Next Article in Journal
FPAA-Based Realization of Filters with Fractional Laplace Operators of Different Orders
Next Article in Special Issue
Some Double Generalized Weighted Fractional Integral Inequalities Associated with Monotone Chebyshev Functionals
Previous Article in Journal
Mawhin’s Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via Piecewise Constant Functions
Previous Article in Special Issue
H-U-Type Stability and Numerical Solutions for a Nonlinear Model of the Coupled Systems of Navier BVPs via the Generalized Differential Transform Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space Wa+γ1,1(a,b)×Wa+γ2,1(a,b) with Perov’s Fixed Point Theorem

by
Noura Laksaci
1,
Ahmed Boudaoui
2,
Kamaleldin Abodayeh
3,*,
Wasfi Shatanawi
3,4,5,* and
Taqi A. M. Shatnawi
5
1
Laboratory of Mathematics Modeling and Applications, University of Adrar, National Road No. 06, Adrar 01000, Algeria
2
Department of Mathematics and Computer Science, University of Adrar, National Road No. 06, Adrar 01000, Algeria
3
Department of General Sciences, Prince Sultan University, Riyadh P.O. Box 66833, Saudi Arabia
4
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
5
Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2021, 5(4), 217; https://doi.org/10.3390/fractalfract5040217
Submission received: 25 October 2021 / Revised: 6 November 2021 / Accepted: 11 November 2021 / Published: 13 November 2021
(This article belongs to the Special Issue Fractional Dynamical Systems: Applications and Theoretical Results)

Abstract

:
This paper is devoted to studying the existence and uniqueness of a system of coupled fractional differential equations involving a Riemann–Liouville derivative in the Cartesian product of fractional Sobolev spaces E = W a + γ 1 , 1 ( a , b ) × W a + γ 2 , 1 ( a , b ) . Our strategy is to endow the space E with a vector-valued norm and apply the Perov fixed point theorem. An example is given to show the usefulness of our main results.

1. Introduction

The beauty of fractional calculus lies in finding the derivative and integration of an operator for any order. Therefore, fractional derivatives became helpful in studying the anomalous behavior of dynamical systems in biology, viscoelasticity, bioengineering, electrochemistry, etc. [1,2,3,4]. So, the subject of fractional calculus has become the center of attractive research.
The origins of fractional calculus go back to the end of the 17th century, starting from the discussion between Leibniz and de l’Hôpital regarding the meaning of d 1 2 f d t 1 2 [5]. Moreover, several investigations have been introduced to develop and study this important mathematical field, including Liouville, Riemann, Abel, Riesz, Weyl, Hadamard, and Caputo.
To ensure a solution of some nonlinear problems, researchers utilize some suitable fixed point theorems. One of these theorems is the Banach contraction principle. Perov, in 1965, extended the Banach contraction principle to the vector-valued metric spaces by replacing the contraction factor with a matrix that converges to zero [6]. Perov’s fixed point theorem is one of the crucial methods to prove an existence solution of systems of differential equations, fractional differential equations, and integral equations in N variables; see [7,8,9,10], and the references cited therein.
Recently, a number of interesting papers [11,12,13] on the solvability of mathematical problems in Sobolev spaces W n , p ( R + ) [14] with the help of fixed point theory have been presented. In [15], the authors utilized the Riemann–Liouville derivative to introduce the left fractional Sobolev spaces W a + γ , p ( a , b ) , where < a < b < + , 1 p < + , and n 1 < γ n , n N .
Boucenna et al. [16] proved the existence of the solution for the following initial value problem:
{ R L D 0 + α ϱ ( t ) = f ( t , ϱ ( t ) , R L D 0 + α 1 ϱ ( t ) ) , t ( 0 , 1 ) R L D 0 + α 1 ϱ ( 0 ) = ϱ 0 ,   R L I 0 + 2 α ϱ ( 0 ) = ϱ 1
in the fractional Sobolev space W 0 + α 1 , 1 ( 0 , 1 ) where R L D 0 + α is the Riemann–Liouville fractional derivative of order α , 1 < α 2 , R L I 0 + 2 α is the Riemann–Liouville fractional integral, and f satisfies some certain conditions.
Our work is devoted to studying the existence and the uniqueness of a coupled system of fractional differential equations of the form:
{ R L D 0 + α 1 ϱ 1 ( t ) = f 1 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + α 1 1 ϱ 1 ( t ) ) , R L D 0 + α 2 ϱ 2 ( t ) = f 2 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + α 2 1 ϱ 2 ( t ) ) , R L D 0 + α 1 1 ϱ 1 ( 0 ) = ϱ 1 0 ,   R L I 0 + 2 α 1 ϱ 1 ( 0 ) = ϱ 1 1 R L D 0 + α 2 1 ϱ 2 ( 0 ) = ϱ 2 0 ,   R L I 0 + 2 α 2 ϱ 2 ( 0 ) = ϱ 2 1 ,
in the generalized Banach space W 0 + α 1 1 , 1 ( 0 , b ) × W 0 + α 2 1 , 1 ( 0 , b ) where ϱ 0 , ϱ 1 R 2 , 1 < α 1 , α 2 2 , and for each i = 1 , 2 , R L D 0 + α i is the Riemann–Liouville fractional derivative of order α i and f i : ( 0 , b ) × R 3 R .
We organize our paper as follows. In Section 2, we present the essential definitions and background that will be used in the rest of our paper. In Section 3, we use the Perov fixed point theorem to establish the existence and uniqueness of a solution of problem (1). In the last section, we give an example to show the applicability of our main result.

