Soft-Computing Analysis and Prediction of the Mechanical Properties of High-Volume Fly-Ash Concrete Containing Plastic Waste and Graphene Nanoplatelets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportioning
2.3. Samples Preparations and Experimental Testing
2.4. Proposed AI-Based Methodology
2.4.1. GPR Model
2.4.2. Elman Neural Network (ELNN)
2.4.3. SHAP (Shapley Additive Explanations)
2.4.4. Performance Evaluation Criteria
3. Results and Discussion
3.1. Experimental Results
3.2. Preliminary Analysis
3.3. Results of the Data-Driven Model
3.4. Second Scenario of Modeling STS and FS
3.5. Explainable AI Result (SHAP)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamada, H.M.; Al-Attar, A.; Abed, F.; Beddu, S.; Humada, A.M.; Majdi, A.; Yousif, S.T.; Thomas, B.S. Enhancing sustainability in concrete construction: A comprehensive review of plastic waste as an aggregate material. Sustain. Mater. Technol. 2024, 40, e00877. [Google Scholar] [CrossRef]
- Mayank; Chaturvedi, V.; Mahajan, T.; Singh, R.P.; Kaur, P.; Arora, A. Industrial waste management in Portugal for environmental development. In Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020): Optimization in Industrial and Manufacturing Systems and Applications; Jalandhar, India, 26–28 June 2020; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- McGlade, J.; Samy Fahim, I.; Green, D.; Landrigan, P.; Andrady, A.; Costa, M.; Geyer, R.; Gomes, R.; Tan Shau Hwai, A.; Jambeck, J. From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Oddo, M.C.; Cavaleri, L.; La Mendola, L.; Bilal, H. Integrating Plastic Waste into concrete: Sustainable solutions for the Environment. Materials 2024, 17, 3408. [Google Scholar] [CrossRef]
- Adamu, M.; Trabanpruek, P.; Jongvivatsakul, P.; Likitlersuang, S.; Iwanami, M. Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology. Constr. Build. Mater. 2021, 308, 125085. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, H.; Hu, S.; Wang, M.; Xu, S.; Zhang, W. Permeability and porosity of light-weight concrete with plastic waste aggregate: Experimental study and machine learning modelling. Constr. Build. Mater. 2024, 411, 134465. [Google Scholar] [CrossRef]
- Sau, D.; Shiuly, A.; Hazra, T. Utilization of plastic waste as replacement of natural aggregates in sustainable concrete: Effects on mechanical and durability properties. Int. J. Environ. Sci. Technol. 2024, 21, 2085–2120. [Google Scholar] [CrossRef]
- Saha, S.; Sau, D.; Hazra, T. Economic viability analysis of recycling waste plastic as aggregates in green sustainable concrete. Waste Manag. 2023, 169, 289–300. [Google Scholar] [CrossRef]
- Ojeda, J.P.; Mercante, I.T. Sustainability of recycling plastic waste as fibers for concrete: A review. J. Mater. Cycles Waste Manag. 2023, 25, 2753–2765. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; van der Meide, M.; Di Maio, F.; Yang, X.; Gao, X.; Li, K.; Zhao, H.; Li, C. Life cycle assessment of material footprint in recycling: A case of concrete recycling. Waste Manag. 2023, 155, 311–319. [Google Scholar] [CrossRef]
- Tian, Y.; Bourtsalas, A.T.; Kawashima, S.; Ma, S.; Themelis, N.J. Performance of structural concrete using Waste-to-Energy (WTE) combined ash. Waste Manag. 2020, 118, 180–189. [Google Scholar] [CrossRef]
- Cement, G. Concrete Future: The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete; GCCA: London, UK, 2021. [Google Scholar]
- Griffiths, S.; Sovacool, B.K.; Del Rio, D.D.F.; Foley, A.M.; Bazilian, M.D.; Kim, J.; Uratani, J.M. Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renew. Sustain. Energy Rev. 2023, 180, 113291. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kawano, H. Properties and usage of recycled aggregate concrete. In Demolition Reuse Conc Mason V2; CRC Press: Boca Raton, FL, USA, 2023; pp. 547–556. [Google Scholar]
