Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity
Abstract
:1. Introduction
- (i)
- , is symmetric for all .
- (ii)
- is a continuous function that satisfies the condition: there exists with such that , where , and .
2. Functional Analytic Setup
- (1)
- ,
- (2)
- ,
- (3)
- ,
- (4)
- ,
- (5)
- .
3. The Proof of Result
- (i)
- (ii)
- .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.M.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
- Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Ružia, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin, Germany, 2002. [Google Scholar]
- Alves, C.O.; Ferreira, M.C. Existence of solutions for a class of p(x)-Laplacian equations involving a concave-convex nonlinearity with critical growth in RN. Topol. Methods Nonlinear Anal. 2015, 45, 399–422. [Google Scholar] [CrossRef]
- Liu, J.; Pucci, P.; Wu, H.; Zhang, Q. Existence and blow-up rate of large solutions of p(x)-Laplacian equations with gradient terms. J. Math. Anal. Appl. 2018, 457, 944–977. [Google Scholar] [CrossRef]
- Pucci, P.; Zhang, Q. Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 2014, 257, 1529–1566. [Google Scholar] [CrossRef]
- Rădulescu, V.D.; Repovš, D.D. Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
- Filippucci, R.; Pucci, P.; Rigoli, M. Nonlinear Weighted p-Laplacian elliptic inequalities with gradient term. Commun. Contemp. Math. 2010, 12, 501–535. [Google Scholar] [CrossRef]
- Lan, H.-Y.; Nieto, J.J. On a system of semilinear Elliptic coupled inequalities for S-contractive type involving Demicontinuous operators and constant harvesting. Dyn. Syst. Appl. 2019, 28, 625–649. [Google Scholar]
- Kaufmann, U.; Rossi, J.D.; Vidal, R. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electron. J. Qual. Theory 2017, 76, 1–10. [Google Scholar] [CrossRef]
- Bahrouni, A. Comparison and sub-supersolution principles for the fractional p(x)-Laplacian. J. Math. Anal. Appl. 2018, 458, 1363–1372. [Google Scholar] [CrossRef]
- Azroul, E.; Benkirane, A.; Shimi, M.; Srati, M. On a class of fractional p(x)-Kirchoff type problems. Appl. Anal. 2019, 100, 383–402. [Google Scholar] [CrossRef]
- Bahrouni, A.; Rădulescu, V.D. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst.-S 2018, 11, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Bahrouni, A.; Ho, K.Y. Remarks on eigenvalue problems for fractional p(x)-Laplacian. Asymptot. Anal. 2021, 123, 139–156. [Google Scholar] [CrossRef]
- Berghout, M.; Baalal, A. Compact embedding theorems for fractional Sobolev spaces with variable exponents. Adv. Oper. Theory 2020, 5, 83–93. [Google Scholar] [CrossRef]
- Azroul, E.; Benkirane, A.; Shimi, M. An introduction to generalized fractional Sobolev space with variable exponent. arXiv 2019, arXiv:1901.05687. [Google Scholar]
- Azroul, E.; Benkirane, A.; Shimi, M. Existence and multiplicity of solutions for fractional p(x,.)-Kirchhoff-type problems in RN. Appl. Anal. 2019, 100, 2029–2048. [Google Scholar] [CrossRef]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff-type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Chen, S.; Tang, X. Ground state sign-changing solutions for elliptic equations with logarithmic nonlinearity. Acta Math. Hung. 2019, 157, 27–38. [Google Scholar] [CrossRef]
- Bouizem, Y.; Boulaaras, S.; Djebbar, B. Some existence results for an elliptic equation of Kirchoff-type with changing sign data and a logarithmic nonlinearity. Math. Methods Appl. Sci. 2019, 42, 2465–2474. [Google Scholar] [CrossRef]
- Tian, S.Y. Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity. J. Math. Anal. Appl. 2017, 454, 816–828. [Google Scholar] [CrossRef]
- Truong, L.X. The Nehari manifold for a class of Schrödinger equation involving fractional p-Laplacian and sign-changing logarithmic nonlinearity. J. Math. Phys. 2019, 60, 111505. [Google Scholar] [CrossRef]
- Truong, L.X. The Nehari manifold for fractional p-Laplacian equation with logarithmic nonlinearity on whole space. Comput. Math. Appl. 2019, 78, 3931–3940. [Google Scholar] [CrossRef]
- Xiang, M.; Hu, D.; Yang, D. Least energy solutions for fractional Kirchoff problems with logarithmic nonlinearity. Nonlinear Anal. 2020, 198, 111899. [Google Scholar] [CrossRef]
- Xiang, M.; Yang, D.; Zhang, B. Degenerate Kirchoff-type fractional diffusion problem with logarithmic nonlinearity. Asymptot. Anal. 2020, 118, 313–329. [Google Scholar]
- Rasouli, S.H. On a PDE involving the Variable Exponent Operator with Nonlinear Boundary Conditions. Mediterr. J. Math. 2015, 12, 821–837. [Google Scholar] [CrossRef]
- Rasouli, S.H.; Fallah, K. The Nehari Manifold Approach for a p(x)-Laplacian problem with nonlinear boundary conditions. Ukr. Math. J. 2017, 69, 111–125. [Google Scholar] [CrossRef]
- Fiscella, A.; Mishra, P.K. The Nehari manifold for fractional Kirchoff problems involving singular and critical terms. Nonlinear Anal. 2019, 186, 6–32. [Google Scholar] [CrossRef]
- Mashiyev, R.A.; Ogras, S.; Yucedag, Z.; Avci, M. The Nehari manifold approach for Dirichlet problem involving the p(x)-Laplacian equation. J. Korean Math. Soc. 2010, 47, 845–860. [Google Scholar] [CrossRef]
- Chen, W. Multiplicity of solutions for a fractional Kirchhoff type problem. Commun. Pure Appl. Anal. 2015, 14, 2009–2020. [Google Scholar] [CrossRef]
- Ferrara, M.; Xiang, M.; Zhang, B. Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities. Proc. R. Soc. A 2015, 471, 20150034. [Google Scholar]
- Cammaroto, F.; Vilasi, L. Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator. Nonlinear Anal. 2011, 74, 1841–1852. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, B. Degenerate Kirchhoff problems involving the fractional p-Laplacian without the (AR) condition. Complex Var. Elliptic Equ. 2015, 60, 1277–1287. [Google Scholar] [CrossRef]
- Kováčik, O.; Rákosník, J. On spaces Lp(x) and W1,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, J.; Soni, A.; Choudhuri, D. Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity. Fractal Fract. 2022, 6, 106. https://doi.org/10.3390/fractalfract6020106
Zuo J, Soni A, Choudhuri D. Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity. Fractal and Fractional. 2022; 6(2):106. https://doi.org/10.3390/fractalfract6020106
Chicago/Turabian StyleZuo, Jiabin, Amita Soni, and Debajyoti Choudhuri. 2022. "Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity" Fractal and Fractional 6, no. 2: 106. https://doi.org/10.3390/fractalfract6020106
APA StyleZuo, J., Soni, A., & Choudhuri, D. (2022). Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity. Fractal and Fractional, 6(2), 106. https://doi.org/10.3390/fractalfract6020106