2. Preliminaries

In this section, we introduce some notations, definitions, and auxiliary results that will be used later. We begin with the following basic definitions of fractional calculus.
Definition 1.
The Riemann–Liouville fractional integral [17] of order γ for a function f L 1 ( 0 , b ) is defined as
R L I 0 + γ f ( t ) = 1 Γ ( γ ) 0 t ( t s ) γ 1 f ( s ) d s ,
where
Γ ( γ ) = 0 t γ 1 e t d t   R ( γ ) > 0 .
Definition 2.
The Riemann–Liouville fractional derivative of order γ of a function f is given by
R L D 0 + γ f ( t ) = 1 Γ ( n γ ) ( d d t ) n 0 t ( t s ) n γ 1 f ( s ) d s ,
where n = I n ( γ ) + 1 , and I n ( γ ) denotes the integer part of γ [17,18].
Definition 3.
The Mittag-Leffler function is defined by [17,19]
E γ , λ ( z ) = k = 0 z k Γ ( γ k + λ ) ,   ( z C , R ( λ ) , R ( γ ) > 0 )
.
The following assertion shows that fractional differentiation is an operation inverse to the fractional integration from the left.
Lemma 1.
If f L 1 [ 0 , b ] , then the following equality
R L D 0 + γ R L I 0 + γ f ( t ) = f ( t ) ,   R ( γ ) > 0
holds almost everywhere on [ 0 , b ] [18,19].
Lemma 2.
Let z , t R [20]. Then,
E γ , λ ( z ) 1 γ z 1 λ γ e z 1 γ ,   0 < γ < 2 , λ > 1 .
On M m × n ( R + ) , we define a partial order relation as follows: Let M , N M m × n ( R + ) , m 1 , and n 1 . Put M = ( M i , j ) 1 j m 1 i n and N = ( N i , j ) 1 j m 1 i n . Then,
M N   if   N i , j M i , j     for   all   j = 1 , , m , i = 1 , , n . M N   if   N i , j > M i , j     for   all   j = 1 , , m , i = 1 , , n .
Definition 4.
Let E be a vector space on K = R   o r   C . By a generalized norm on E , we mean a map
· G : E R + n ϱ ϱ G = ( ϱ 1 ϱ n )
satisfying the following properties:
(i)
For all ϱ E ; if ϱ G = 0 R + n , then ϱ = 0 ,
(ii)
λ ϱ G = | λ | ϱ G for all ϱ E and λ K , and
(iii)
ϱ + v G ϱ G + v G for all ϱ , v E .
The pair ( E , · G ) is called a vector (generalized) normed space. Furthermore, ( E , · G ) is called a generalized Banach space (in short, GBS), if the vector metric space generated by its vector metric is complete.
Remark 1.
In the sense of Perov, the definitions of convergence sequence, continuity, and open and closed subsets in a GBS are similar to those for usual Banach spaces [21].
Let ( E , · G ) be a generalized Banach space. For r = ( r 1 , , r n ) R + n , ϱ 0 E , and i = 1 , , n , we define the open ball B ( ϱ 0 , r ) and the closed ball B ¯ ( ϱ 0 , r ) centered at ϱ 0 as follows:
B ( ϱ 0 , r ) = { ϱ E : ϱ 0 ϱ G r } ( resp . B i ( ϱ 0 , r i ) = { ϱ E : ϱ 0 ϱ i < r i } ) ,
and
B ¯ ( ϱ 0 , r ) = { ϱ E : ϱ 0 ϱ G r } ( resp . B i ¯ ( ϱ 0 , r i ) = { ϱ E : ϱ 0 ϱ i r i } ) ,
If ϱ 0 = 0 , then we simply denote B r = B ( 0 , r ) and B r ¯ = B ¯ ( 0 , r ) .
Definition 5.
Let ( E , · G ) be a GBS and let K be a subset of E . Then, K is said to be G-bounded, if there exists a vector V R + n such that
f o r   a l l   ϱ K ,   ϱ G V .
Definition 6.
A matrix M M n × n ( R + ) is said to be convergent to zero if
M m 0 ,   a s   m .
Lemma 3.
Let M M n × n ( R + ) . Then, the following affirmations are equivalent [22]:
(i)
The matrix M converges to zero.
(ii)
The matrix I M is invertible, and ( I M ) 1 M n × n ( R + ) .
(iii)
The spectral radius ρ ( M ) is strictly less than 1.
Definition 7.
Let ( E , d G ) be a complete generalized metric space and let N be an operator from E into itself. N is called G-Lipschitzian if there exists a square matrix M of non-negative numbers such that
d G ( N ( ϱ ) , N ( v ) ) M d G ( ϱ , v ) ,   f o r   a l l   ϱ , v E .
If the matrix M converges to zero, then N is called an M-contraction.
The following result is due to Perov, which is a generalization of the Banach contraction principle.
Theorem 1.
Let E be a complete generalized metric space and let N : E E be an M-contraction operator [6]. Then, N has a unique fixed point in E .
From [15], the left fractional Sobolev space of order γ is the set W 0 + γ , 1 ( 0 , b ) defined as follows:
W 0 + γ , 1 ( 0 , b ) = { f : f L 1 ( 0 , b ) , R L D 0 + γ f L 1 ( 0 , b ) } ,   0 < γ < 1 ,
endowed with the norm
f W 0 + γ , 1 ( 0 , b ) = f L 1 ( 0 , b ) + R L D 0 + γ f L 1 ( 0 , b ) .
Lemma 4.
W 0 + γ 1 , 1 ( 0 , b ) × W 0 + γ 2 , 1 ( 0 , b ) is a generalized Banach space endowed with the generalized norm
x G = ( ϱ 1 W 0 + γ 1 , 1 ( 0 , b ) ϱ 2 W 0 + γ 2 , 1 ( 0 , b ) ) = ( ϱ 1 L 1 ( 0 , b ) + R L D 0 + γ 1 ϱ 1 L 1 ( 0 , b ) ϱ 2 L 1 ( 0 , b ) + R L D 0 + γ 2 ϱ 2 L 1 ( 0 , b ) ) .

