New Estimates for Exponentially Convex Functions via Conformable Fractional Operator
Abstract
:1. Introduction
2. Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Citti, P.; Cowling, M.G.; Ricci, F. Hardy and uncertainty inequalities on stratified Lie groups. Adv. Math. 2015, 49, 365–387. [Google Scholar] [CrossRef]
- Gavrea, I.B. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
- Gunawan, H.; Eridani, E. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef]
- Swanano, Y.; Wadade, H. On the Gagliardo–Nirenberg type inequality in the critical Sobolev–Orrey space. J. Fourier Ann. Appl. 2013, 19, 20–47. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite–Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Bakula, M.K.; Özdemir, M.E.; Pecaric, J. Hadamard type inequalities for m-convex and (α,m)-convex functions. J. Inequal. Pure. Appl. Math. 2008, 9, 12. [Google Scholar]
- Dragomir, S.S.; Gomm, I. Some Hermite–Hadamard type inequalities for functions whose exponentials are convex. Stud. Univ. Babes Bolyai Math. 2015, 60, 527–534. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamamrd Inequalities and Applications, rGMIA Monographs; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Heramits–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite Hadamard type inequalities for Reimann-Liouville fractional integrals of (α,m)-convex functions. Fract. Differ. Calc. 2014, 4, 33–45. [Google Scholar]
- Wang, J.; Zhu, C.; Zhoy, Y. On new generalized Hermite–Hadamard type inequalites and applications to special means. J. Inequal. Appl. 2013, 325, 1–15. [Google Scholar]
- Wu, S.-H. On the weighted generaizations of the Hermite–Hadamard inequality and its applications. Rocky Mt. J. Math. 2009, 39, 1741–1749. [Google Scholar] [CrossRef]
- Antczak, T. On (p,r)-invex sets and functions. J. Math. Anal. Appl. 2001, 263, 355–379. [Google Scholar] [CrossRef]
- Alirezaei, G.; Mathar, R. On exponentially concave functions and their impact in information theory. In Proceedings of the 2018 Information Theory and Applications Workshop, San Diego, CA, USA, 11–16 February 2018. [Google Scholar]
- Pal, S.; Wong, T.K.L. On exponentially concave functions and a new information geometry. Ann. Prob. 2018, 46, 1070–1113. [Google Scholar] [CrossRef]
- Noor, M.A. Some deveolpments in general variational inequalities. Appl. Math. Comput. 2004, 152, 199–277. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integral and Series in Elementry Functions; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Abdeljawad, T. On conformable fractional calculas. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Hammad, M.A.; Khalil, R. Abel’s formula and wronskian for confromable fractional differential equations. Int. J. Differ. Equ. Appl. 2014, 13, 177–183. [Google Scholar]
- Hammad, M.A.; Khalil, R. Conformable fractional heat differental equations. Int. J. Pure Appl. Math. 2014, 94, 215–221. [Google Scholar]
- Katugampola, U. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousaf, A.; Sababeh, M.A. New definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, S.; Noor, M.A.; Noor, K.I. New Estimates for Exponentially Convex Functions via Conformable Fractional Operator. Fractal Fract. 2019, 3, 19. https://doi.org/10.3390/fractalfract3020019
Rashid S, Noor MA, Noor KI. New Estimates for Exponentially Convex Functions via Conformable Fractional Operator. Fractal and Fractional. 2019; 3(2):19. https://doi.org/10.3390/fractalfract3020019
Chicago/Turabian StyleRashid, Saima, Muhammad Aslam Noor, and Khalida Inayat Noor. 2019. "New Estimates for Exponentially Convex Functions via Conformable Fractional Operator" Fractal and Fractional 3, no. 2: 19. https://doi.org/10.3390/fractalfract3020019
APA StyleRashid, S., Noor, M. A., & Noor, K. I. (2019). New Estimates for Exponentially Convex Functions via Conformable Fractional Operator. Fractal and Fractional, 3(2), 19. https://doi.org/10.3390/fractalfract3020019