- Liu, T.; Nafees, A.; Javed, M.F.; Aslam, F.; Alabduljabbar, H.; Xiong, J.-J.; Khan, M.I.; Malik, M. Comparative study of mechanical properties between irradiated and regular plastic waste as a replacement of cement and fine aggregate for manufacturing of green concrete. Ain Shams Eng. J. 2022, 13, 101563. [Google Scholar] [CrossRef]
- Owen, M.M.; Achukwu, E.O.; Romli, A.Z.; Abdullah, A.H.B.; Ramlee, M.H.; Shuib, S.B. Thermal and mechanical characterization of composite materials from industrial plastic wastes and recycled nylon fibers for floor paving tiles application. Waste Manag. 2023, 166, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Shiuly, A.; Hazra, T.; Sau, D.; Maji, D. Performance and optimisation study of waste plastic aggregate based sustainable concrete–A machine learning approach. Clean. Waste Syst. 2022, 2, 100014. [Google Scholar] [CrossRef]
- Olofinnade, O.; Chandra, S.; Chakraborty, P. Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Mater. Today Proc. 2021, 38, 2151–2156. [Google Scholar] [CrossRef]
- Ali, K.; Qureshi, M.I.; Saleem, S.; Khan, S.U. Effect of waste electronic plastic and silica fume on mechanical properties and thermal performance of concrete. Constr. Build. Mater. 2021, 285, 122952. [Google Scholar] [CrossRef]
- Islam, M.J.; Shahjalal, M.; Haque, N.M.A. Mechanical and durability properties of concrete with recycled polypropylene waste plastic as a partial replacement of coarse aggregate. J. Build. Eng. 2022, 54, 104597. [Google Scholar] [CrossRef]
- Abbas, S.N.; Qureshi, M.I.; Abid, M.M.; Tariq, M.A.U.R.; Ng, A.W.M. An Investigation of mechanical properties of concrete by applying sand coating on recycled High-Density Polyethylene (HDPE) and Electronic-Wastes (E-Wastes) used as a partial replacement of natural coarse aggregates. Sustainability 2022, 14, 4087. [Google Scholar] [CrossRef]
- Mohan, R.; Chakrawarthi, V.; Nagaraju, T.V.; Avudaiappan, S.; Awolusi, T.; Roco-Videla, Á.; Azab, M.; Kozlov, P. Performance of recycled Bakelite plastic waste as eco-friendly aggregate in the concrete beams. Case Stud. Constr. Mater. 2023, 18, e02200. [Google Scholar]
- Tayeh, B.A.; Almeshal, I.; Magbool, H.M.; Alabduljabbar, H.; Alyousef, R. Performance of sustainable concrete containing different types of recycled plastic. J. Clean. Prod. 2021, 328, 129517. [Google Scholar] [CrossRef]
- Li, X.; Ling, T.-C.; Mo, K.H. Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete–A review. Constr. Build. Mater. 2020, 240, 117869. [Google Scholar] [CrossRef]
- Surendranath, A.; Ramana, P. Valorization of bakelite plastic waste aimed at auxiliary comprehensive concrete. Constr. Build. Mater. 2022, 325, 126851. [Google Scholar] [CrossRef]
- Al-Tarbi, S.M.; Al-Amoudi, O.S.B.; Al-Osta, M.A.; Al-Awsh, W.A.; Ali, M.R.; Maslehuddin, M. Development of eco-friendly hollow concrete blocks in the field using wasted high-density polyethylene, low-density polyethylene, and crumb tire rubber. J. Mater. Res. Technol. 2022, 21, 1915–1932. [Google Scholar] [CrossRef]
- Záleská, M.; Pavlíková, M.; Pokorný, J.; Jankovský, O.; Pavlík, Z.; Černý, R. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018, 180, 1–11. [Google Scholar] [CrossRef]
- Badache, A.; Benosman, A.S.; Senhadji, Y.; Mouli, M. Thermo-physical and mechanical characteristics of sand-based lightweight composite mortars with recycled high-density polyethylene (HDPE). Constr. Build. Mater. 2018, 163, 40–52. [Google Scholar] [CrossRef]
- Saxena, R.; Siddique, S.; Gupta, T.; Sharma, R.K.; Chaudhary, S. Impact resistance and energy absorption capacity of concrete containing plastic waste. Constr. Build. Mater. 2018, 176, 415–421. [Google Scholar] [CrossRef]
- Al-Tayeb, M.M.; Zeyad, A.M.; Dawoud, O.; Tayeh, B. Experimental and numerical investigations of the influence of partial replacement of coarse aggregates by plastic waste on the impact load. Int. J. Sustain. Eng. 2021, 14, 735–742. [Google Scholar] [CrossRef]
