Mawhin’s Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via Piecewise Constant Functions
Abstract
:1. Introduction
2. Auxiliary Concepts
- (a)
- is closed;
- (b)
- .
- (H1)
- is continuous, and is bounded,
- (H2)
- is completely continuous.
- (A1)
- the Fredholm operator of index zero is such that
- (A2)
- the operator is -compact on ,
- (A3)
- and ,
3. Existence of Solutions
- (AS1)
- Consider a sequence of finite many points so that , . For , denote the subintervals as . Then is a partition of A.
- (AS2)
- Let and there exists such that and there exists with so that for any and .
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BVP | Boundary Value Problem |
References
- Gomez-Aguilar, J.F. Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A Stat. Mech. Its Appl. 2018, 494, 52–75. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Sun, H.G.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, Physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, A.; Agarwal, R.P.; Karapinar, E.; Kumari, P.S. Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-Metric Space. Symmetry 2019, 11, 686. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
- Boutiara, A.; Adjimi, N.; Benbachir, M.; Abdo, M.S. Analysis of a fractional boundary value problem involving Riesz-Caputo fractional derivative. Adv. Theory Nonlinear Anal. Its Appl. 2022, 6, 14–27. [Google Scholar]
- Ntouyas, S.K.; Etemad, S.; Tariboon, J. Existence results for multi-term fractional differential inclusions. Adv. Differ. Equ. 2015, 2015, 140. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Ntouyas, S.K.; Iqbal, M.Q.; Hussain, A.; Etemad, S.; Tariboon, J. An analytical survey on the solutions of the generalized double-order φ-integrodifferential equation. J. Funct. Spaces 2021, 2021, 6667757. [Google Scholar] [CrossRef]
- Adiguzel, R.S.; Aksoy, U.; Karapinar, E.; Erhan, I.M. On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Afshari, H.; Karapinar, E. A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, 2020, 616. [Google Scholar] [CrossRef]
- Etemad, S.; Rezapour, S.; Samei, M.E. α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results. Adv. Differ. Equ. 2020, 2020, 218. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Hussain, A.; Rezapour, S. The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving φ-Caputo fractional operators. Adv. Differ. Equ. 2021, 2021, 95. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order. AIMS Math. 2020, 5, 2923–2943. [Google Scholar] [CrossRef]
- Sousa, J.V.d.C.; de Oliveira, E.C. Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput. Appl. Math. 2018, 37, 5375–5394. [Google Scholar] [CrossRef]
- Benkerrouche, A.; Souid, M.S.; Etemad, S.; Hakem, A.; Agarwal, P.; Rezapour, S.; Ntouyas, S.K.; Tariboon, J. Qualitative study on solutions of a Hadamard variable order boundary problem via the Ulam-Hyers-Rassias stability. Fractal Fract. 2021, 5, 108. [Google Scholar] [CrossRef]
- Kaabar, M.K.A.; Refice, A.; Souid, M.S.; Martínez, F.; Etemad, S.; Siri, Z.; Rezapour, S. Existence and U-H-R stability of solutions to the implicit nonlinear FBVP in the variable order settings. Mathematics 2021, 9, 1693. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. Unique existence result of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis. Mathematics 2019, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, S.; Hu, L. The existence and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2019, 113, 1601–1623. [Google Scholar] [CrossRef]
- Bouazza, Z.; Etemad, S.; Souid, M.S.; Rezapour, S.; Martínez, F.; Kaabar, M.K.A. A study on the solutions of a multiterm FBVP of variable order. J. Funct. Spaces 2021, 2021, 9939147. [Google Scholar] [CrossRef]
- Gaines, R.E.; Mawhin, J.L. Coincidence Degree and Nonlinear Differential Equations; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Mawhin, J. Topological degree and boundary value problems for nonlinear differential equations. In Topological Methods for Ordinary Differential Equations; Furi, M., Zecca, P., Eds.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1993; Volume 1537. [Google Scholar]
- Feng, W.; Webb, J.R.L. Solvability of three point boundary value problems at resonance. Nonlinear Anal. Theory Methods Appl. 1997, 30, 3227–3238. [Google Scholar] [CrossRef]
- Guezane-Lakoud, A.; Frioui, A. Third order boundary value problem with integral condition at resonance. Theory Appl. Math. Comput. Sci. 2013, 3, 56–64. [Google Scholar]
- Mawhin, J.; Ward, J.R., Jr. Periodic solutions of some forced Lienard differential equations at resonance. Archiv. Math. 1983, 41, 337–351. [Google Scholar] [CrossRef]
- Infante, G.; Zima, M. Positive solutions of multi-point boundary value problems at resonance. Nonlinear Anal. Theory Methods Appl. 2008, 69, 2458–2465. [Google Scholar] [CrossRef]
- Umarov, S.; Steinberg, S. Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Z. Anal. Ihre Anwendungen 2009, 28, 431–450. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. A hidden-memory variable-order time-fractional optimal control model: Analysis and approximation. SIAM J. Control Optim. 2021, 59, 1851–1880. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Initialization, conceptualization, and application in the generalized (fractional) calculus. Crit. Rev. Biomed. Eng. 2007, 35, 447–553. [Google Scholar] [CrossRef] [PubMed]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Samko, S.G.; Ross, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differenatial Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Zhang, S.; Sun, S.; Hu, L. Approximate solutions to initial value problem for differential equation of variable order. J. Fract. Calc. Appl. 2018, 9, 93–112. [Google Scholar]
- An, J.; Chen, P. Uniqueness of solutions to initial value problem of fractional differential equations of variable-order. Dyn. Syst. Appl. 2019, 28, 607–623. [Google Scholar]
- Zhang, S. The uniqueness result of solutions to initial value problems of differential equations of variable-order. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 2018, 112, 407–423. [Google Scholar] [CrossRef]
- Mawhin, J. Topological Degree Methods in Nonlinear Boundary Value Problems; CBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1979; Volume 40. [Google Scholar]
- O’Regan, D.; Cho, Y.J.; Chen, Y.Q. Topological Degree Theory and Application; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006; Volume 10. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezapour, S.; Souid, M.S.; Etemad, S.; Bouazza, Z.; Ntouyas, S.K.; Asawasamrit, S.; Tariboon, J. Mawhin’s Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via Piecewise Constant Functions. Fractal Fract. 2021, 5, 216. https://doi.org/10.3390/fractalfract5040216
Rezapour S, Souid MS, Etemad S, Bouazza Z, Ntouyas SK, Asawasamrit S, Tariboon J. Mawhin’s Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via Piecewise Constant Functions. Fractal and Fractional. 2021; 5(4):216. https://doi.org/10.3390/fractalfract5040216
Chicago/Turabian StyleRezapour, Shahram, Mohammed Said Souid, Sina Etemad, Zoubida Bouazza, Sotiris K. Ntouyas, Suphawat Asawasamrit, and Jessada Tariboon. 2021. "Mawhin’s Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via Piecewise Constant Functions" Fractal and Fractional 5, no. 4: 216. https://doi.org/10.3390/fractalfract5040216
APA StyleRezapour, S., Souid, M. S., Etemad, S., Bouazza, Z., Ntouyas, S. K., Asawasamrit, S., & Tariboon, J. (2021). Mawhin’s Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via Piecewise Constant Functions. Fractal and Fractional, 5(4), 216. https://doi.org/10.3390/fractalfract5040216