Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale
Abstract
:1. Introduction
Geological Setting
2. Materials and Methods
2.1. Investigated Samples
2.2. Ar-ion Milled FESEM
2.3. Automatic Porosity Qquantification and Determination of REA
2.4. Multifractal Method
3. Results and Discussion
3.1. REA Determination
3.2. Porosity from FE-SEM
3.3. Multifractal Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mănescu, C.B.; Nuño, G. Quantitative effects of the shale oil revolution. Energy Policy 2015, 86, 855–866. [Google Scholar] [CrossRef] [Green Version]
- Caineng, Z.; Zhi, Y.; Jingwei, C.; Rukai, Z.; Lianhua, H.; Shizhen, T.; Xuanjun, Y.; Songtao, W.; Senhu, L.; Lan, W. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 15–27. [Google Scholar]
- Yang, Y.; Wang, K.; Zhang, L.; Sun, H.; Zhang, K.; Ma, J. Pore-scale simulation of shale oil flow based on pore network model. Fuel 2019, 251, 683–692. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, W.; Zhang, L.; Zha, M. Organic matter, mineral composition, pore size, and gas sorption capacity of lacustrine mudstones: Implications for the shale oil and gas exploration in the Dongying depression, eastern China. AAPG Bull. 2018, 102, 1565–1600. [Google Scholar] [CrossRef]
- Su, S.; Jiang, Z.; Xuanlong, S.; Li, Z.; Zhu, R. The effects of shale pore structure and mineral components on shale oil accumulation in the Zhanhua Sag, Jiyang Depression, Bohai Bay Basin, China. J. Petrol. Sci. Eng. 2018, 165, 365–374. [Google Scholar] [CrossRef]
- Shuangfang, L.; Haitao, X.; Min, W.; Dianshi, X.; Wenbiao, H.; Junqian, L.; Liujuan, X.; Shansi, T.; Sen, W.; Jijun, L. Several key issues and research trends in evaluation of shale oil. Acta Pet. Sin. 2016, 37, 1309. [Google Scholar]
- Feng, Q.; Xu, S.; Xing, X.; Zhang, W.; Wang, S. Advances and challenges in shale oil development: A critical review. Adv. Geo-Energy Res. 2020, 4, 406. [Google Scholar] [CrossRef]
- Suyun, H.; Wenzhi, Z.; Lianhua, H.; Zhi, Y.; Rukai, Z.; Songtao, W.; Bin, B.; Xu, J. Development potential and technical strategy of continental shale oil in China. Pet. Explor. Dev. 2020, 47, 877–887. [Google Scholar]
- Saraji, S.; Piri, M. The representative sample size in shale oil rocks and nano-scale characterization of transport properties. Int. J. Coal Geol. 2015, 146, 42–54. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Hu, Q.; Jin, Z.; Barber, T.; Zhang, Y.; Bleuel, M. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs. Sci. Rep. 2017, 7, 15413. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Pang, X.; Jiang, S.; Wang, Q.; Zheng, X.; Ding, X.; Zhao, Y.; Zhu, C.; Li, H. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: A case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China. Fuel 2018, 221, 196–205. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Jia, L.; Gao, S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- Guan, M.; Liu, X.; Jin, Z.; Lai, J. The heterogeneity of pore structure in lacustrine shales: Insights from multifractal analysis using N2 adsorption and mercury intrusion. Mar. Pet. Geol. 2020, 114, 104150. [Google Scholar] [CrossRef]
- Suyun, H.; Bin, B.; Shizhen, T.; Congsheng, B.; ZHANG, T.; Yanyan, C.; LIANG, X.; Lan, W.; Rukai, Z.; Jinhua, J. Heterogeneous geological conditions and differential enrichment of medium and high maturity continental shale oil in China. Pet. Explor. Dev. 2022, 49, 257–271. [Google Scholar]
- Wang, F.; Yang, K.; You, J.; Lei, X. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Res. Phys. 2019, 13, 102283. [Google Scholar] [CrossRef]
- Vavra, C.L.; Kaldi, J.G.; Sneider, R.M. Geological applications of capillary pressure: A review. AAPG Bull. 1992, 76, 840–850. [Google Scholar]
- Labani, M.M.; Rezaee, R.; Saeedi, A.; Al Hinai, A. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia. J. Pet. Sci. Eng. 2013, 112, 7–16. [Google Scholar] [CrossRef]
