Existence of the Class of Nonlinear Hybrid Fractional Langevin Quantum Differential Equation with Dirichlet Boundary Conditions
Abstract
:1. Introduction
- and are continuous functions such that, and for all ;
- for all , and .
2. Preliminaries
- (i)
- ;
- (ii)
- .
3. Main Results
- (i)
- whenever ;
- (ii)
- is compact and continuous;
- (iii)
- is a contraction mapping.
4. Example
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrawal, O.P. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the oscillatory behavior of a class of fourth-order nonlinear differential equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Frederico, G.S.F.; Torres, D.F.M. Fractional conservation laws in optimal control theory. Nonlinear Dyn. 2008, 53, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North- Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J. Theory of Fractional Dynamic Systems; Cambridge Academic Publishers: Cambridge, UK, 2009. [Google Scholar]
- Lim, S.C.; Teo, L.P. The fractional oscillator process with two indices. J. Phys. A Math. Theor. 2009, 42, 065208. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.S.; Ganesan, V. Asymptotic behavior of solutions of third-order neutral differential equations with discrete and distributed delay. AIMS Math. 2020, 5, 3851–3874. [Google Scholar] [CrossRef]
- Gayathri, T.; Deepa, M.; Kumar, M.S.; Sadhasivam, V. Hille and Nehari Type Oscillation Criteria for Conformable Fractional Differential Equations. Iraqi J. Sci. 2021, 62, 578–587. [Google Scholar] [CrossRef]
- Ganesan, V.; Kumar, M.S. Oscillation theorems for fractional order neutral differential equations. Int. J. Math. Sci. Eng. Appl. (IJMSEA) 2016, 10, 23–37. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C.; Ntouyas, S.K. Existence results for boundary values problem for fractional hybrid differential inclusions. Topol. Methods Nonlinear Anal. 2014, 44, 229–238. [Google Scholar] [CrossRef]
- Dhage, B.C. Basic results in theory of hybrid differential equations with mixed perturbations of second type. Funct. Differ. Equ. 2012, 19, 87–106. [Google Scholar]
- Dhage, B.C. A fixed point theorem in Banach algebras with applications to functional integral equations. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
- Dhage, B.C. A nonlinear alternative with applications to nonlinear perturbed differential equations. Nonlinear Stud. 2006, 13, 343–354. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions. Abstr. Appl. Anal. 2014, 2014, 705809. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence results for a system of coupled hybrid fractional differential equations. Sci. World J. 2014, 174, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Zhao, Y.; Han, Z.; Li, Q. The existence of solutions for boundary value problem of fractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4961–4967. Available online: https://www.overleaf.com/project/6159d9b1b32a7f1b89feb03b (accessed on 29 September 2021). [CrossRef]
- Jackson, F.H. On q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Carmichael, R.D. The general theory of linear q-difference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Adams, C.R. On the Linear Ordinary q-Difference Equation. Ann. Math. 1928, 30, 195. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 2009, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Area, I.; Godoy, E.; Nieto, J.J. Fixed point theory approach to boundary value problems for second-order difference equations on non-uniform lattices. Adv. Differ. Equ. 2014, 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Ashyralyev, A.; Nalbant, N.; Sözen, Y. Structure of fractional spaces generated by second order difference operators. J. Frankl. Inst. 2014, 351, 713–731. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-fractional calculus and equations. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 2012; Volume 2056. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag–Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
- Coffey, W.T.; Kalmykov, Y.P.; Waldron, J.T. The Langevin Equation, 2nd ed.; World Scientific: Singapore, 2004. [Google Scholar]
- Denisov, S.I.; Kantz, H.; Hänggi, P. Langevin equation with super-heavy-tailednoise. J. Phys. A Math. Theor. 2010, 43, 285004. [Google Scholar] [CrossRef] [Green Version]
- Lizana, L.; Ambjörnsson, T.; Taloni, A.; Barkai, E.; Lomholt, M.A. Foundation of fractional Langevin equation: Harmonization of a many-body problem. Phys. Rev. E 2010, 81, 051118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozinski, A.; Owens, R.G.; Phillips, T.N. The Langevin and Fokker–Planck equations in polymer rheology. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2011; Volume 16, pp. 211–303. [Google Scholar]
- Ahmad, B.; Nieto, J.J. Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Differ. Equ. 2010, 10, 649486. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; El-Shahed, M. A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal. Real World Appl. 2012, 13, 599–606. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 2012, 140. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Al-Hutami, H. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J. Frankl. Inst. 2014, 351, 2890–2909. [Google Scholar] [CrossRef]
- Ferreira, R. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70, 1–10. [Google Scholar] [CrossRef]
- Ferreira, R. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Goodrich, C.S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 2011, 61, 191–202. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L. Positive solutions for a class of higher order boundary value problems with fractional q derivatives. Appl. Math. Comput. 2012, 218, 9682–9689. [Google Scholar] [CrossRef]
- Bazighifan, O. On the oscillation of certain fourth-order differential equations with p-Laplacian like operator. Appl. Math. Comput. 2020, 386, 125475. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.; Taiboon, J. Existence results for hybrid fractional integro-differential equations. Bound. Value Probl. 2015, 2015, 113. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagajothi, N.; Sadhasivam, V.; Bazighifan, O.; El-Nabulsi, R.A. Existence of the Class of Nonlinear Hybrid Fractional Langevin Quantum Differential Equation with Dirichlet Boundary Conditions. Fractal Fract. 2021, 5, 156. https://doi.org/10.3390/fractalfract5040156
Nagajothi N, Sadhasivam V, Bazighifan O, El-Nabulsi RA. Existence of the Class of Nonlinear Hybrid Fractional Langevin Quantum Differential Equation with Dirichlet Boundary Conditions. Fractal and Fractional. 2021; 5(4):156. https://doi.org/10.3390/fractalfract5040156
Chicago/Turabian StyleNagajothi, Nagamanickam, Vadivel Sadhasivam, Omar Bazighifan, and Rami Ahmad El-Nabulsi. 2021. "Existence of the Class of Nonlinear Hybrid Fractional Langevin Quantum Differential Equation with Dirichlet Boundary Conditions" Fractal and Fractional 5, no. 4: 156. https://doi.org/10.3390/fractalfract5040156
APA StyleNagajothi, N., Sadhasivam, V., Bazighifan, O., & El-Nabulsi, R. A. (2021). Existence of the Class of Nonlinear Hybrid Fractional Langevin Quantum Differential Equation with Dirichlet Boundary Conditions. Fractal and Fractional, 5(4), 156. https://doi.org/10.3390/fractalfract5040156