- Punitha, V.; Sakthieswaran, N.; Babu, O.G. Experimental investigation of concrete incorporating HDPE plastic waste and metakaolin. Mater. Today Proc. 2021, 37, 1032–1035. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Krishna, G.G.; Saraswathy, V.; Srinivasan, K. Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Constr. Build. Mater. 2021, 278, 122400. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Adamu, M. Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Constr. Build. Mater. 2018, 159, 234–251. [Google Scholar] [CrossRef]
- Adamu, M.; Mohammed, B.S.; Liew, M.S. Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica. Constr. Build. Mater. 2018, 171, 521–538. [Google Scholar] [CrossRef]
- Adamu, M.; Trabanpruek, P.; Limwibul, V.; Jongvivatsakul, P.; Iwanami, M.; Likitlersuang, S. Compressive behavior and durability performance of high-volume fly-ash concrete with plastic waste and graphene nanoplatelets by using response-surface methodology. J. Mater. Civ. Eng. 2022, 34, 04022222. [Google Scholar] [CrossRef]
- Guo, L.; Wu, J.; Wang, H. Mechanical and perceptual characterization of ultra-high-performance cement-based composites with silane-treated graphene nano-platelets. Constr. Build. Mater. 2020, 240, 117926. [Google Scholar] [CrossRef]
- Jibril, M.; Bello, A.; Aminu, I.I.; Ibrahim, A.S.; Bashir, A.; Malami, S.I.; Habibu, M.; Magaji, M.M. An overview of streamflow prediction using random forest algorithm. GSC Adv. Res. Rev. 2022, 13, 050–057. [Google Scholar] [CrossRef]
- Al-Shamiri, A.K.; Kim, J.H.; Yuan, T.-F.; Yoon, Y.S. Modeling the compressive strength of high-strength concrete: An extreme learning approach. Constr. Build. Mater. 2019, 208, 204–219. [Google Scholar] [CrossRef]
- Hameed, M.M.; AlOmar, M.K.; Baniya, W.J.; AlSaadi, M.A. Prediction of high-strength concrete: High-order response surface methodology modeling approach. Eng. Comput. 2022, 38, 1655–1668. [Google Scholar] [CrossRef]
- Song, H.; Ahmad, A.; Farooq, F.; Ostrowski, K.A.; Maślak, M.; Czarnecki, S.; Aslam, F. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater. 2021, 308, 125021. [Google Scholar] [CrossRef]
- Wen, C.; Wang, C.; Zhang, Y.; Antonov, S.; Xue, D.; Lookman, T.; Su, Y. Modeling solid solution strengthening in high entropy alloys using machine learning. Acta Mater. 2021, 212, 116917. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Sresakoolchai, J.; Kaewunruen, S. Machine learning aided design and prediction of environmentally friendly rubberised concrete. Sustainability 2021, 13, 1691. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P.; Zajdel, P. Application of advanced machine learning approaches to predict the compressive strength of concrete containing supplementary cementitious materials. Materials 2021, 14, 5762. [Google Scholar] [CrossRef]
- Yu, Y.; Fang, G.-H.; Kurda, R.; Sabuj, A.R.; Zhao, X.-Y. An agile, intelligent and scalable framework for mix design optimization of green concrete incorporating recycled aggregates from precast rejects. Case Stud. Constr. Mater. 2024, 20, e03156. [Google Scholar] [CrossRef]
- Zhao, X.-Y.; Hong, M.-Y.; Wu, B. Chemistry-informed multi-objective mix design optimization of self-compacting concrete incorporating recycled aggregates. Case Stud. Constr. Mater. 2023, 19, e02485. [Google Scholar] [CrossRef]
- Cao, R.; Fang, Z.; Jin, M.; Shang, Y. Application of machine learning approaches to predict the strength property of geopolymer concrete. Materials 2022, 15, 2400. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Sabri, M.M.S.; Ulrikh, D.V.; Ahmad, M.; Alsaffar, K.A.M. Predicting the compressive strength of the cement-fly ash–slag ternary concrete using the firefly algorithm (fa) and random forest (rf) hybrid machine-learning method. Materials 2022, 15, 4193. [Google Scholar] [CrossRef] [PubMed]
- ASTM C150/C150M-15; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM C33; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM C192/C192M; Standard Practice for Making and Curing Test Specimens in the Laboratory. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2015.
