An Existence Result for ψ-Hilfer Fractional Integro-Differential Hybrid Three-Point Boundary Value Problems
Abstract
:1. Introduction
2. Preliminaries
3. Existence Result
- The functions , , and for , are continuous and there exist positive functions ϕ, , , , with bounds , , and , , respectively, such thatandfor and x,
- Assume that
4. An Example
5. Special Cases
- (I)
- Let and for all and Then, the problem (6) reduces to the following -Hilfer fractional boundary value problem:
- (II)
- Let for all and Then, the problem (6) reduces to the following -Hilfer fractional boundary value problem:
- (III)
- Let for all and Then, the problem (6) reduces to the following -Hilfer fractional boundary value problem:
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Newcastle upon Tyne, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Agarwal, R.P.; Ahmad, B.; Alsaedi, A. Fractional-order differential equations with anti-periodic boundary conditions: A survey. Bound. Value Probl. 2017, 2017, 173. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, 11, 107384. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K. Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions. Electron. J. Differ. Equ. 2012, 2012, 1–22. [Google Scholar]
- Bai, Z.B.; Sun, W. Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 2012, 63, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Graef, J.R.; Kong, L.; Kong, Q. Application of the mixed monotone operator method to fractional boundary value problems. Fract. Differ. Calc. 2011, 2, 554–567. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Tariboon, J.; Sudsutad, W. Boundary value problems for Riemann-Liouville fractional differential inclusions with nonlocal Hadamard fractional integral conditions. Meditter. J. Math. 2016, 13, 939–954. [Google Scholar] [CrossRef]
- Ntouyas, S.K. A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions. Foundations 2021, 1, 7. [Google Scholar] [CrossRef]
- Kiataramkul, C.; Yukunthorn, W.; Ntouyas, S.K.; Tariboon, J. Sequential Riemann-Liouville and Hadamard-Caputo fractional differential systems with nonlocal coupled fractional integral boundary conditions. Axioms 2021, 10, 174. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Baleanu, D.; Souid, M.S.; Hakem, A.; Inc, M. Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique. Adv. Differ. Equ. 2021, 1, 1–9. [Google Scholar]
- Alam, M.; Zada, A.; Popa, I.-L.; Kheiryan, A.; Rezapour, S.; Kaabar, M.K.A. A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers-Ulam stability. Bound. Value Prob. 2021, 1, 1–18. [Google Scholar]
- Altafini, C.; Speranzon, A.; Johansson, K.H. Hybrid control of a truck and trailer vehicle. In Hybrid Systems: Computation and Control; Tomlin, C.J., Greenstreet, M.R., Eds.; Lecture Notes in Computer Science; Springer: New York, NY, USA, 2002; Volume 2289. [Google Scholar]
- Balluchi, A.; Soueres, P.; Bicchi, A. Hybrid feedback control for path tracking by a bounded-curvature vehicle. In Hybrid Systems: Computation and Control; Benedetto, M.D., Sangiovanni-Vincentelli, A.L., Eds.; Lecture Notes in Computer Science; Springer: New York, NY, USA, 2001; Volume 2034. [Google Scholar]
- Engell, S.; Kowalewski, S.; Schultz, C.; Strusberg, O. Continuous–discrete interactions in chemical process plants. Proc. IEEE 2000, 7, 1050–1068. [Google Scholar] [CrossRef]
- Alur, R.; Courcoubetis, C.; Dill, D. Model checking for real-time systems. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, Philadelphia, PA, USA, 4–7 June 1990; pp. 414–425. [Google Scholar]
- Lygeros, J.; Godbole, D.N.; Sastry, S. A verified hybrid controller for automated vehicles. IEEE Trans. Automat. Control 1998, 43, 522–539. [Google Scholar] [CrossRef] [Green Version]
- Varaiya, P. Smart cars on smart roads: Problems of control. IEEE Trans. Automat. Control 1993, 38, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhao, Y.; Han, Z.; Li, Y. The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4961–4967. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions. Abstr. Appl. Anal. 2014, 7, 705809. [Google Scholar] [CrossRef]
- Dhage, B.C.; Ntouyas, S.K. Existence results for boundary value problems for fractional hybrid differential inclucions. Topol. Methods Nonlinar Anal. 2014, 44, 229–238. [Google Scholar] [CrossRef]
- Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equations. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Acta Math. Sci. 2016, 36B, 1–10. [Google Scholar] [CrossRef]
- Dhage, B. A fixed point theorem in Banach algebras with applications to functional integral equations. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
- Sitho, S.; Ntouyas, S.K.; Tariboon, J. Existence results for hybrid fractional integro-differential equations. Bound. Value Probl. 2015, 2015, 113. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.A. A fixed point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, R.A.; Shah, K. Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations. Bound. Value Probl. 2019, 2019, 77. [Google Scholar] [CrossRef] [Green Version]
- Boutiara, A.; Etemad, S.; Hussain, A.; Rezapour, S. The generalized U–H and U–H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϕ-Caputo fractional operators. Adv. Differ. Equ. 2021, 2021, 95. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 2019, 473. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alexandria Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]
- Shabna, M.S.; Ranjin, M.C. On existence of ψ-Hilfer hybrid fractional differential equations. South East Asian J. Math. Math. Sci. 2020, 16, 41–56. [Google Scholar]
- Sousa, J.V.d.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Sudsutad, W.; Thaiprayoon, C.; Ntouyas, S.K. Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Math. 2021, 6, 4119–4141. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Vivek, D. Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions. Acta Math. Univ. Comen. 2021, XC, 171–185. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiataramkul, C.; Ntouyas, S.K.; Tariboon, J. An Existence Result for ψ-Hilfer Fractional Integro-Differential Hybrid Three-Point Boundary Value Problems. Fractal Fract. 2021, 5, 136. https://doi.org/10.3390/fractalfract5040136
Kiataramkul C, Ntouyas SK, Tariboon J. An Existence Result for ψ-Hilfer Fractional Integro-Differential Hybrid Three-Point Boundary Value Problems. Fractal and Fractional. 2021; 5(4):136. https://doi.org/10.3390/fractalfract5040136
Chicago/Turabian StyleKiataramkul, Chanakarn, Sotiris K. Ntouyas, and Jessada Tariboon. 2021. "An Existence Result for ψ-Hilfer Fractional Integro-Differential Hybrid Three-Point Boundary Value Problems" Fractal and Fractional 5, no. 4: 136. https://doi.org/10.3390/fractalfract5040136
APA StyleKiataramkul, C., Ntouyas, S. K., & Tariboon, J. (2021). An Existence Result for ψ-Hilfer Fractional Integro-Differential Hybrid Three-Point Boundary Value Problems. Fractal and Fractional, 5(4), 136. https://doi.org/10.3390/fractalfract5040136