Next Article in Journal
Hybrid Differential Inclusion Involving Two Multi-Valuedoperators with Nonlocal Multi-Valued Integral Condition
Next Article in Special Issue
Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions
Previous Article in Journal
Mixed Neutral Caputo Fractional Stochastic Evolution Equations with Infinite Delay: Existence, Uniqueness and Averaging Principle
Previous Article in Special Issue
Asymptotic Behavior of Solutions of Even-Order Differential Equations with Several Delays
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity

1
School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
2
School of Sciences, Christ (Deemed to be University), Delhi 201003, India
3
Department of Mathematics, NIT Rourkela, Rourkela 769008, India
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(2), 106; https://doi.org/10.3390/fractalfract6020106
Submission received: 21 January 2022 / Revised: 6 February 2022 / Accepted: 9 February 2022 / Published: 12 February 2022

Abstract

:
In this paper, we investigate a fractional p ( · ) -Kirchhoff type problem involving variable exponent logarithmic nonlinearity. With the help of the Nehari manifold approach, the existence and multiplicity of nontrivial weak solutions for the above problem are obtained. The main aspect and challenges of this paper are the presence of double non-local terms and logarithmic nonlinearity.

1. Introduction

The study of differential equations and variational issues involving p ( x ) -growth conditions has received a majority of attention in recent years. The development of numerous significant models in electrorheological and thermorheological fluids, image processing, and other fields inspired a systematic study of partial differential equations with variable exponents; see [1,2,3]. The literature on the study of such operators is very large and rich, but we only list some newly published articles for interested readers, see, e.g., [4,5,6,7,8].
The study of elliptic equations with fractional operators is one of the most fascinating areas of nonlinear analysis. These issues have received much attention in both pure mathematics study and practical applications. In reality, this sort of operator often appears in a variety of settings. Few authors have also studied elliptic problems involving inequalities [9,10]. As far as we know, the fractional Sobolev spaces with variable exponents and the fractional p ( · ) -Laplacian were introduced firstly by U.Kaufmann, J.D.Rossi and R.Vidal in [11]. Here, the authors obtained the embedding result of fractional Sobolev spaces with variable exponents to variable-exponent Lebesgue spaces. In addition, they also discussed the existence result of a fractional p ( · ) -Laplacian problem.
After that, many mathematicians were concerned with equations involving the operator and studied it extensively, see [12,13,14,15,16,17]. In particular, this combination of fractional p ( x ) -Laplace operators and Kirchhoff functions is very interesting. For example, E. Azroul et al. [13] investigated a class of fractional p ( · ) -Kirchhoff type problems using the mountain pass lemma, direct variational method, Ekeland’s variational principle and concluded the existence of nontrivial weak solutions for the above problem in various cases of the competition between the growth rates of functions. In addition, we recommend that interested readers read the literature [18]. The basic Kirchhoff problem was first introduced by Kirchhoff [19] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic string. Kirchhoff’s model takes into account the changes in the length of the string produced by transverse vibrations. A detailed advancement in the Kirchhoff elliptic problem and its physical interpretation can be seen in [20].
On the other hand, elliptic, parabolic and hyperbolic equations with logarithmic nonlinearity have received extensive attention from many scholars, and many mathematicians have conducted extensive research; see [21,22,23,24,25,26,27]. In particular, we point out that Xiang et al. [26] investigated the existence of two local least energy solutions for fractional p-Kirchhoff problems involving logarithmic nonlinearity by means of the Nehari manifold approach. This method is used essentially because the functional corresponding to the equation is not bounded below in the whole workspace, so it is difficult to find the critical points in the whole workspace, and thus, we need to find the critical points on a smaller set. For more details on this approach, we recommend some very good papers for interested readers [28,29,30,31].
To our best knowledge, there are no results concerned with the Kirchhoff type problem driven by a p ( · ) -fractional Laplace operator with logarithmic nonlinearity. Motivated by the works discussed above, in this paper, we are interested in the existence of two nontrivial weak solutions for the following fractional p ( · ) -Kirchhoff type problems.
K R 2 N 1 p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y ( Δ ) p ( · ) s u = h ( x ) | u | p ¯ ( x ) θ 2 u ln | u | + β | u | q ( x ) 2 u in Ω , u = 0 in R N \ Ω ,
where Ω R n is a smooth and bounded domain with N > p ( x , y ) s for any ( x , y ) Ω ¯ × Ω ¯ , p ¯ ( x ) = p ( x , x ) for x Ω ¯ , β is a positive parameter, 2 < q ( x ) < θ p ¯ ( x ) < p s * ¯ ( x ) for any x Ω ¯ and h ( x ) C ( Ω ¯ ) is a positive function, M is a Kirchhoff function model, ( Δ ) p ( · ) s is a p ( · ) -fractional Laplace operator, with s ( 0 , 1 ) , defined as follows: for each x Ω ,
( Δ ) p ( x ) s φ ( x ) = p . v . R N | φ ( x ) φ ( y ) | p ( x , y ) 2 ( φ ( x ) φ ( y ) ) | x y | N + sp ( x , y ) dy ,
along any φ C 0 ( Ω ) , where p.v. is considered in the principal value sense.