3. Main Results

In this section, we study the existence and the uniqueness of a solution for a coupled system of fractional differential equations (1).
Lemma 5.
ϱ is a solution of System (1) if and only if it is a solution of the following problem:
{ R L D 0 + β 1 ϱ 1 ( t ) = e θ t 0 t F 1 ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β 1 ϱ 1 ( s ) ) e θ s d s + ϱ 1 0 e θ t , R L D 0 + β 2 ϱ 2 ( t ) = e θ t 0 t F 2 ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β 2 ϱ 2 ( s ) ) e θ s d s + ϱ 2 0 e θ t , R L I 0 + 1 β 1 ϱ 1 ( 0 ) = ϱ 1 1 , R L I 0 + 1 β 2 ϱ 2 ( 0 ) = ϱ 2 1
where β i = α i 1 , θ > 0 , and
F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) = f i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) θ R L D 0 + β i ϱ i ( s ) ,
for each i = 1 , 2 .
Proof. 
For each i = 1 , 2 , we have
0 t R L D 0 + α i ϱ i ( s ) e θ s d s = 0 t f i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + α i 1 ϱ i ( s ) ) e θ s d s .
Thus
R L D 0 + α i 1 ϱ i ( t ) e θ t = 0 t f i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + α i 1 ϱ i ( s ) ) e θ s θ R L D 0 + β i ϱ i ( s ) e θ s d s + ϱ i 0 .
Hence,
R L D 0 + β i ϱ i ( t ) = e θ t 0 t F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) e θ s d s + ϱ i 0 e θ t .
Reciprocally, by returning to (2), for each i = 1 , 2 , R L D 0 + β i ϱ i ( 0 ) = ϱ i 0 , we find
R L D 0 + β i ϱ i ( t ) e θ t R L D 0 + β i ϱ i ( 0 ) e θ t = 0 t f i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) e θ s d s 0 t θ R L D 0 + β i ϱ i ( s ) e θ s d s .
Hence, by replacing β i with α i 1 , we get
R L D 0 + α i ϱ i ( t ) = f i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + α i 1 ϱ i ( s ) ) .
Lemma 6.
ϱ is a solution of System (2) if and only if it is a solution of the following fractional integral equation system:
{ ϱ 1 ( t ) = 0 t ( t s ) β 1 E 1 , β 1 + 1 ( θ ( t s ) ) F 1 ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β 1 ϱ 1 ( s ) ) d s + ϱ 1 0 t β 1 E 1 , β 1 + 1 ( θ t ) + ϱ 1 1 Γ ( β ) t β 1 1 ϱ 2 ( t ) = 0 t ( t s ) β 2 E 1 , β 2 + 1 ( θ ( t s ) ) F 2 ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β 2 ϱ 2 ( s ) ) d s + ϱ 2 0 t β 2 E 1 , β 2 + 1 ( θ t ) + ϱ 2 1 Γ ( β ) t β 2 1 .
Proof. 
The proof of the above lemma can be found in [16]. □
In the rest of the paper, we assume the following hypotheses:
( H 1 )
The functions F i : ( 0 , b ) × R × R × R R are integrable and there exists the matrix M : = ( λ 11 λ 12 λ 21 λ 22 ) such that
( ess   sup t ( 0 , b ) | λ 11 ( t ) e θ t | ess   sup t ( 0 , b ) | λ 12 ( t ) e θ t | ess   sup t ( 0 , b ) | λ 21 ( t ) e θ t | ess   sup t ( 0 , b ) | λ 22 ( t ) e θ t | ) ( Λ 11 Λ 12 Λ 21 Λ 22 ) M 2 × 2 ( R + ) ,
