Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space with Perov’s Fixed Point Theorem
Abstract
:1. Introduction
2. Preliminaries
- (i)
- For all ; if , then ,
- (ii)
- for all and , and
- (iii)
- for all
- (i)
- The matrix M converges to zero.
- (ii)
- The matrix is invertible, and .
- (iii)
- The spectral radius is strictly less than 1.
3. Main Results
- The functions are integrable and there exists the matrix such that
- For each , there is a positive number such that
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Magin, R.L. Fractional calculus in bioengineering, part 1. In Critical Reviews™ in Biomedical Engineering; BEGELL HOUSE Inc.: Danbury, CT, USA, 2004; Volume 32. [Google Scholar]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Soczkiewicz, E. Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust. 2002, 23, 397–404. [Google Scholar]
- Leibniz, G.W.; Gerhardt, C.I. Mathematische Schriften; Olms: Zurich, Switzerland, 1962. [Google Scholar]
- Perov, A. On the Cauchy problem for a system of ordinary differential equations, Priblijen. Metod Res. Dif. Urav. Kiev 1964, 2, 115–134. [Google Scholar]
- Aghajani, A.; Pourhadi, E.; Rivero, M.; Trujillo, J. Application of Perov’s fixed point theorem to Fredholm type integro-differential equations in two variables. Math. Slovaca 2016, 66, 1207–1216. [Google Scholar] [CrossRef]
- Belbali, H.; Benbachir, M. Existence results and Ulam-Hyers stability to impulsive coupled system fractional differential equations. Turk. J. Math. 2021, 45, 1368–1385. [Google Scholar] [CrossRef]
- Bica, A.M.; Muresan, S. Approaching nonlinear Volterra neutral delay integro-differential equations with the Perov’s fixed point theorem. Fixed Point Theory 2007, 8, 187–200. [Google Scholar]
- Graef, J.R.; Kadari, H.; Ouahab, A.; Oumansour, A. Existence results for systems of second-order impulsive differential equations. Acta Math. Univ. Comen. 2019, 88, 51–66. [Google Scholar]
- Moghaddam, M.H.Z.; Allahyari, R.; Omidvar, M.E.; Haghighi, A.S. Existence of solutions for some classes of integro-differential equations in the Sobolev space Wn,p(R+). J. Fixed Point Theory Appl. 2018, 20, 1–16. [Google Scholar] [CrossRef]
- Hassan, A.; Amer, S. Existence of solutions for a class of quasi-linear singular integro-differential equations in a Sobolev space. Bull. Malays. Math. Sci. Soc. 2009, 32, 295–306. [Google Scholar]
- Vougalter, V.; Volpert, V. Existence of solutions for some non-Fredholm integro-differential equations with the bi-laplacian. Math. Methods Appl. Sci. 2021, 44, 220–231. [Google Scholar] [CrossRef]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Idczak, D.; Walczak, S. Fractional Sobolev spaces via Riemann-Liouville derivatives. J. Funct. Spaces Appl. 2013, 2013, 128043. [Google Scholar] [CrossRef]
- Boucenna, D.; Boulfoul, A.; Chidouh, A.; Makhlouf, A.B.; Tellab, B. Some results for initial value problem of nonlinear fractional equation in Sobolev space. J. Appl. Math. Comput. 2021, 67, 605–621. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives-Theory and Applications; Gordon and Breach Science Publishers: Linghorne, PA, USA, 1993. [Google Scholar]
- Kilbas, A. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2. [Google Scholar]
- Graef, J.R.; Henderson, J.; Ouahab, A. Topological Methods for Differential Equations and Inclusions; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Varga, R.S. Matrix Iterative Analysis; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laksaci, N.; Boudaoui, A.; Abodayeh, K.; Shatanawi, W.; Shatnawi, T.A.M.
Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space
Laksaci N, Boudaoui A, Abodayeh K, Shatanawi W, Shatnawi TAM.
Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space
Laksaci, Noura, Ahmed Boudaoui, Kamaleldin Abodayeh, Wasfi Shatanawi, and Taqi A. M. Shatnawi.
2021. "Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space
Laksaci, N., Boudaoui, A., Abodayeh, K., Shatanawi, W., & Shatnawi, T. A. M.
(2021). Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space