Let
p : = inf ( x , y ) Ω ¯ × Ω ¯ p ( x , y ) sup ( x , y ) Ω ¯ × Ω ¯ p ( x , y ) = : p + .
q : = min x Ω ¯ q ( x ) q ( x ) q + : = max x Ω ¯ q ( x ) .
A model of K proposed by Kirchhoff is of the form K ( t ) = a + b t α 1 , a , b 0 , a + b > 0 , t 0 and α 1 , + if b > 0 , α = 1 if b = 0 . When K ( t ) > 0 for all t 0 , Kirchhoff problems are said to be nondegenerate and this happens, for example, if a > 0 and b 0 in the model case (1), see for instance [20,32,33]. Otherwise, if K ( 0 ) = 0 and K ( t ) > 0 for all t > 0 , the Kirchhoff problems are called degenerate and this occurs in the model case (1) when a = 0 and b > 0 , see also [34,35]. An interesting point regarding this problem is the involvement of comes from the fact that l o g x is sign changing and behaving at the origin similar to the power function t α for α < 0 with a slow growth. In addition, the logarithmic function is not invariant by scaling, which does not hold for the power function. Furthermore, the presence of the variable exponent makes the problem more significant.
To study our main result, we need to make further assumptions.
(i)
2 < q < q ( x ) < q + < p < p ( x ) < p + < ( p + ) 3 < θ p < θ p ( x ) < θ p + < p s * ( x ) , p ( x , y ) is symmetric for all ( x , y ) Ω ¯ × Ω ¯ .
(ii)
K : R + R is a continuous function that satisfies the condition: there exists 1 < a 3 < a 4 with a 4 2 ( p + ) 2 < θ such that a 3 t θ < c 2 K ^ ( t ) K ( t ) t c 1 K ( t ) t 2 a 4 t θ , where c 1 p + , , c 2 1 ( p + ) 2 a 4 , 1 p + a 4 and K ^ ( t ) = 0 t K ( τ ) d τ .
An example that satisfies our hypothesis could be K ( x , u ) = | u | θ 2 u .
A function u X 0 = W 0 s , p ( x , y ) ( Ω ¯ ) is a weak solution to the problem (1), if
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) 2 ( u ( x ) u ( y ) ) ( ϕ ( x ) ϕ ( x ) ) | x y | N + s p ( x , y ) d x d y Ω h ( x ) | u | θ p ¯ ( x ) 2 u ln | u | ϕ d x β Ω | u | q ( x ) 2 u ϕ d x = 0
for any ϕ W 0 s , p ( x , y ) ( Ω ¯ ) , where γ p ( x , y ) ( u ) = R 2 N | u ( x ) u ( y ) | p ( x , y ) p ( x , y ) | x y | N + s p ( x , y ) d x d y .
We are ready to state the main result of this paper.
Theorem 1.
Let u > 1 . Assume that the assumptions (i) and (ii) hold. Then, there exists β * * > 0 such that for any β ( 0 , β * * ) , problem (1) has at least two nontrivial weak solutions.

2. Functional Analytic Setup

In this section, first of all, we review some basic properties about the variable exponent Lebesgue spaces as well as the fractional Sobolev spaces with variable exponents.
Set
C + ( Ω ¯ ) = p C ( Ω ¯ ) : 1 < p ( x ) for all x Ω ¯ .
For any p C + ( Ω ¯ ) , we define the variable exponent Lebesgue space as
L p ( x ) ( Ω ) = u : Ω R is measurable , Ω | u ( x ) | p ( x ) d x < ,
and the Luxemburg norm defined on this space as,
| u | p ( x ) = inf μ > 0 : Ω | u ( x ) μ | p ( x ) d x 1 .
Clearly, ( L p ( x ) ( Ω ) , | · | p ( x ) ) is a separable reflexive Banach space, see [36] (Theorem 2.5 and Corollaries 2.7 and 2.12 ).
Lemma 1.
Hölder’s inequality [14]: Let L p ( x ) ( Ω ) denote the conjugate space of L p ( x ) ( Ω ) , where 1 p ( x ) + 1 p ( x ) = 1 and p ( x ) = ( p ( x ) / ( p ( x ) 1 ) ) . If u L p ( x ) ( Ω ) and v L p ( x ) ( Ω ) then the following Hölder-type inequality holds:
Ω u v d x 1 p + 1 p | u | p ( x ) | v | p ( x ) .