and for each ( t , ϱ 1 , ϱ 2 , ϱ 3 ) , ( t , x 1 , x 2 , x 3 ) ( 0 , b ) × R × R × R and for i { 1 , 2 } , we have:
| F i ( t , ϱ 1 , ϱ 2 , ϱ 3 ) F i ( t , x 1 , x 2 , x 3 ) | λ i 1 ( t ) | ϱ 1 x 1 | + λ i 2 ( t ) | ϱ 2 x 2 | .
( H 2 )
For each i = 1 , 2 , there is a positive number ξ i such that
0 b | F i ( t , 0 , 0 , 0 ) e θ t | d t ξ i .
Theorem 2.
Suppose that the assumptions ( H 1 ) and ( H 2 ) are satisfied. Then System (3) has a unique solution in E if the matrix
M * = ( Λ 1 , 1 Λ 1 , 2 Λ 2 , 1 Λ 2 , 2 )
converges to zero, and there is r R + 2 that fulfills
r ( 1 Λ 1 , 1 e b ( θ β i + 1 ) θ β i + 1 Λ 1 , 2 e b ( θ β i + 1 ) θ β i + 1 Λ 2 , 1 e b ( θ β i + 1 ) θ β i + 1 1 Λ 2 , 2 e b ( θ β i + 1 ) θ β i + 1 ) 1 × ( e b ( θ β i + 1 ) θ β i + 1 ξ 1 + | ϱ 1 0 | θ β 1 ( e θ b + θ β 1 1 e b ) + | ϱ 1 1 | Γ ( β i ) β 1 b β i e b ( θ β i + 1 ) θ β i + 1 ξ 2 + | ϱ 2 0 | θ β 2 ( e θ b + θ β 1 1 e b ) + | ϱ 2 1 | Γ ( β 2 ) β i b β 2 ) .
Proof. 
We define the operator N : W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b ) W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b ) by
N ( ϱ ) ( t ) = ( N 1 ( ϱ ) ( t ) N 2 ( ϱ ) ( t ) ) = ( 0 t ( t s ) β 1 E 1 , β 1 + 1 ( θ ( t s ) ) F 1 ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β 1 ϱ 1 ( s ) ) d s + ϱ 1 0 t β 1 E 1 , β 1 + 1 ( θ t ) + ϱ 1 1 Γ ( β ) t β 1 1 0 t ( t s ) β 2 E 1 , β 2 + 1 ( θ ( t s ) ) F 2 ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β 2 ϱ 2 ( s ) ) d s + ϱ 2 0 t β 2 E 1 , β 2 + 1 ( θ t ) + ϱ 2 1 Γ ( β ) t β 2 1 ) ,
to see if each i = 1 , 2 N i ( ϱ ) and R L D 0 + β i N i ( ϱ ) are measurable for any
ϱ W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b ) .
Step 1: First, we shall show that the mapping
N : W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b ) W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b )
is well defined. Using our hypotheses, for arbitrarily fixed t ( 0 , b ) , ϱ W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b ) and i = 1 , 2 , we obtain
| N i ϱ ( t ) | 0 t ( t s ) β i E 1 , β i + 1 ( θ ( t s ) ) ( F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) ) d s + | ϱ i 0 | t β i E 1 , β i + 1 ( θ t ) + | ϱ i 1 | Γ ( β i ) t β i 1 0 t ( t s ) β i E 1 , β i + 1 ( θ ( t s ) ) | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ ( s ) ) F i ( s , 0 , 0 , 0 ) | d s + 0 t ( t s ) β i E 1 , β i + 1 ( θ ( t s ) ) | F i ( s , 0 , 0 , 0 ) | d s + | ϱ i 0 | t β i E 1 , β i + 1 ( θ t ) + | ϱ i 1 | Γ ( β i ) t β i 1 0 t θ β i e θ ( t s ) | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) F i ( s , 0 , 0 , 0 ) | d s + 0 t θ β i e θ ( t s ) | F i ( s , 0 , 0 , 0 ) | d s + | ϱ i 0 | θ β i e θ t + | ϱ i 1 | Γ ( β i ) t β i 1 .