- Rani, S.; Padmanabhan, E.; Prusty, B.K. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J. Petrol. Sci. Eng. 2019, 175, 634–643. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Li, Y.; Zhang, J.; Li, M.; Li, Z.; Guo, Z.; Li, J. Shale pore connectivity and influencing factors based on spontaneous imbibition combined with a nuclear magnetic resonance experiment. Mar. Petroleum Geol. 2021, 132, 105239. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Cai, Y.; Yao, Y.; Pan, Z.; Zhou, Y. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review. Int. J. Coal Geol. 2020, 218, 103261. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Liu, D.; Zheng, S.; Sun, G.; Chang, Y. Shale pore size classification: An NMR fluid typing method. Mar. Petrol. Geol. 2018, 96, 591–601. [Google Scholar] [CrossRef]
- Klaver, J.; Desbois, G.; Urai, J.L.; Littke, R. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. Int. J. Coal Geol. 2012, 103, 12–25. [Google Scholar] [CrossRef]
- Klaver, J.; Desbois, G.; Littke, R.; Urai, J.L. BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Mar. Petroleum Geol. 2015, 59, 451–466. [Google Scholar] [CrossRef]
- Ji, L.; Lin, M.; Cao, G.; Jiang, W. A multiscale reconstructing method for shale based on SEM image and experiment data. J. Pet. Sci. Eng. 2019, 179, 586–599. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lu, S.; Xie, L.; Zhang, J.; Xue, H.; Zhang, P.; Tian, S. Modeling of hydrocarbon adsorption on continental oil shale: A case study on n-alkane. Fuel 2017, 206, 603–613. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Z.; Gong, W.; Ju, Y.; Wang, M. Characterization of nanopore morphology of shale and its effects on gas permeability. J. Nat. Gas Sci. Eng. 2017, 47, 83–90. [Google Scholar] [CrossRef]
- Kelly, S.; El-Sobky, H.; Torres-Verdín, C.; Balhoff, M.T. Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 2016, 95, 302–316. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Javadpour, F.; Sahimi, M. Three-dimensional stochastic characterization of shale SEM images. Transp. Porous Media 2015, 110, 521–531. [Google Scholar] [CrossRef]
- Tian, S.; Bowen, L.; Liu, B.; Zeng, F.; Xue, H.; Erastova, V.; Greenwell, H.C.; Dong, Z.; Zhao, R.; Liu, J. A method for automatic shale porosity quantification using an Edge-Threshold Automatic Processing (ETAP) technique. Fuel 2021, 304, 121319. [Google Scholar] [CrossRef]
- Liu, J.-F.; Cao, X.-L.; Xu, J.; Yao, Q.-L.; Ni, H.-Y. A new method for threshold determination of gray image. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 72. [Google Scholar] [CrossRef]
- Tian, S.; Brown, L.; Zeng, F.; Xue, H.; Lu, S.; Erastova, V.; Greenwell, C. In A Method for Automatic Shale Porosity Quantification Using New Advanced Edge Threshold Technique. Geophys. Res. Abstr. 2019, 21, EGU2019-1446. [Google Scholar]
- Zhao, S.; Li, Y.; Wang, Y.; Ma, Z.; Huang, X. Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing. Fuel 2019, 244, 78–90. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M. Multi-scale fractal analysis of pores in shale rocks. J. Appl. Geoph. 2017, 140, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Y.; Zhao, J.; Ren, L.; Zhao, C.; Zhao, J. Multiscale apparent permeability model of shale nanopores based on fractal theory. Energies 2019, 12, 3381. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Wang, D.; Yao, J.; Li, Y.; Sun, H.; Yang, Y.; Zhang, L. Multiscale image-based fractal characteristic of shale pore structure with implication to accurate prediction of gas permeability. Fuel 2019, 241, 522–532. [Google Scholar] [CrossRef]
- Wang, M.; Xue, H.; Tian, S.; Wilkins, R.W.; Wang, Z. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Mar. Petroleum Geol. 2015, 67, 144–153. [Google Scholar] [CrossRef]
- Zhou, N.; Lu, S.; Wang, M.; Liu, W.; Guan, Y.; Tan, H.; Wang, Z. Applicability of fractal capillary pressure models to sandstones. J. Pet. Sci. Eng. 2020, 185, 106626. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, J.; Hu, Q.; Wang, J.; Tian, T.; Chao, J.; Wang, M. Integrated NMR and FE-SEM methods for pore structure characterization of Shahejie shale from the Dongying Depression, Bohai Bay Basin. Mar. Petroleum Geol. 2019, 100, 85–94. [Google Scholar] [CrossRef]
- Singh, D.P.; Wood, D.A.; Hazra, B.; Singh, P.K. Pore properties in organic-rich shales derived using multiple fractal determination models applied to two Indian Permian basins. Energy Fuels 2021, 35, 14618–14633. [Google Scholar]