A modular of the space L p ( x ) ( Ω ) is defined by
ϱ p ( x ) : L p ( x ) ( Ω ) R
u ϱ p ( x ) ( u ) = Ω | u ( x ) | p ( x ) d x .
Assume that u L p ( x ) ( Ω ) and { u k } L p ( x ) ( Ω ) . Then the following assertions hold (see [2]):
( a ) | u | p ( x ) < 1 ( r e s p . , = 1 , > 1 ) ϱ p ( x ) ( u ) < 1 ( r e s p . , = 1 , > 1 ) , ( b ) | u | p ( x ) < 1 | u | p ( x ) p + ϱ p ( x ) ( u ) | u | p ( x ) p , ( c ) | u | p ( x ) > 1 | u | p ( x ) p ϱ p ( x ) ( u ) | u | p ( x ) p + , ( d ) lim k | u k | p ( x ) = 0 ( ) lim k ϱ p ( x ) ( u k ) = 0 ( ) , ( e ) lim k | u k u | p ( x ) = 0 lim k ϱ p ( x ) ( u k u ) = 0 .
Let us set the fractional modular function ϱ p ( . ) s : X 0 R as
ϱ p ( . ) s ( u ) = R 2 N | v ( x ) v ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y .
Then the following assertions hold (see [2]):
Proposition 1.
Assume that u X 0 and { u j } j X 0 , then
(1)
u X 0 < 1 ( r e s p . , = 1 , > 1 ) ϱ p ( . ) s ( u ) < 1 ( r e s p . , = 1 , > 1 ) ,
(2)
u X 0 < 1 u X 0 p + ϱ p ( . ) s ( u ) u X 0 p ,
(3)
| u | p ( x ) > 1 u X 0 p ϱ p ( . ) s ( u ) u X 0 p + ,
(4)
lim k u k X 0 = 0 ( ) lim k ϱ p ( . ) s ( u k ) = 0 ( ) ,
(5)
lim k u k u X 0 = 0 lim k ϱ p ( . ) s ( u k u ) = 0 .
For any m C + ( Ω ¯ ) , the fractional Sobolev space with variable exponent, is denoted by
W s , m ( x ) , p ( x , y ) ( Ω ) = u L m ( x ) ( Ω ) : Ω Ω | u ( x ) u ( y ) | p ( x , y ) μ p ( x , y ) | x y | N + s p ( x , y ) d x d y < + , for some μ > 0
with the norm u s , m ( x ) , p ( x , y ) = u L m ( x ) ( Ω ) + [ u ] s , p ( x , y ) ( Ω ) , where
[ u ] Ω s , p ( x , y ) = inf μ > 0 : Ω Ω | u ( x ) u ( y ) | p ( x , y ) μ p ( x , y ) | x y | N + s p ( x , y ) d x d y 1 .
Readers may refer to [13,16] for more information related to this space. Define X = W s , m ( x ) , p ( x , y ) ( Ω ) over T = R 2 N \ ( Ω c × Ω c ) as the space
u : R N R : u | Ω L m ( x ) ( Ω ) , T | u ( x ) u ( y ) | p ( x , y ) μ p ( x , y ) | x y | N + s p ( x , y ) d x d y < + , for some μ > 0
and our solution space X 0 is defined as the space u X : u = 0 a . e . in R N \ Ω , which is a convex, reflexive and separable Banach space (see [13]) with respect to the norm
u X 0 = inf λ > 0 : T | u ( x ) u ( y ) | p ( x , y ) λ p ( x , y ) | x y | N + s p ( x , y ) d x d y 1 .
We will denote u X 0 = u in all the upcoming results.
Theorem 2.
[14] Let Ω R N ( N 2 ) denotes a smooth bounded domain and s ( 0 , 1 ) . Let m ( x ) , p ( x , y ) be continuous variable exponents with s p ( x , y ) < N for ( x , y ) Ω ¯ × Ω ¯ and m ( x ) > p ( x , x ) for x Ω ¯ . Assume that r : Ω ¯ ( 1 , ) is a continuous function such that p s * ( x ) > r ( x ) r > 1 , for x Ω ¯ . Then there exists a constant C = C ( N , s , p , q , r , Ω ) such that
f L r ( · ) ( Ω ) C f W s , m ( · ) , p ( · , · ) ( Ω ) , for any f W s , m ( · ) , p ( · , · ) ( Ω ) .