Lemma 2 implies that
0 b | N i ϱ ( t ) | d t 0 b 0 t θ β i e θ ( t s ) | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) F i ( s , 0 , 0 , 0 ) | d s d t + 0 b 0 t θ β i e θ ( t s ) | F i ( s , 0 , 0 , 0 ) | d s d t + 0 b | ϱ i 0 | θ β i e θ t + | ϱ i 1 | Γ ( β i ) t β i 1 d t θ β i 0 b e θ t 0 t e θ s ( λ i , 1 ( s ) | ϱ 1 ( s ) | + λ i , 2 ( s ) | ϱ 2 ( s ) | + | F i ( s , 0 , 0 , 0 ) | ) d s d t + | ϱ i 0 | θ β i ( e θ b 1 ) + | ϱ i 1 | Γ ( β i ) β i b β i ( e b 1 ) θ 1 + β i 0 b e θ s ( λ i , 1 ( s ) | ϱ 1 ( s ) | + λ i , 2 ( s ) | ϱ 2 ( s ) | + | F i ( s , 0 , 0 , 0 ) | ) d s + | ϱ i 0 | θ β i ( e θ b 1 ) + | ϱ i 1 | Γ ( β i ) β i b β i ( e b 1 ) θ 1 + β i ( Λ i , 1 ϱ 1 W 0 + β 1 , 1 ( 0 , b ) + Λ i , 2 ϱ 2 W 0 + β 2 , 1 ( 0 , b ) + ξ i ) + | ϱ i 0 | θ β i ( e θ b 1 ) + | ϱ i 1 | Γ ( β i ) β i b β i .
Additionally,
| R L D 0 + β i ( N i ϱ ) ( t ) | e θ t 0 t | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) F i ( s , 0 , 0 , 0 ) | e θ s + | F i ( s , 0 , 0 , 0 ) | e θ s d s + | ϱ i 0 | e θ t .
Then,
0 b | R L D 0 + β i ( N i ϱ ) ( t ) | d t 0 b e θ t 0 t | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) F i ( s , 0 , 0 , 0 ) | e θ s d s d t + 0 b e θ t 0 t | F i ( s , 0 , 0 , 0 ) | e θ s d s d t + | ϱ i 0 | 0 b e θ t d t 0 b ( e b 1 ) θ ( λ i , 1 ( s ) | ϱ 1 ( s ) | + λ i , 2 ( s ) | ϱ 2 ( s ) | + | F i ( s , 0 , 0 , 0 ) | ) e θ s d s + 1 θ | ϱ i 0 | ( e b 1 ) ( e b 1 ) θ ( Λ i , 1 ϱ 1 W 0 + β 1 , 1 ( 0 , b ) + Λ i , 2 ϱ 2 W 0 + β 2 , 1 ( 0 , b ) + ξ i + | ϱ i 0 | ) .
Thus,
N i ( ϱ ) W 0 + β i , 1 ( 0 , b ) e b ( θ β i + 1 ) θ β i + 1 ( Λ i , 1 ϱ 1 W 0 + β 1 , 1 ( 0 , b ) + Λ i , 2 ϱ 2 W 0 + β 2 , 1 ( 0 , b ) + ξ i ) + | ϱ i 0 | θ β i ( e θ b + θ β 1 1 e b ) + | ϱ i 1 | Γ ( β i ) β i b β i < .
This means that the operator N maps W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b ) into itself. Keeping in mind that the vector r fulfills (5), we find that for all ϱ B ¯ r and i = 1 , 2 ,
N ( ϱ ) G e b ( θ β i + 1 ) θ β i + 1 ( Λ 1 , 1 Λ 1 , 2 Λ 2 , 1 Λ 2 , 2 ) ( ϱ 1 W 0 + β 1 , 1 ( 0 , b ) ϱ 2 W 0 + β 2 , 1 ( 0 , b ) ) + ( e b ( θ β i + 1 ) θ β i + 1 ξ i + | ϱ 1 0 | θ β 1 ( e θ b + θ β 1 1 e b ) + | ϱ 1 1 | Γ ( β i ) β 1 b β i e b ( θ β i + 1 ) θ β i + 1 ξ i + | ϱ 2 0 | θ β 2 ( e θ b + θ β 1 1 e b ) + | ϱ 2 1 | Γ ( β 2 ) β i b β 2 ) ( r 1 r 2 ) .
Due to (6), we derive that N is a mapping from B ¯ r into B ¯ r .