- Xu, J.; Wu, K.; Li, R.; Li, Z.; Li, J.; Xu, Q.; Chen, Z. Real gas transport in shale matrix with fractal structures. Fuel 2018, 219, 353–363. [Google Scholar] [CrossRef]
- Liu, B.; Sun, J.; Zhang, Y.; He, J.; Fu, X.; Yang, L.; Xing, J.; Zhao, X. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China. Pet. Explor. Dev. 2021, 48, 608–624. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Fu, X.; Bai, Y.; Bai, L.; Jia, M.; He, B. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bull. 2019, 103, 405–432. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, B.; Cheng, L.; Xing, J.; Tian, S.; Huang, S.; Dong, S. Modeling of tectonic-thermal evolution of cretaceous qingshankou shale in the changling sag, southern Songliao Basin, NE China. Front. Earth Sci. 2021, 9, 694906. [Google Scholar] [CrossRef]
- Yang, W.; Yongkang, L.; Ruiqi, G. Formation and evolution of nonmarine petroleum in Songliao Basin, China. AAPG Bull. 1985, 69, 1112–1122. [Google Scholar]
- Xu, Z.; Jiang, S.; Liu, L.; Wu, K.; Li, R.; Liu, Z.; Shao, M.; Jia, K.; Feng, Y. Natural gas accumulation processes of tight sandstone reservoirs in deep formations of Songliao Basin, NE China. J. Natural Gas Sci. Eng. 2020, 83, 103610. [Google Scholar] [CrossRef]
- Dong, T.; He, S.; Wang, D.; Hou, Y. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling. J. Asian Earth Sci. 2014, 90, 77–87. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Chang, X.; Li, J.; Li, W.; Chen, G.; Wang, S.; Feng, W. Broad ion beam-scanning electron microscopy pore microstructure and multifractal characterization of shale oil reservoir: A case sample from Dongying Sag, Bohai Bay Basin, China. Energy Explor. Exploit. 2020, 38, 613–628. [Google Scholar]
- Cosenza, P.; Prêt, D.; Fauchille, A.-L.; Hedan, S. Representative elementary area of shale at the mesoscopic scale. Int. J. Coal Geol. 2019, 216, 103316. [Google Scholar] [CrossRef]
- Medina, F.J.; Jausoro, I.; Addato, M.A.F.; Rodriguez, M.J.; Tomassini, F.G.; Caneiro, A. On the evaluation of Representative Elementary Area for porosity in shale rocks by Field Emission Scanning Electron Microscopy. Energy 2022, 253, 124141. [Google Scholar] [CrossRef]
Pore Type | Pore Area | Perimeter | Feret | MinFeret | Area | Quantity |
---|---|---|---|---|---|---|
Range (nm2) | Range (nm) | Range (nm) | Range (nm) | (%) | ||
Organic pores | 346 1–1,371,731 2 | 53–18,944 | 26–3082 | 9–1610 | 11.59 | 35,948 |
2906 3 | 193 | 73 | 38 | |||
Inorganic pores | 346–6,525,671 | 53–65,881 | 26–12,983 | 9–3684 | 63.56 | 36,248 |
22,951 | 780 | 275 | 101 | |||
Organic cracks | 519–407,195 | 79–4961 | 34–2315 | 9–237 | 0.61 | 498 |
15,874 | 603 | 282 | 51 | |||
Inorganic cracks | 865–5,250,808 | 188–70,587 | 93–22,088 | 9–2512 | 24.24 | 13,453 |
24,155 | 1321 | 562 | 81 |
Pore Type | D0 | D1 | D2 | D1/D2 | αmin | αmax | α0 | Δα | A |
---|---|---|---|---|---|---|---|---|---|
Organic pore | 1.92 | 1.55 | 1.32 | 0.81 | 0.95 | 2.97 | 2.25 | 2.02 | 1.82 |
Inorganic pore | 1.21 | 1.01 | 0.91 | 0.84 | 0.71 | 2.14 | 1.43 | 1.44 | 1.02 |
Organic crack | 1.92 | 1.74 | 1.62 | 0.91 | 1.27 | 3.42 | 2.13 | 2.16 | 0.67 |
Inorganic crack | 1.86 | 1.73 | 1.63 | 0.93 | 1.16 | 3.14 | 2.01 | 1.97 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Guo, Y.; Dong, Z.; Li, Z. Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale. Fractal Fract. 2022, 6, 675. https://doi.org/10.3390/fractalfract6110675
Tian S, Guo Y, Dong Z, Li Z. Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale. Fractal and Fractional. 2022; 6(11):675. https://doi.org/10.3390/fractalfract6110675
Chicago/Turabian StyleTian, Shansi, Yuanling Guo, Zhentao Dong, and Zhaolong Li. 2022. "Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale" Fractal and Fractional 6, no. 11: 675. https://doi.org/10.3390/fractalfract6110675
APA StyleTian, S., Guo, Y., Dong, Z., & Li, Z. (2022). Pore Microstructure and Multifractal Characterization of Lacustrine Oil-Prone Shale Using High-Resolution SEM: A Case Sample from Natural Qingshankou Shale. Fractal and Fractional, 6(11), 675. https://doi.org/10.3390/fractalfract6110675