Thus, the space W s , m ( · ) , p ( · , · ) ( Ω ) is continuously embedded in L r ( · ) ( Ω ) for any r ( 1 , p s * ) . Furthermore, this embedding is compact and the result also holds for the space X 0 = W 0 s , m ( · ) , p ( · , · ) ( Ω ) .

3. The Proof of Result

The functional corresponding to the problem (1) is defined as
I ( u ) = K ^ γ p ( x , y ) ( u ) β Ω | u | q ( x ) q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) ln | u | θ p ¯ ( x ) d x + Ω h ( x ) | u | θ p ¯ ( x ) ( θ p ( x ) ) 2 d x ,
which is well defined and of class C 1 on X 0 . Next, we show the necessity of considering the Nehari manifold.
Lemma 2.
The functional I is not bounded below over X 0 .
Proof. 
Let u ( 0 ) X 0 .
I ( r u ) = K ^ ( γ p ( x , y ) ( r u ) ) β Ω | r u | q ( x ) q ( x ) d x Ω h ( x ) | r u | θ p ¯ ( x ) l n | r u | θ p ¯ ( x ) d x + Ω h ( x ) | r u | θ p ¯ ( x ) ( θ p ¯ ( x ) ) 2 d x a 4 c 2 ( γ p ( x , y ) ( r u ) ) θ β q + Ω | r u | q ( x ) d x 1 θ p + Ω h ( x ) | r u | θ p ¯ ( x ) l n | r u | d x + 1 ( θ p ) 2 Ω h ( x ) | r u | θ p ¯ ( x ) a 4 r θ p ¯ ( x ) u θ p + c 2 ( p ) θ β r q ( x ) q + Ω | u | q ( x ) d x r θ p ¯ ( x ) l n r θ p + Ω h ( x ) | u | θ p ¯ ( x ) d x r θ p ¯ ( x ) θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x + r θ p ¯ ( x ) ( θ p ) 2 Ω h ( x ) | u | θ p ¯ ( x ) d x .
Assumption (i) implies that, q ( x ) < θ p ( x ) . Therefore, on passing the limit r we conclude that the functional I is not bounded below over X 0 . □
Hence, we will seek weak solutions over the Nehari manifold. Define the Nehari manifold as N = { u X 0 \ 0 : I ( u ) , u = 0 } . In particular, u N if and only if B β ( u ) = I ( u ) , u = 0 .
Lemma 3.
The functional I is coercive and bounded below over N .
Proof. 
Since, u N so I ( u ) , u = 0 . This implies that
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | n + s p ( x , y ) d x d y β Ω | u | q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) l n | u | = 0 .
Now using above equation, we obtain
I ( u ) K ^ ( γ p ( x , y ) ( u ) ) β q Ω | u | q ( x ) d x + 1 ( θ p + ) 2 Ω h ( x ) | u | θ p ¯ ( x ) d x + 1 θ p K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y + β Ω | u | q ( x ) d x = K ^ ( γ p ( x , y ) ( u ) ) β q Ω | u | q ( x ) d x 1 θ p K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) + β θ p Ω | u | q ( x ) d x + 1 ( θ p + ) 2 Ω h ( x ) | u | θ p ¯ ( x ) d x > K ^ ( γ p ( x , y ) ( u ) ) K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y + β 1 θ p 1 q Ω | u | q ( x ) d x .
Now using assumption (ii) and the Theorem 2, we obtain
I ( u ) > a 3 c 2 ( γ p ( x , y ) ( u ) ) θ p + a 4 ( γ p ( x , y ) ( u ) ) θ β 1 q 1 θ p Ω | u | q ( x ) d x = a 3 c 2 p + a 4 ( γ p ( x , y ) ( u ) ) θ β 1 q 1 θ p Ω | u | q ( x ) d x a 3 c 2 p + a 4 u θ p β 1 q 1 θ p ρ q ( . ) ( u ) a 3 c 2 p + a 4 u θ p β 1 q 1 θ p C u q + .
Since, a 3 > 1 , 1 c 2 > p + a 4 and θ p > q + , hence we can conclude that the functional I is coercive and bounded below. □
Now we will divide the Nehari manifold into three sets
N + = { u N : B β ( u ) , u > 0 } ,
N 0 = { u N : B β ( u ) , u = 0 } ,
N = { u N : B β ( u ) , u < 0 } ,
where,
B β ( u ) , u = K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 d y β Ω q ( x ) | u | q ( x ) d x + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y θ Ω h ( x ) p ¯ ( x ) | u | θ p ¯ ( x ) l n | u | d x Ω h ( x ) | u | θ p ¯ ( x ) d x .
Lemma 4.
There exists β ¯ such that for 0 < β < β ¯ , the set N 0 is empty.
Proof. 