- ASTM C143/C143M-20; Standard Test Method for Slump Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C138/C138M; Standard Test Method for Density (Unit Weight). Yield and Air Content (Gravimetric) of Concrete. ASTM International: West Conshohocken, PA, USA, 2014.
- BS EN 12390-3:2009; Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standards Institution: London, UK, 2009.
- BS EN 12390-6; Testing Hardened Concrete—Tensile Splitting Strength of Test Specimens. British Standards Institution: London, UK, 2009.
- ASTM C293/C293M; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading). ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM C642; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- Liu, Z.; Lyu, C.; Wang, Z.; Wang, S.; Liu, P.; Meng, Q. A Gaussian-process-based data-driven traffic flow model and its application in road capacity analysis. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1544–1563. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, C.; Yang, W.; Liang, X.; Zhang, L.; Wang, X.; Dai, R. Improving prediction of groundwater quality in situations of limited monitoring data based on virtual sample generation and Gaussian process regression. Water Res. 2024, 267, 122498. [Google Scholar] [CrossRef]
- Haque, M.A.; Ananta, R.A.; Nirob, J.H.; Ahammed, M.S.; Singh, N.S.S.; Paul, L.C.; Algarni, A.D.; ElAffendi, M.; Ateya, A.A. Performance Improvement of THz MIMO Antenna with Graphene and Prediction Bandwidth Through Machine Learning Analysis for 6G Application. Res. Eng. 2024, 24, 103216. [Google Scholar] [CrossRef]
- Cai, R.; Han, T.; Liao, W.; Huang, J.; Li, D.; Kumar, A.; Ma, H. Prediction of surface chloride concentration of marine concrete using ensemble machine learning. Cem. Concr. Res. 2020, 136, 106164. [Google Scholar] [CrossRef]
- Bonneville, C. Bayesian Machine Learning Algorithms for Uncertainty Quantification, Optimization, and Equation Discoveries in Engineering Physics. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2023. [Google Scholar]
- Jia, J.; Zhou, L.; Chen, J. Training quantized one-stage object detection neural networks via selective feature imitation. J. Electron. Imaging 2019, 28, 043022. [Google Scholar] [CrossRef]
- Ren, R.; Cheng, J.; Yin, Y.; Zhan, J.; Wang, L.; Li, J.; Luo, C. Deep convolutional neural networks for log event classification on distributed cluster systems. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1639–1646. [Google Scholar]
- Wang, J.; Zhang, W.; Li, Y.; Wang, J.; Dang, Z. Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 2014, 23, 452–459. [Google Scholar] [CrossRef]
