The rising population and demand for plastic materials lead to increasing plastic waste (PW) annually, much of which is sent to landfills without adequate recycling, posing serious environmental risks globally. PWs are grinded to smaller sizes and used as aggregates in concrete, where
[...] Read more.
The rising population and demand for plastic materials lead to increasing plastic waste (PW) annually, much of which is sent to landfills without adequate recycling, posing serious environmental risks globally. PWs are grinded to smaller sizes and used as aggregates in concrete, where they improve environmental and materials sustainability. On the other hand, PW causes a significant reduction in the mechanical properties and durability of concrete. To mitigate the negative effects of PW, highly reactive pozzolanic materials are normally added as additives to the concrete. In this study, PW was used as a partial substitute for coarse aggregate, and graphene nanoplatelets (GNPs) were used as additives to high-volume fly-ash concrete (HVFAC). Utilizing PW as aggregates and GNPs as additives has been found to enhance the mechanical properties of HVFAC. Hence, this study employed two machine-learning (ML) models, namely Gaussian Process Regression (GPR) and Elman Neural Network (ELNN), to forecast the mechanical properties of HVFAC. The study input variables were PW, FA, GNP, W/C, CP, density, and slump, where the target variables are compressive strength (CS), modulus of elasticity (ME), splitting tensile strength (STS), and flexural strength (FS). A total of 240 datasets were employed in this study and divided into calibration (70%) and validation (30%) sets. During the prediction of the CS, it was found that GPR-M3 outperforms all other models with an R-value equal to 0.9930 and PCC value of 0.9929 in the calibration phase, and R-value = 0.9505 and PCC = 0.9339 in the verification phase. Additionally, during the modeling of FS, it was also noticed that GPR-M3 surpasses all other combinations with R = 0.9973 and PCC = 0.9973 in calibration and R = 0.9684 and PCC = 0.9428 in the verification phase. Moreover, in ME modeling, GPR-M3 is the best modeling combination and shows high accuracy with R = 0.9945 and PCC = 0.9945 in calibration and R = 0.9665 and PCC = 0.9584 in the verification phase. On the other hand, GPR-M3 outperforms all other models during the modeling of STS with R = 0.9856 and PCC = 0.9855 in calibration, and R = 0.9482 and PCC = 0.9353 in the verification phase. Further quantitative analysis shows that, in the prediction of CS, the GPR improves the prediction accuracy of ELNN by 0.49%, while during the prediction of the splitting tensile strength, it was also found that the GPR improved the accuracy of ELNN by 1.54%. In FS prediction, it was also improved by 7.66%, while in ME, it was improved by 4.9%. In conclusion, this AI-based model proves how accurate and effective it was to employ an ML-based model in forecasting the mechanical properties of HVFAC.
Full article