Let u ( 0 ) N 0 . We will prove the result by contradiction.
0 = B β ( u ) , u ( p ) 2 K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) 2 + p K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) β q + Ω | u | q ( x ) d x θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x Ω h ( x ) | u | θ p ¯ ( x ) d x .
Since u N 0 N , so I ( u ) , u = 0 . Using this fact, Theorem 2 and Lemma 1, we obtain
0 a 3 ( p ) 2 c 1 ( γ p ( x , y ) ( u ) ) θ + p a 3 ( γ p ( x , y ) ( u ) ) θ β q + Ω | u | q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) d x + θ p + K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y + β Ω | u | q ( x ) d x a 3 ( p ) 2 c 1 ( γ p ( x , y ) ( u ) ) θ + p a 3 ( γ p ( x , y ) ( u ) ) θ θ ( p + ) 2 K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) Ω h ( x ) | u | θ p ¯ ( x ) d x + β ( θ p + q + ) Ω | u | q ( x ) d x a 3 ( p ) 2 c 1 ( γ p ( x , y ) ( u ) ) θ + p a 3 ( γ p ( x , y ) ( u ) ) θ θ ( p + ) 2 a 4 ( γ p ( x , y ) ( u ) ) θ Ω h ( x ) | u | θ p ¯ ( x ) d x + β ( θ p + q + ) Ω | u | q ( x ) d x a 3 ( p ) 2 c 1 ( γ p ( x , y ) ( u ) ) θ + p a 3 ( γ p ( x , y ) ( u ) ) θ θ ( p + ) 2 a 4 ( γ p ( x , y ) ( u ) ) θ C ρ θ p ¯ ( . ) ( u ) + β ( θ p + q + ) Ω | u | q ( x ) d x a 3 ( p ) 2 c 1 ( γ p ( x , y ) ( u ) ) θ + p a 3 ( γ p ( x , y ) ( u ) ) θ θ ( p + ) 2 a 4 ( γ p ( x , y ) ( u ) ) θ C u θ p + a 3 ( p ) 2 c 1 + p a 3 u θ p ( p + ) θ C + a 4 θ ( p + ) 2 ( p ) θ u θ p + 1 c 1 + 1 ( p + ) θ u θ p C + a 4 θ ( p + ) 2 ( p ) θ u θ p + .
This implies that
C + a 4 θ ( p + ) 2 ( p ) θ u θ p + > 1 c 1 + 1 ( p + ) θ u θ p .
This further implies that
u > A B 1 θ p + θ p > 0
where, A = 1 c 1 + 1 ( p + ) θ and B = C + a 4 θ ( p + ) 2 ( p ) θ .
Again,
0 = B β ( u ) , u = K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y 2 θ Ω h ( x ) p ¯ ( x ) | u | θ p ¯ ( x ) l n | u | d x Ω h ( x ) | u | θ p ¯ ( x ) d x β Ω q ( x ) | u | q ( x ) d x + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y .
Using I ( u ) , u = 0 and assumption (ii), we obtain
0 a 4 ( p + ) 2 c 1 ( γ p ( x , y ) ( u ) ) θ + a 4 ( p + ) 2 ( γ p ( x , y ) ( u ) ) θ + β ( θ p q ) Ω | u | q ( x ) d x θ p K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y .
Since, c 1 > p + so
0 < a 4 ( p + ) 2 c 1 ( γ p ( x , y ) ( u ) ) θ + a 4 ( p + ) 2 ( γ p ( x , y ) ( u ) ) θ + β ( θ p q ) Ω | u | q ( x ) d x a 3 θ ( p ) 2 ( γ p ( x , y ) ( u ) ) θ = a 4 ( p + ) 2 c 1 + a 4 ( p + ) 2 a 3 θ ( p ) 2 ( γ p ( x , y ) ( u ) ) θ + β ( θ p q ) Ω | u | q ( x ) d x < 2 ( p + ) 2 a 4 a 3 θ ( p ) 2 ( γ p ( x , y ) ( u ) ) θ + β ( θ p q ) Ω | u | q ( x ) d x .
Since, coefficient of ( γ p ( x , y ) ( u ) ) θ is negative as θ > a 4 ( p + ) 2 so using Theorem 2 and Proposition 1
θ a 3 ( p ) 2 2 a 4 ( p + ) 2 u θ p ( p + ) θ < β ( θ p q ) Ω | u | q ( x ) d x θ a 3 ( p ) 2 2 a 4 ( p + ) 2 u θ p ( p + ) θ < β ( θ p q ) ρ q ( . ) ( u ) θ a 3 ( p ) 2 2 a 4 ( p + ) 2 u θ p ( p + ) θ < β ( θ p q ) C 1 u q + u < β ( θ p q ) C 1 ( p + ) θ θ a 3 ( p ) 2 2 a 4 ( p + ) 2 1 θ p q + .