- Selvi, S.; Chandrasekaran, M. Framework to forecast environment changes by optimized predictive modelling based on rough set and Elman neural network. Soft Comput. 2020, 24, 10467–10480. [Google Scholar] [CrossRef]
- Akhtar, K.; Yaseen, M.U.; Imran, M.; Khattak, S.B.A.; Nasralla, M.M. Predicting inmate suicidal behavior with an interpretable ensemble machine learning approach in smart prisons. PeerJ Comput. Sci. 2024, 10, e2051. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Zaman, S.; Rahman, M.M.; Bairagi, A.K.; El-Shafai, W.; Rathore, R.S.; Gupta, D. Efficient prediction of coronary artery disease using machine learning algorithms with feature selection techniques. Comput. Electr. Eng. 2024, 115, 109130. [Google Scholar] [CrossRef]
Mix No | Variables (%) | Constituent Materials (kg/m3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PW | Fly Ash | GNP | Cement | Fly Ash | Fine Agg. | Coarse Agg. | PW | GNP | Water | S.P. | |
Control | 0 | 0 | 0 | 420.7 | 0 | 653.9 | 1176.9 | 0 | 0 | 159.4 | 4.21 |
1 | 30 | 40 | 0.15 | 252.4 | 122.9 | 653.9 | 823.9 | 43.7 | 0.56 | 159.4 | 3.75 |
2 | 0 | 40 | 0.15 | 252.4 | 122.9 | 653.9 | 1176.9 | 0.0 | 0.56 | 159.4 | 3.75 |
3 | 45 | 60 | 0.075 | 168.3 | 184.3 | 653.9 | 647.3 | 65.5 | 0.26 | 159.4 | 3.53 |
4 | 30 | 40 | 0.3 | 252.4 | 122.9 | 653.9 | 823.9 | 43.7 | 1.13 | 159.4 | 3.75 |
5 | 60 | 40 | 0.15 | 252.4 | 122.9 | 653.9 | 470.8 | 87.4 | 0.56 | 159.4 | 3.75 |
6 | 15 | 20 | 0.225 | 336.6 | 61.4 | 653.9 | 1000.4 | 21.8 | 0.90 | 159.4 | 3.98 |
7 | 30 | 40 | 0.15 | 252.4 | 122.9 | 653.9 | 823.9 | 43.7 | 0.56 | 159.4 | 3.75 |
8 | 30 | 40 | 0.15 | 252.4 | 122.9 | 653.9 | 823.9 | 43.7 | 0.56 | 159.4 | 3.75 |
9 | 45 | 20 | 0.225 | 336.6 | 61.4 | 653.9 | 647.3 | 65.5 | 0.90 | 159.4 | 3.98 |
10 | 30 | 0 | 0.15 | 420.7 | 0.0 | 653.9 | 823.9 | 43.7 | 0.63 | 159.4 | 4.21 |
11 | 45 | 20 | 0.075 | 336.6 | 61.4 | 653.9 | 647.3 | 65.5 | 0.30 | 159.4 | 3.98 |
12 | 15 | 60 | 0.225 | 168.3 | 184.3 | 653.9 | 1000.4 | 21.8 | 0.79 | 159.4 | 3.53 |
13 | 30 | 40 | 0.15 | 252.4 | 122.9 | 653.9 | 823.9 | 43.7 | 0.56 | 159.4 | 3.75 |
14 | 15 | 60 | 0.075 | 168.3 | 184.3 | 653.9 | 1000.4 | 21.8 | 0.26 | 159.4 | 3.53 |
15 | 45 | 60 | 0.225 | 168.3 | 184.3 | 653.9 | 647.3 | 65.5 | 0.79 | 159.4 | 3.53 |
16 | 15 | 20 | 0.075 | 336.6 | 61.4 | 653.9 | 1000.4 | 21.8 | 0.30 | 159.4 | 3.98 |
17 | 30 | 40 | 0.15 | 252.4 | 122.9 | 653.9 | 823.9 | 43.7 | 0.56 | 159.4 | 3.75 |
18 | 30 | 80 | 0.15 | 84.1 | 245.8 | 653.9 | 823.9 | 43.7 | 0.49 | 159.4 | 3.30 |
19 | 30 | 40 | 0 | 252.4 | 122.9 | 653.9 | 823.9 | 43.7 | 0.00 | 159.4 | 3.75 |
Name | Formula | Range |
---|---|---|
R | (−∞ < R< 1) | |
PCC | (−∞ < PCC < 1) | |
MSE | (0 < MSE < ∞) | |
MAE | (0 < MAE < ∞) | |
MAPE | (0 < MAPE < 100) | |
RMSE | (0 < MSE < ∞) |