Step 2: Our claim here is to prove that the operator N is G-contractive. To this end, let ϱ : = ( ϱ 1 , ϱ 2 ) , v : = ( v 1 , v 2 ) W 0 + β 1 , 1 ( 0 , b ) × W 0 + β 2 , 1 ( 0 , b ) . Then, for each i = 1 , 2 ,
0 b | N i ( ϱ ) ( t ) N i ( v ) ( t ) | d t = | 0 t ( t s ) β i E 1 , β i + 1 ( θ ( t s ) ) F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) d s 0 t ( t s ) β i E 1 , β i + 1 ( θ ( t s ) ) F i ( s , v 1 ( s ) , v 2 ( s ) , R L D 0 + β i v i ( s ) ) d s | 0 b 0 t ( t s ) β i E 1 , β i + 1 ( θ ( t s ) ) | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) F i ( s , v 1 ( s ) , v 2 ( s ) , R L D 0 + β i v i ( s ) ) | d s d t ,
so
0 b | N i ( ϱ ) ( t ) N i ( v ) ( t ) | d t 0 b 0 t θ β i e θ ( t s ) | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) F i ( s , v 1 ( s ) , v 2 ( s ) , R L D 0 + β i v i ( s ) ) | d s d t 0 b 0 t θ β i e θ ( t s ) ( λ i , 1 ( s ) | ϱ 1 ( s ) v 1 ( s ) | + λ i , 2 ( s ) | ϱ 2 ( s ) v 2 ( s ) | ) d s d t ( e b 1 ) θ 1 + β i 0 b e θ s ( λ i , 1 ( s ) | ϱ 1 ( s ) v 1 ( s ) | + λ i , 2 ( s ) | ϱ 2 ( s ) v 2 ( s ) | ) d s ( e b 1 ) θ 1 + β i ( Λ i , 1 ϱ 1 v 1 W 0 + β 1 , 1 ( 0 , b ) + Λ i , 2 ϱ 2 v 2 W 0 + β 2 , 1 ( 0 , b ) ) .
On the other hand, for i = 1 , 2 , we have
0 b | R L D 0 + β i ( N i ϱ ) ( t ) R L D 0 + β i ( N i v ) ( t ) | d t 0 b e θ t 0 t | F i ( s , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) F i ( s , , ϱ 1 ( s ) , ϱ 2 ( s ) , R L D 0 + β i ϱ i ( s ) ) | e θ s d s d t 0 b ( e b 1 ) θ ( λ i , 1 ( s ) | ϱ 1 ( s ) v 1 ( s ) | + λ i , 2 ( s ) | ϱ 2 ( s ) v 2 ( s ) | ) e θ s d s ( e b 1 ) θ ( Λ i , 1 ϱ 1 v 1 W 0 + β 1 , 1 ( 0 , b ) + Λ i , 2 ϱ 2 v 2 W 0 + β 2 , 1 ( 0 , b ) ) .
Then,
N ( ϱ ) N ( v ) G e b ( θ β i + 1 ) θ β i + 1 M * ( ϱ 1 v 1 W 0 + β 1 , 1 ( 0 , b ) ϱ 2 v 2 W 0 + β 2 , 1 ( 0 , b ) ) .
This means that the operator N is G-contractive, and thus Perov fixed point Theorem 1 ensures that System (7) has a unique solution. □
Example 1.
Consider the following initial value problem of a nonlinear coupled fractional derivative system defined on E = W 0 + 1 2 , 1 ( 0 , 1 ) × W 0 + 1 4 , 1 ( 0 , 1 ) :
{ R L D 0 + 3 2 ϱ 1 ( t ) = 1 2 ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) 1 + ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) cos ( e t ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) + 5 R L D 0 + 1 2 ϱ 1 ( t ) , R L D 0 + 5 4 ϱ 2 ( t ) = 1 2 ( R L D 0 + 1 4 ϱ 1 2 ( t ) ) 1 + ( R L D 0 + 1 4 ϱ 2 2 ( t ) ) sin ( arctan ( t ) ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) + 5 R L D 0 + 1 4 ϱ 1 ( t ) , R L D 0 + α 1 1 ϱ 1 ( 0 ) = ϱ 1 0 ,   R L I 0 + 2 α 1 ϱ 1 ( 0 ) = ϱ 1 1 R L D 0 + α 2 1 ϱ 2 ( 0 ) = ϱ 2 0 ,   R L I 0 + 2 α 2 ϱ 2 ( 0 ) = ϱ 2 1 .