Choosing β small enough, say β ¯ , so that β ( θ p q ) C 1 ( p + ) θ θ a 3 ( p ) 2 2 a 4 ( p + ) 2 1 θ p q + < ( A B ) 1 θ p + θ p we obtain a contradiction to (5) for β ( 0 , β ¯ ) . Hence, the set N 0 is empty. □
Since, N 0 = ϕ , so N = N + N by Lemma 4. Define i + = i n f u N + I ( u ) and i = i n f u N I ( u ) .
Lemma 5.
If 0 < β < β * , then we have
(i) 
i + < 0
(ii) 
i > 0 .
Proof. 
(i) Let u N + .
I ( u ) = K ^ γ p ( x , y ) ( u ) β Ω | u | q ( x ) q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) l n | u | θ p ¯ ( x ) d x + Ω h ( x ) | u | θ p ¯ ( x ) ( θ p ( x ) ) 2 d x K ^ γ p ( x , y ) ( u ) 1 θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x + 1 ( θ p ) 2 Ω h ( x ) | u | θ p ¯ ( x ) d x β q + Ω | u | q ( x ) d x K ^ γ p ( x , y ) ( u ) 1 θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x + Ω h ( x ) | u | θ p ¯ ( x ) d x β q + Ω | u | q ( x ) d x .
Since, u N + so B β ( u ) , u > 0 which implies that
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω q ( x ) | u | q ( x ) d x θ Ω h ( x ) p ¯ ( x ) | u | θ p ¯ ( x ) l n | u | d x Ω h ( x ) | u | θ p ¯ ( x ) d x > 0 .
This further implies
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β q Ω | u | q ( x ) d x θ p Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x Ω h ( x ) | u | θ p ¯ ( x ) d x > 0 .
Furthermore,
I ( u ) , u = 0 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | u | q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x = 0 .
Multiplying (8) by ( θ p ) and adding to (7), we obtain
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y + β ( θ p q ) Ω | u | q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) d x θ p K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y > 0 .
This implies that
Ω h ( x ) | u | θ p ¯ ( x ) d x < K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + β ( θ p q ) Ω | u | q ( x ) d x + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y θ p K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y .
Using (9) in (6), we obtain
I ( u ) K ^ ( γ p ( x , y ) ( u ) ) β q + Ω | u | q ( x ) d x 1 θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x + β ( θ p q ) Ω | u | q ( x ) d x + K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y θ p K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y < K ^ ( γ p ( x , y ) ( u ) ) + ( p + ) 2 K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) 2 + ( p + ) 2 K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) θ ( p ) 2 K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) + β θ p q 1 q + Ω | u | q ( x ) d x a 4 c 2 + a 4 ( p + ) 2 c 1 + a 4 ( p + ) 2 a 3 θ ( p ) 2 ( γ p ( x , y ) ( u ) ) θ + β θ p q 1 q + Ω | u | q ( x ) d x .
Now using assumptions on c 1 and c 2 from (ii), we obtain
I ( u ) < 3 a 4 2 ( p + ) 2 a 3 θ ( p ) 2 ( γ p ( x , y ) ( u ) ) θ + β θ p q 1 q + Ω | u | q ( x ) d x < 3 a 4 2 ( p + ) 2 a 3 θ ( p ) 2 ( γ p ( x , y ) ( u ) ) θ + β θ p q 1 q + ρ q ( . ) u .
Since, θ > a 4 2 ( p + ) 2 from assumption (ii) so coefficient of ( γ p ( x , y ) ( u ) ) θ is negative which along with using Theorem 2 further implies that
I ( u ) < 3 a 4 2 ( p + ) 2 a 3 θ ( p ) 2 u θ p + β θ p q 1 q + C u q + .
For β say in the range of ( 0 , β * ) , we obtain I ( u ) < 0 and hence i + = i n f u N + I ( u ) < 0 .
(ii) Let u N . Then, B β ( u ) , u < 0 . This implies that
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω q ( x ) | u | q ( x ) d x θ Ω h ( x ) p ¯ ( x ) | u | θ p ¯ ( x ) l n | u | d x Ω h ( x ) | u | θ p ¯ ( x ) d x < 0 .
This further implies that
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β q + Ω | u | q ( x ) d x θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x Ω h ( x ) | u | θ p ¯ ( x ) d x < 0 .
Multiplying I ( u ) , u by ( θ p + ) 2 and adding from (10) we obtain,
K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β q + Ω | u | q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) d x θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | u | q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x < 0 .