Mix | PW (%) | Fly Ash (%) | GNP (%) | Slump (mm) | FD (kg/m3) | CS (MPa) | STS. (MPa) | FS (MPa) | WA (%) | ME (GPa) |
---|---|---|---|---|---|---|---|---|---|---|
Control | 0 | 0 | 0 | 140 | 2497 | 37.81 | 3.32 | 8.31 | 3.43 | 37.00 |
M1 | 30 | 40 | 0.15 | 155 | 2275 | 31.66 | 3.29 | 7.53 | 3.77 | 32.97 |
M2 | 0 | 40 | 0.15 | 145 | 2328 | 40.14 | 3.88 | 9.77 | 2.71 | 35.69 |
M3 | 45 | 60 | 0.075 | 185 | 2155 | 30.11 | 2.02 | 6.96 | 5.44 | 27.59 |
M4 | 30 | 40 | 0.3 | 130 | 2300 | 35.2 | 3.65 | 8.01 | 3.36 | 26.42 |
M5 | 60 | 40 | 0.15 | 170 | 2005 | 26.86 | 2.28 | 8.15 | 4.64 | 21.37 |
M6 | 15 | 20 | 0.225 | 125 | 2380 | 41.59 | 4.23 | 8.50 | 2.12 | 43.02 |
M7 | 30 | 40 | 0.15 | 160 | 2295 | 33.32 | 3.22 | 7.61 | 4.09 | 33.13 |
M8 | 30 | 40 | 0.15 | 148 | 2306 | 27.35 | 3.04 | 7.12 | 3.86 | 19.06 |
M9 | 45 | 20 | 0.225 | 145 | 2285 | 34.3 | 3.14 | 7.86 | 2.98 | 23.76 |
M10 | 30 | 0 | 0.15 | 158 | 2365 | 39.21 | 3.96 | 8.81 | 2.76 | 37.63 |
M11 | 45 | 20 | 0.075 | 160 | 2279 | 36.11 | 2.95 | 7.92 | 4.16 | 15.95 |
M12 | 15 | 60 | 0.225 | 145 | 2170 | 36.71 | 3.26 | 7.73 | 3.48 | 42.13 |
M13 | 30 | 40 | 0.15 | 150 | 2260 | 34.64 | 3.03 | 7.90 | 3.45 | 34.87 |
M14 | 15 | 60 | 0.075 | 155 | 2153 | 36.27 | 2.86 | 8.33 | 3.73 | 34.19 |
M15 | 45 | 60 | 0.225 | 150 | 2056 | 30.28 | 3.02 | 8.32 | 4.44 | 26.60 |
M16 | 15 | 20 | 0.075 | 150 | 2335 | 37.08 | 3.47 | 10.59 | 2.56 | 35.85 |
M17 | 30 | 40 | 0.15 | 165 | 2280 | 30.49 | 3.16 | 7.79 | 3.54 | 33.13 |
M18 | 30 | 80 | 0.15 | 200 | 2105 | 25.46 | 2.33 | 7.56 | 5.10 | 22.44 |
M19 | 30 | 40 | 0 | 190 | 2250 | 26.77 | 2.16 | 7.08 | 5.04 | 27.09 |
Parameters | Mean | Median | Mode | Standard Deviation | Sample Variance | Kurtosis | Skewness | Minimum | Maximum |
---|---|---|---|---|---|---|---|---|---|
PW | 28.5 | 30 | 30 | 15.0 | 223.7 | −0.2 | −0.1 | 0 | 60.0 |
FA | 38 | 40 | 40 | 19.9 | 397.7 | −0.2 | −0.1 | 0 | 80.0 |
GNP | 0.13625 | 0.15 | 0.15 | 0.1 | 0.0 | 0.0 | 0.1 | 0 | 0.3 |
W/C | 0.4985 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.3 | 0.45 | 0.6 |
CP | 9.5 | 5 | 0 | 11.0 | 120.8 | −0.8 | 1.0 | 0 | 28.0 |
Density | 631.521 | 0 | 0 | 1097.2 | 1,203,847.6 | −0.6 | 1.2 | 0 | 2770.0 |
Slump | 39.1167 | 0 | 0 | 68.6 | 4704.4 | −0.4 | 1.2 | 0 | 210.0 |
CS | 20.2353 | 24.065 | 0 | 13.1 | 171.6 | −1.0 | −0.5 | 0 | 46.0 |
STS | 1.91187 | 2.20748 | 0 | 1.3 | 1.6 | −1.1 | −0.4 | 0 | 4.6 |
FS | 3.76457 | 2.135 | 0 | 3.9 | 14.9 | −1.8 | 0.1 | 0 | 11.0 |
ME | 14.0927 | 6.93628 | 0 | 14.9 | 221.2 | −1.6 | 0.3 | 0 | 44.1 |
(a) | ||||||
Calibration Phase CS | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.9559 | 0.9703 | 0.9930 | 0.9502 | 0.9713 | 0.9930 |