Then,
F 1 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + α 1 1 ϱ 1 ( t ) ) = 1 2 ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) 1 + ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) cos ( e t ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) ,
and
F 2 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + α 2 1 ϱ 1 ( t ) ) = 1 2 ( R L D 0 + 1 4 ϱ 2 2 ( t ) ) 1 + ( R L D 0 + 1 4 ϱ 2 2 ( t ) ) sin ( arctan ( t ) ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) .
So, we have
F 1 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + 1 2 ϱ 1 ( t ) ) ϱ 1 = ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) ( 1 + ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) ) 2 cos ( e t ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) 1 2 ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) 1 + ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) sin ( e t ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) e t , F 1 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + 1 2 ϱ 1 ( t ) ) ϱ 2 = 1 2 ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) 1 + ( R L D 0 + 1 2 ϱ 1 2 ( t ) ) sin ( e t ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) e t , F 2 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + 1 4 ϱ 2 ( t ) ) ϱ 1 = 1 2 ( R L D 0 + 1 4 ϱ 2 2 ( t ) ) 1 + ( R L D 0 + 1 4 ϱ 2 2 ( t ) ) cos ( arctan ( t ) ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) arctan ( t ) , F 2 ( t , ϱ 1 ( t ) , ϱ 2 ( t ) , R L D 0 + 1 4 ϱ 2 ( t ) ) ϱ 2 = ( R L D 0 + 1 2 ϱ 2 2 ( t ) ) ( 1 + ( R L D 0 + 1 2 ϱ 2 2 ( t ) ) ) 2 sin ( arctan ( t ) ( ϱ 1 ( t ) + ϱ 2 ( t ) ) + 1 2 ( R L D 0 + 1 4 ϱ 2 2 ( t ) ) 1 + ( R L D 0 + 1 4 ϱ 2 2 ( t ) ) cos ( arctan ( t ) ( ϱ 1 ( t ) + ϱ 2 ( t ) ) ) arctan ( t ) .
Thus,
sup ϱ 1 , ϱ 2 R | F 1 ( t , ϱ 1 , ϱ 2 , R L D 0 + 1 2 ϱ 1 ) ϱ 1 | 1 + e t 2 : = λ 1 , 1 ( t )
sup ϱ 1 , ϱ 2 R | F 1 ( t , ϱ 1 , ϱ 2 , R L D 0 + 1 2 ϱ 1 ) ϱ 2 | e t 2 : = λ 1 , 2 ( t )
sup ϱ 1 , ϱ 2 R | F 2 ( t , ϱ 1 , ϱ 2 , R L D 0 + 1 4 ϱ 2 ) ϱ 1 | arctan ( t ) 2 : = λ 2 , 1 ( t ) ,
sup ϱ 1 , ϱ 2 R | F 2 ( t , ϱ 1 , ϱ 2 , R L D 0 + 1 4 ϱ 2 ) ϱ 2 | 1 + arctan ( t ) 2 : = λ 2 , 2 ( t ) .
Hence, the equalities in (4) hold. Now, we simply check that
M * = ( e + 2 2 e 5 1 2 e 4 π 8 e 5 π + 8 8 e 5 ) .
This matrix has two eigenvalues, μ 1 = 1 e 5 < 1 , μ 2 = π + 4 e + 8 8 e 5 < 1 . Therefore, M * converges to zero. All the conditions in Theorem 2 are satisfied, so System (7) has a unique solution.