This implies
Ω h ( x ) | u | θ p ¯ ( x ) d x > K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 θ p + Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x β q + Ω | u | q ( x ) d x + K ( γ p ( x , y ) ( u ) ) R 2 N p ( x , y ) | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | u | q ( x ) d x Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x .
Using (11) and Proposition 1, we obtain
I ( u ) K ^ ( γ p ( x , y ) ( u ) ) 1 θ p Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x β q Ω | u | q ( x ) d x + 1 ( θ p + ) 2 Ω h ( x ) | u | θ p ¯ ( x ) d x > K ^ ( γ p ( x , y ) ( u ) ) 1 θ p Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x β q Ω | u | q ( x ) d x + 1 ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 + β ( θ p + ) 2 q + Ω | u | q ( x ) d x + p K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y + ( θ p + ) 2 ( θ p + ) Ω h ( x ) | u | θ p ¯ ( x ) l n | u | d x > K ^ ( γ p ( x , y ) ( u ) ) + p ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y + 1 ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x 2 K ( γ p ( x , y ) ( u ) ) R 2 N | u ( x ) u ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y + β ( θ p + ) 2 q + 1 q Ω | u | q ( x ) d x K ^ ( γ p ( x , y ) ( u ) ) + ( p ) 2 ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) 2 p + 1 1 ( θ p + ) 2 K ( γ p ( x , y ) ( u ) ) ( γ p ( x , y ) ( u ) ) > a 3 c 2 ( γ p ( x , y ) ( u ) ) θ + a 3 ( p ) 2 c 1 ( θ p + ) 2 ( γ p ( x , y ) ( u ) ) θ a 4 p + 1 1 ( θ p + ) 2 ( γ p ( x , y ) ( u ) ) θ > a 3 a 4 p + + a 3 ( p ) 2 c 1 ( θ p + ) 2 a 4 p + ( γ p ( x , y ) ( u ) ) θ a 3 a 4 p + + a 3 ( p ) 2 c 1 ( θ p + ) 2 a 4 p + ( p + ) θ u θ p > 0 .
Thus, I ( u ) > 0 , and hence, i = i n f u N I ( u ) > 0 . □
Lemma 6.
If 0 < β < β 1 , where β 1 = min { β * , β ¯ } then the functional I has a minimizer u 0 + in N + and I ( u 0 + ) = i + .
Proof. 
Since I is bounded below on N and so on N + , there exists a minimizing sequence ( u n + ) N + such that l i m n I ( u n + ) = i n f u N + I ( u ) = i + < 0 from Lemma 5. Furthermore, I is coercive so u n + is bounded in N from Lemma 3 and hence u n + u 0 + in N X 0 up to a subsequence. By compact embedding, u n + u 0 + in L q ( x ) ( Ω ) for q ( 1 , p s * ) (Theorem 2). Since θ p ± < p s * from assumption (i), so | u n + | θ p ± | u 0 + | θ p ± by compact embedding. Thus, as h ( x ) C ( Ω ¯ ) , we obtain lim n Ω h ( x ) | u n + | θ p ± l n | u n + | d x = Ω h ( x ) | u 0 + | θ p ± l n | u 0 + | d x and lim n Ω h ( x ) | u n + | θ p ± d x = Ω h ( x ) | u 0 + | θ p ± d x (refer [26]).
Now, we need to show that u n + u 0 + in X 0 . We will prove it by contradiction. Let u n + u 0 + in X 0 then
R 2 N | u 0 + ( x ) u 0 + ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y < lim inf n R 2 N | u n + ( x ) u n + ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y .
Furthermore, I ( u n + ) , ( u n + ) = 0 . Hence,
I ( u n + ) = I ( u n + ) 1 θ p I ( u n + ) , ( u n + ) K ^ ( γ p ( x , y ) ( u n + ) ) β q Ω | u n + ( x ) | q ( x ) d x 1 θ p Ω h ( x ) | u n + | θ p ¯ ( x ) l n | u n + | d x + 1 ( θ p + ) 2 Ω h ( x ) | u n + | θ p ¯ ( x ) d x 1 θ p K ( γ p ( x , y ) ( u n + ) ) R 2 N | u n + ( x ) u n + ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | u n + | q ( x ) d x Ω h ( x ) | u n + | θ p ¯ ( x ) l n | u n + | d x > K ^ ( γ p ( x , y ) ( u n + ) ) 1 θ p K ( γ p ( x , y ) ( u n + ) ) R 2 N | u n + ( x ) u n + ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β 1 q 1 θ p Ω | u n + | q ( x ) d x K ^ ( γ p ( x , y ) ( u n + ) ) p + θ p K ( γ p ( x , y ) ( u n + ) ) ( γ p ( x , y ) ( u n + ) ) β 1 q 1 θ p Ω | u n + | q ( x ) d x > a 3 c 2 ( γ p ( x , y ) ( u n + ) ) θ a 4 p + θ p ( γ p ( x , y ) ( u n + ) ) θ β 1 q 1 θ p Ω | u n + | q ( x ) d x = a 3 c 2 a 4 p + θ p ( γ p ( x , y ) ( u n + ) ) θ β 1 q 1 θ p Ω | u n + | q ( x ) d x .
