---|---|---|
Wavelet with À Trous Algorithm | Wang et al. [101] | Pavement distress detection | Process images of pavements with complex backgrounds and filter image noise |
Beamlet transform | Ying and Salari [102] | Pavement distress detection | Improved distress detection in pavements through the minimization of background illumination variations |
Random Forest (RF) | Cui et al. [103], Shi et al. [104] | Pavement distress detection | Edge detection for distress has been enhanced by incorporating richer information using color gradient features |
Convolutional Neural Network (CNN) | Zhang et al. [105], Gopalakrishnan et al. [106], Song et al. [107] | Pavement distress detection | High accuracy results |
Deep Convolutional Neural Network (D-CNN) | Zhao et al. [112], Ji et al. [111] | Pavement distress detection | Detects, locates, and quantifies road defects |
You Only Look Once version 2 (YOLOv2) | Mandal et al. [114] | Pavement distress detection | Improved crack detection efficiency |
Modified YOLOv3 & modified U-Net | Liu et al. [115] | Pavement crack detection and segmentation | Two-step pavement crack detection method |
YOLO-based framework | Du et al. [116] | Pavement distress detection | Created a large-scale pavement distress dataset |
Deep Neural Networks (DNN) | Khilji et al. [129], Loures and Azar [130] | Pavement distress detection | UAVs can identify distress on unpaved roads |
YOLOv3-ResNet50vd-DCN | Liu et al. [117] | Pavement concealed crack detection | Detection in ground-penetrating radar (GPR) images |
YOLOv4 with Convolutional Block Attention Module (CBAM) | Jiang et al. [118] | Pavement crack detection and segmentation | Two-step pavement crack detection method |
YOLOv3 | Zhu et al. [49] | Pavement distress detection | UAVs with high-resolution cameras can support maintenance planning |
YOLOv3, YOLOv4, YOLOv5 | Tamagusko and Ferreira [121] | Pavement distress detection | YOLOv4 has better accuracy than YOLOv3 and YOLOv5 |
Modified YOLOv5s | Liu et al. [119] | Pavement distress detection | Optimized YOLOv5s for speed and efficiency |
YOLOv7 with Simple parameter-free Attention Module (SimAM) | Yi et al. [120] | Pavement distress detection | Optimized accuracy and speed for real-time pavement distress detection |
Faster region-based convolutional neural network (R-CNN) | Tran et al. [122], Song and Wang [97], Ibragimov et al. [123] | Pavement distress detection | Outperforms traditional methods in detecting and classifying various pavement distress |
Support vector machine (SVM), Artificial Neural Network (ANN), RF | Hoang and Nguyen [73] | Pavement distress detection | SVM performed best |
U-Hierarchical Dilated Network (U-HDN) | Fan et al. [124] | Pavement distress detection | End-to-end framework |
Fully Convolutional Network with Gaussian-conditional Random Field (G-CRF) | Tong et al. [125] | Pavement distress detection | Improved detection results |
Stereo Vision and Modified U-Net | Guan et al. [126] | Pavement distress detection | Pixel-level crack and pothole segmentation |
Pavement distress segmentation network (PDSNet) | Wen et al. [127] | Pavement defects detection and segmentation | Efficient framework |
Mask Region-based Convolutional Neural Network (Mask R-CNN) | He et al. [128] | Pavement defects detection and segmentation | Good accuracy under complex backgrounds |
RetinaNet CNN architecture and depth estimation algorithm | Ranyal et al. [131] | Pothole detection and depth estimation | Implemented depth estimation with good accuracy |
Efficient Crack Segmentation Neural Network (ECSNet) | Zhang et al. [132] | Pavement crack detection and segmentation | Real-time pavement crack segmentation |
Attention based | Yang et al. [133], Chen et al. [134], Ding et al. [135] | Pavement crack detection and segmentation | Improved performance in pixelwise crack segmentation |
Algorithms | Key References | Application | Key Findings |
---|---|---|---|
Support Vector Machines | Ziari et al. [86], Wang et al. [141] | Pavement performance prediction | High accuracy in short-term and long-term performance; higher precision and operability |
Random Forest | Gong et al. [89], Marcelino et al. [37], Naseri et al. [142] | Pavement performance prediction | Importance of initial IRI value in prediction, and promising results |
Neural Networks | Hossain et al. [143], Choi and Do [144], Younos et al. [145], Abdelaziz et al. [146], Zeiada et al. [96], Yao et al. [13], Sirhan et al. [148] | Predicting the pavement transverse cracking, Performance prediction | Accurate performance model and real-world applicability |
Diverse regression algorithms | Piryonesi and El-Diraby [42,62] | Asphalt pavement deterioration modeling | Improved prediction accuracy with ensemble learning techniques and segmenting data by climate |
Ensembles models | Song et al. [149], Damirchilo et al. [90], Guo et al. [91], Luo et al. [150] | Pavement performance prediction | Improved prediction accuracy and consistency |
Auto-Machine Learning (AutoML) | Ekmekci et al. [151] | Predict pavement rutting | AutoML effectively predicts rut depth, but its “black box” nature warrants consideration. |
Algorithm | Key References | Application | Key Findings |
---|---|---|---|
Artificial Neural Network (ANN), and Genetic Algorithms (GA) | Bosurgi and Trifirò [152] | Resurfacing interventions optimization | Effective use of ANN and GA |
ANN | Elbagalati et al. [65] | Pavement M&R Decision-Making | ANN can be used to optimize treatment selection based on structural and functional pavement conditions |
ANN | Hafez et al. [156] | Low-volume road maintenance optimization | Developed tailored decision-making tool using ANN |
Deep Reinforcement Learning (DLR) | Yao et al. [29] | Pavement M&R plans optimization | DRL optimized costs and improved strategies |
RL | Han et al. [157] | Pavement M&R plans optimization | Improve maintenance decision-making |
Decision tree (DT), k-Nearest Neighbors (kNN), ANN, and Support Vector Machines (SVM) | Morales et al. [158] | Decision tree (DT), k-Nearest Neighbors (kNN), ANN, and Support Vector Machines (SVM) | |
Coyote Optimization Algorithm and GA | Naseri et al. [159] | CO2 emission reduction in pavement M&R | Optimization aids CO2 reduction in road M&R |
Random Forest (RF), Multiple Linear Regression (MLR), and Whale Optimization Algorithm (WOA) | Naseri et al. [142] | Pavement M&R plans optimization | Hybrid model outperformed GA in cost-effectiveness |
Ensemble trees | Jooste et al. [160] | Pavement M&R plans recommendation | Predicting pavement treatment types with high accuracy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamagusko, T.; Gomes Correia, M.; Ferreira, A. Machine Learning Applications in Road Pavement Management: A Review, Challenges and Future Directions. Infrastructures 2024, 9, 213. https://doi.org/10.3390/infrastructures9120213
Tamagusko T, Gomes Correia M, Ferreira A. Machine Learning Applications in Road Pavement Management: A Review, Challenges and Future Directions. Infrastructures. 2024; 9(12):213. https://doi.org/10.3390/infrastructures9120213
Chicago/Turabian StyleTamagusko, Tiago, Matheus Gomes Correia, and Adelino Ferreira. 2024. "Machine Learning Applications in Road Pavement Management: A Review, Challenges and Future Directions" Infrastructures 9, no. 12: 213. https://doi.org/10.3390/infrastructures9120213
APA StyleTamagusko, T., Gomes Correia, M., & Ferreira, A. (2024). Machine Learning Applications in Road Pavement Management: A Review, Challenges and Future Directions. Infrastructures, 9(12), 213. https://doi.org/10.3390/infrastructures9120213