Author Contributions

Writing—original draft, N.L.; Investigation, A.B.; Validation, K.A.; Conceptualization, W.S.; Writing—review, T.A.M.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Prince Sultan University through Theoretical and Applied Sciences Lab.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
  2. Magin, R.L. Fractional calculus in bioengineering, part 1. In Critical Reviews™ in Biomedical Engineering; BEGELL HOUSE Inc.: Danbury, CT, USA, 2004; Volume 32. [Google Scholar]
  3. Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
  4. Soczkiewicz, E. Application of fractional calculus in the theory of viscoelasticity. Mol. Quantum Acoust. 2002, 23, 397–404. [Google Scholar]
  5. Leibniz, G.W.; Gerhardt, C.I. Mathematische Schriften; Olms: Zurich, Switzerland, 1962. [Google Scholar]
  6. Perov, A. On the Cauchy problem for a system of ordinary differential equations, Priblijen. Metod Res. Dif. Urav. Kiev 1964, 2, 115–134. [Google Scholar]
  7. Aghajani, A.; Pourhadi, E.; Rivero, M.; Trujillo, J. Application of Perov’s fixed point theorem to Fredholm type integro-differential equations in two variables. Math. Slovaca 2016, 66, 1207–1216. [Google Scholar] [CrossRef]
  8. Belbali, H.; Benbachir, M. Existence results and Ulam-Hyers stability to impulsive coupled system fractional differential equations. Turk. J. Math. 2021, 45, 1368–1385. [Google Scholar] [CrossRef]
  9. Bica, A.M.; Muresan, S. Approaching nonlinear Volterra neutral delay integro-differential equations with the Perov’s fixed point theorem. Fixed Point Theory 2007, 8, 187–200. [Google Scholar]
  10. Graef, J.R.; Kadari, H.; Ouahab, A.; Oumansour, A. Existence results for systems of second-order impulsive differential equations. Acta Math. Univ. Comen. 2019, 88, 51–66. [Google Scholar]
  11. Moghaddam, M.H.Z.; Allahyari, R.; Omidvar, M.E.; Haghighi, A.S. Existence of solutions for some classes of integro-differential equations in the Sobolev space Wn,p(R+). J. Fixed Point Theory Appl. 2018, 20, 1–16. [Google Scholar] [CrossRef]
  12. Hassan, A.; Amer, S. Existence of solutions for a class of quasi-linear singular integro-differential equations in a Sobolev space. Bull. Malays. Math. Sci. Soc. 2009, 32, 295–306. [Google Scholar]
  13. Vougalter, V.; Volpert, V. Existence of solutions for some non-Fredholm integro-differential equations with the bi-laplacian. Math. Methods Appl. Sci. 2021, 44, 220–231. [Google Scholar] [CrossRef]
  14. Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
  15. Idczak, D.; Walczak, S. Fractional Sobolev spaces via Riemann-Liouville derivatives. J. Funct. Spaces Appl. 2013, 2013, 128043. [Google Scholar] [CrossRef]
  16. Boucenna, D.; Boulfoul, A.; Chidouh, A.; Makhlouf, A.B.; Tellab, B. Some results for initial value problem of nonlinear fractional equation in Sobolev space. J. Appl. Math. Comput. 2021, 67, 605–621. [Google Scholar] [CrossRef]
  17. Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  18. Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives-Theory and Applications; Gordon and Breach Science Publishers: Linghorne, PA, USA, 1993. [Google Scholar]
  19. Kilbas, A. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  20. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2. [Google Scholar]
  21. Graef, J.R.; Henderson, J.; Ouahab, A. Topological Methods for Differential Equations and Inclusions; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
  22. Varga, R.S. Matrix Iterative Analysis; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Laksaci, N.; Boudaoui, A.; Abodayeh, K.; Shatanawi, W.; Shatnawi, T.A.M. Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space Wa+γ1,1(a,b)×Wa+γ2,1(a,b) with Perov’s Fixed Point Theorem. Fractal Fract. 2021, 5, 217. https://doi.org/10.3390/fractalfract5040217

AMA Style

Laksaci N, Boudaoui A, Abodayeh K, Shatanawi W, Shatnawi TAM. Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space Wa+γ1,1(a,b)×Wa+γ2,1(a,b) with Perov’s Fixed Point Theorem. Fractal and Fractional. 2021; 5(4):217. https://doi.org/10.3390/fractalfract5040217

Chicago/Turabian Style

Laksaci, Noura, Ahmed Boudaoui, Kamaleldin Abodayeh, Wasfi Shatanawi, and Taqi A. M. Shatnawi. 2021. "Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space Wa+γ1,1(a,b)×Wa+γ2,1(a,b) with Perov’s Fixed Point Theorem" Fractal and Fractional 5, no. 4: 217. https://doi.org/10.3390/fractalfract5040217

APA Style

Laksaci, N., Boudaoui, A., Abodayeh, K., Shatanawi, W., & Shatnawi, T. A. M. (2021). Existence and Uniqueness Results of Coupled Fractional-Order Differential Systems Involving Riemann–Liouville Derivative in the Space Wa+γ1,1(a,b)×Wa+γ2,1(a,b) with Perov’s Fixed Point Theorem. Fractal and Fractional, 5(4), 217. https://doi.org/10.3390/fractalfract5040217

Article Metrics

Back to TopTop