H-U-Type Stability and Numerical Solutions for a Nonlinear Model of the Coupled Systems of Navier BVPs via the Generalized Differential Transform Method
Abstract
:1. Introduction
2. Preliminaries
3. Results for Existence
4. Results for H-U-Type Stability
5. Numerical Solutions via GDT-Method
Estimation of Error
6. Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDE | Fractional Differential Equation |
BVP | Boundary Value Problem |
H-U-type Stability | Hyers-Ulam-Type stability |
GDT | Generalized Differential Transform |
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Kilbas, A.A.; Marichev, O.I.; Samko, S.G. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: London, UK, 1993. [Google Scholar]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Matar, M.M. Existence of solution for fractional neutral hybrid differential equations with finite delay. Rocky Mountain J. Math. 2020, 50, 2141–2148. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Boucenna, D.; Boulfoul, A.; Chidouh, A.; Ben Makhlouf, A.; Tellab, B. Some results for initial value problem of nonlinear fractional equation in Sobolev space. J. Appl. Math. Comput. 2021. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Tariboon, J.; Sudsutad, W. Boundary value problems for Riemann-Liouville fractional differential inclusions with nonlocal Hadamard fractional integral conditions. Mediterr. J. Math. 2016, 13, 939–954. [Google Scholar] [CrossRef]
- Rezapour, S.; Ntouyas, S.K.; Iqbal, M.Q.; Hussain, A.; Etemad, S.; Tariboon, J. An analytical survey on the solutions of the generalized double-order ϕ-integro-differential equation. J. Funct. Spaces 2021, 2021, 6667757. [Google Scholar]
- Rezapour, S.; Ntouyas, S.K.; Amara, A.; Etemad, S.; Tariboon, J. Some existence and dependence criteria of solutions to a fractional integro-differential boundary value problem via the generalized Gronwall inequality. Mathematics 2021, 9, 1165. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Boutiara, A.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 2020, 5, 259–272. [Google Scholar]
- Alzabut, J.; Selvam, G.M.; El-Nabulsi, R.A.; Vignesh, D.; Samei, M.E. Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions. Symmetry 2021, 13, 473. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S. A novel modeling of boundary value problems on the Glucose graph. Commun. Nonlinear Sci. Numer. Simul. 2021, 100, 105844. [Google Scholar] [CrossRef]
- Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etemad, S.; Rezapour, S. On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Adv. Differ. Equ. 2021, 2021, 201. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Mohammadi, H. A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals. Adv. Differ. Equ. 2020, 2020, 481. [Google Scholar] [CrossRef]
- Etemad, S.; Rezapour, S. On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Differ. Equ. 2020, 2020, 276. [Google Scholar] [CrossRef]
- Mohammadi, H.; Rezapour, S.; Etemad, S.; Baleanu, D. Two sequential fractional hybrid differential inclusions. Adv. Differ. Equ. 2020, 2020, 385. [Google Scholar] [CrossRef]
- Shah, K.; Khan, R.A. Iterative scheme for a coupled system of fractional-order differential equations with three-point boundary conditions. Math. Methods Appl. Sci. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Shah, K.; Khalil, H.; Khan, R.A. Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. Chaos Solitons Fractals 2015, 77, 240–246. [Google Scholar] [CrossRef]
- Ardjouni, A.; Lachouri, A.; Djoudi, A. Existence and uniqueness results for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations. Open J. Math. Anal. 2019, 3, 106–111. [Google Scholar] [CrossRef]
- Matar, M.M. Approximate controllability of fractional nonlinear hybrid differential systems via resolvent operators. J. Math. 2019, 2019, 8603878. [Google Scholar] [CrossRef]
- Wang, J.; Feckan, M.; Zhou, Y. Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. Bull. Sci. Math. 2017, 141, 727–746. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. Adomian decomposition: A tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 2005, 301, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Guirao, J.L.G. Numerical solutions caused by DGJIM and ADM methods for multi-term fractional BVP involving the generalized ψ-RL-operators. Symmetry 2021, 13, 532. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 2006, 350, 87–88. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D. A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 2018, 91, 307–317. [Google Scholar] [CrossRef]
- Naghipour, A.; Manafian, J. Application of the Laplace Adomian decomposition and implicit methods for solving Burgers’ equation. TWMS J. Pure Appl. Math. 2015, 6, 68–77. [Google Scholar]
- Arikoglu, A.; Ozkol, I. Solutions of integral and integro-differential equation systems by using differential transform method. Comput. Math. Appl. 2008, 56, 2411–2417. [Google Scholar] [CrossRef] [Green Version]
- Arikoglu, A.; Ozkol, I. Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 2009, 40, 521–529. [Google Scholar] [CrossRef]
- Shah, K.; Wang, J.; Khalil, H.; Khan, R.A. Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations. Adv. Differ. Equ. 2018, 2018, 149. [Google Scholar] [CrossRef] [Green Version]
- Alrabaiah, H.; Ahmad, I.; Shah, K.; Rahman, G.U. Qualitative analysis of nonlinear coupled pantograph differential equations of fractional order with integral boundary conditions. Bound. Value Probl. 2020, 2020, 138. [Google Scholar] [CrossRef]
- Bachar, I.; Eltayeb, H. Existence and uniqueness results for fractional Navier boundary value problems. Adv. Differ. Equ. 2020, 2020, 609. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
- Zhou, J.K. Differential Transformation and Its Applications for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986. (In Chinese) [Google Scholar]
- Odibat, Z.; Momani, S. Generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 2008, 21, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Erturk, V.S.; Momani, S.; Odibat, Z. Application of generalized differential transform method to multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1642–1654. [Google Scholar] [CrossRef]
- Odibat, Z.; Kumar, S.; Shawagfeh, N.; Alsaedi, A.; Hayat, T. A study on the convergence conditions of generalized differential transform method. Math. Methods Appl. Sci. 2017, 40, 40–48. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezapour, S.; Tellab, B.; Deressa, C.T.; Etemad, S.; Nonlaopon, K. H-U-Type Stability and Numerical Solutions for a Nonlinear Model of the Coupled Systems of Navier BVPs via the Generalized Differential Transform Method. Fractal Fract. 2021, 5, 166. https://doi.org/10.3390/fractalfract5040166
Rezapour S, Tellab B, Deressa CT, Etemad S, Nonlaopon K. H-U-Type Stability and Numerical Solutions for a Nonlinear Model of the Coupled Systems of Navier BVPs via the Generalized Differential Transform Method. Fractal and Fractional. 2021; 5(4):166. https://doi.org/10.3390/fractalfract5040166
Chicago/Turabian StyleRezapour, Shahram, Brahim Tellab, Chernet Tuge Deressa, Sina Etemad, and Kamsing Nonlaopon. 2021. "H-U-Type Stability and Numerical Solutions for a Nonlinear Model of the Coupled Systems of Navier BVPs via the Generalized Differential Transform Method" Fractal and Fractional 5, no. 4: 166. https://doi.org/10.3390/fractalfract5040166
APA StyleRezapour, S., Tellab, B., Deressa, C. T., Etemad, S., & Nonlaopon, K. (2021). H-U-Type Stability and Numerical Solutions for a Nonlinear Model of the Coupled Systems of Navier BVPs via the Generalized Differential Transform Method. Fractal and Fractional, 5(4), 166. https://doi.org/10.3390/fractalfract5040166