PCC | 0.9554 | 0.9700 | 0.9929 | 0.9497 | 0.9710 | 0.9930 |
MSE | 0.0063 | 0.0071 | 0.0010 | 0.0071 | 0.0083 | 0.0010 |
MAE | 0.0519 | 0.0606 | 0.0225 | 0.0575 | 0.0633 | 0.0216 |
MAPE | 10.1639 | 12.1774 | 4.0198 | 11.4610 | 13.2311 | 4.0734 |
RMSE | 0.0797 | 0.0844 | 0.0320 | 0.0844 | 0.0914 | 0.0319 |
Verification phase CS | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.7046 | 0.8579 | 0.9505 | 0.6070 | 0.8658 | 0.9459 |
PCC | 0.5786 | 0.8071 | 0.9339 | 0.4151 | 0.8172 | 0.9283 |
MSE | 0.0129 | 0.0181 | 0.0025 | 0.0164 | 0.0154 | 0.0028 |
MAE | 0.0951 | 0.1139 | 0.0396 | 0.1080 | 0.1062 | 0.0410 |
MAPE | 15.0112 | 15.8288 | 5.9636 | 17.2098 | 15.0184 | 6.1183 |
RMSE | 0.1137 | 0.1345 | 0.0499 | 0.1279 | 0.1242 | 0.0527 |
(b) | ||||||
Calibration Phase FS | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.9853 | 0.4787 | 0.9973 | 0.9817 | 0.4768 | 0.9909 |
PCC | 0.9853 | 0.4769 | 0.9973 | 0.9817 | 0.4750 | 0.9909 |
MSE | 0.0026 | 0.0855 | 0.0005 | 0.0032 | 0.0961 | 0.0016 |
MAE | 0.0220 | 0.2240 | 0.0094 | 0.0270 | 0.2194 | 0.0164 |
MAPE | 3.5068 | 7.8800 | 1.3529 | 3.8288 | 6.6083 | 1.9067 |
RMSE | 0.0506 | 0.2923 | 0.0217 | 0.0566 | 0.3100 | 0.0405 |
Verification phase FS | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.8428 | 0.7869 | 0.9684 | 0.7783 | 0.6351 | 0.8995 |
PCC | 0.6930 | 0.5644 | 0.9428 | 0.5499 | 0.4253 | 0.8151 |
MSE | 0.0046 | 0.0771 | 0.0010 | 0.0062 | 0.0622 | 0.0031 |
MAE | 0.0483 | 0.2658 | 0.0260 | 0.0561 | 0.2303 | 0.0409 |
MAPE | 6.7463 | 36.4975 | 3.6733 | 7.7968 | 31.7615 | 5.5832 |
RMSE | 0.0675 | 0.2777 | 0.0314 | 0.0788 | 0.2493 | 0.0554 |
(c) | ||||||
Calibration Phase ME | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.9726 | 0.4846 | 0.9945 | 0.9726 | 0.2998 | 0.9891 |
PCC | 0.9726 | 0.4829 | 0.9945 | 0.9726 | 0.2968 | 0.9890 |
MSE | 0.0044 | 0.0752 | 0.0009 | 0.0043 | 0.0894 | 0.0017 |
MAE | 0.0287 | 0.2098 | 0.0144 | 0.0280 | 0.2739 | 0.0183 |
MAPE | 4.9311 | 7.6619 | 2.1563 | 4.9164 | 11.1765 | 2.7859 |
RMSE | 0.0660 | 0.2743 | 0.0294 | 0.0654 | 0.2990 | 0.0416 |
Verification phase ME | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.6101 | 0.8289 | 0.9665 | 0.6067 | 0.1047 | 0.9211 |
PCC | 0.5115 | 0.8044 | 0.9584 | 0.5115 | −0.1370 | 0.9015 |
MSE | 0.0204 | 0.0782 | 0.0021 | 0.0206 | 0.1229 | 0.0049 |
MAE | 0.1199 | 0.2531 | 0.0366 | 0.1203 | 0.3078 | 0.0573 |
MAPE | 20.4107 | 35.7624 | 5.7617 | 20.5905 | 43.4695 | 9.0269 |
RMSE | 0.1428 | 0.2797 | 0.0457 | 0.1436 | 0.3506 | 0.0697 |
(d) | ||||||
Calibration Phase STS | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.9311 | 0.9627 | 0.9856 | 0.9214 | 0.9596 | 0.9850 |
PCC | 0.9305 | 0.9623 | 0.9855 | 0.9207 | 0.9593 | 0.9849 |
MSE | 0.0094 | 0.0076 | 0.0020 | 0.0106 | 0.0079 | 0.0021 |
MAE | 0.0653 | 0.0589 | 0.0286 | 0.0682 | 0.0571 | 0.0292 |
MAPE | 14.1846 | 13.7567 | 5.6602 | 15.7122 | 13.9598 | 5.8760 |
RMSE | 0.0972 | 0.0869 | 0.0449 | 0.1029 | 0.0891 | 0.0459 |
Verification phase STS | ||||||
Model | GPR-M1 | GPR-M2 | GPR-M3 | ELNN-M1 | ELNN-M2 | ELNN-M3 |
R | 0.7241 | 0.7975 | 0.9482 | 0.6684 | 0.7564 | 0.9338 |
PCC | 0.6489 | 0.7401 | 0.9353 | 0.5640 | 0.6843 | 0.9173 |
MSE | 0.0140 | 0.0208 | 0.0029 | 0.0163 | 0.0217 | 0.0037 |
MAE | 0.0904 | 0.1227 | 0.0439 | 0.1001 | 0.1243 | 0.0476 |
MAPE | 16.1952 | 18.6285 | 7.5270 | 17.9350 | 19.0498 | 8.2496 |
RMSE | 0.1183 | 0.1442 | 0.0540 | 0.1278 | 0.1472 | 0.0609 |
Calibration Phase of STS | Calibration Phase of FS | ||||
Model | GPR | ELNN | Model | GPR | ELNN |
R | 0.9861 | 0.9849 | R | 0.9985 | 0.997283 |
PCC | 0.9860 | 0.9847 | PCC | 0.9985 | 0.997277 |
MSE | 0.0019 | 0.0021 | MSE | 0.00026 | 0.00048 |
MAE | 0.0281 | 0.0284 | MAE | 0.00873 | 0.010056 |
MAPE | 5.6172 | 5.8442 | MAPE | 0.97414 | 1.377609 |
RMSE | 0.0441 | 0.0461 | RMSE | 0.01623 | 0.021915 |
Verification Phase of STS | Verification phase of FS | ||||
Model | GPR | ELNN | Model | GPR | ELNN |
R | 0.9494 | 0.9438 | R | 0.98756 | 0.95889 |
PCC | 0.9368 | 0.9302 | PCC | 0.97754 | 0.925991 |
MSE | 0.0028 | 0.0032 | MSE | 0.00039 | 0.001325 |
MAE | 0.0433 | 0.0457 | MAE | 0.01619 | 0.025256 |
MAPE | 7.4168 | 7.7756 | MAPE | 2.33304 | 3.579094 |
RMSE | 0.0534 | 0.0565 | RMSE | 0.0198 | 0.036394 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamu, M.; Ibrahim, Y.E.; Jibril, M.M. Soft-Computing Analysis and Prediction of the Mechanical Properties of High-Volume Fly-Ash Concrete Containing Plastic Waste and Graphene Nanoplatelets. Infrastructures 2024, 9, 214. https://doi.org/10.3390/infrastructures9120214
Adamu M, Ibrahim YE, Jibril MM. Soft-Computing Analysis and Prediction of the Mechanical Properties of High-Volume Fly-Ash Concrete Containing Plastic Waste and Graphene Nanoplatelets. Infrastructures. 2024; 9(12):214. https://doi.org/10.3390/infrastructures9120214
Chicago/Turabian StyleAdamu, Musa, Yasser E. Ibrahim, and Mahmud M. Jibril. 2024. "Soft-Computing Analysis and Prediction of the Mechanical Properties of High-Volume Fly-Ash Concrete Containing Plastic Waste and Graphene Nanoplatelets" Infrastructures 9, no. 12: 214. https://doi.org/10.3390/infrastructures9120214
APA StyleAdamu, M., Ibrahim, Y. E., & Jibril, M. M. (2024). Soft-Computing Analysis and Prediction of the Mechanical Properties of High-Volume Fly-Ash Concrete Containing Plastic Waste and Graphene Nanoplatelets. Infrastructures, 9(12), 214. https://doi.org/10.3390/infrastructures9120214