Since c 2 < 1 a 4 p + and a 3 > 1 from assumption (ii), we obtain
I ( u ) > a 4 p + a 3 1 θ p ( γ p ( x , y ) ( u n + ) ) θ β 1 q 1 θ p Ω | u n + | q ( x ) d x C 2 p + R 2 N | u n + ( x ) u n + ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y θ β 1 q 1 θ p Ω | u n + | q ( x ) d x ,
where, C 2 = a 4 p + a 3 1 θ p . Now taking limit infimum both sides and using (11) and Theorem 2, we obtain
i + > C 2 p + R 2 N | u 0 + ( x ) u 0 + ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y θ β 1 q 1 θ p Ω | u n + | q ( x ) d x C 2 u 0 + θ p p + β 1 q 1 θ p Ω | u n + | q ( x ) d x C 2 u 0 + θ p p + β 1 q 1 θ p ρ q ( . ) ( u n + ) C 2 u 0 + θ p p + β 1 q 1 θ p C u n + q + > 0 .
This is a contradiction to i + < 0 for β small enough. Hence, u n + u 0 + in X 0 and I ( u 0 + ) = lim n I ( u n + ) = inf u N + I ( u ) . Thus, u 0 + is a minimizer for I on N + . □
Lemma 7.
If 0 < β < β 2 then the functional I has a minimizer u 0 in N and I ( u 0 ) = i .
Proof. 
Since I is bounded below on N and so on N , there exists a minimizing sequence ( u n ) N such that lim n I ( u n ) = inf u N I ( u ) = i > 0 from Lemma 5. Furthermore, I is coercive so u n is bounded in N from Lemma 3, and hence, u n u 0 in N X 0 up to a subsequence. By compact embedding, u n u 0 in L q ( x ) ( Ω ) . Furthermore, l i m n Ω h ( x ) | u n | θ p ± l n | u n | d x = Ω h ( x ) | u 0 | θ p ± l n | u 0 | d x and l i m n Ω h ( x ) | u n | θ p ± d x = Ω h ( x ) | u 0 | θ p ± d x .
Moreover, there exists a constant t > 0 such that t u 0 N . This can be verified as follows:
B β ( t u 0 ) , ( t u 0 ) = K ( γ p ( x , y ) ( t u 0 ) ) R 2 N | t u 0 ( x ) t u 0 ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y 2 β Ω q ( x ) | t u 0 | q ( x ) d x + K ( γ p ( x , y ) ( t u 0 ) ) R 2 N p ( x , y ) | t u 0 ( x ) t u 0 ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y θ Ω h ( x ) p ¯ ( x ) | t u 0 | θ p ¯ ( x ) l n | t u 0 | d x Ω h ( x ) | t u 0 | θ p ¯ ( x ) d x .
For, t u 0 N we have I ( t u 0 ) , ( t u 0 ) = 0 i.e.
K ( γ p ( x , y ) ( t u 0 ) ) R 2 N | t u 0 ( x ) t u 0 ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | t u 0 | q ( x ) d x Ω h ( x ) | t u 0 | θ p ¯ ( x ) l n | t u 0 | d x = 0 .
Now,
B β ( t u 0 ) , ( t u 0 ) = B β ( t u 0 ) , ( t u 0 ) θ p + I ( t u 0 ) , ( t u 0 ) ( p + ) 2 K ( γ p ( x , y ) ( t u 0 ) ) ( γ p ( x , y ) ( t u 0 ) ) 2 + ( p + ) 2 K ( γ p ( x , y ) ( t u 0 ) ) ( γ p ( x , y ) ( t u 0 ) ) + β ( θ p + q ) Ω | t u 0 | q ( x ) d x θ p + p K ( γ p ( x , y ) ( t u 0 ) ) ( γ p ( x , y ) ( t u 0 ) ) < a 4 ( p + ) 2 c 1 ( γ p ( x , y ) ( t u 0 ) ) θ + a 4 ( p + ) 2 ( γ p ( x , y ) ( t u 0 ) ) θ a 3 θ p + p ( γ p ( x , y ) ( t u 0 ) ) θ + β ( θ p + q ) Ω | t u 0 | q ( x ) d x .
Using c 1 > p + from assumption (i) and θ > a 4 2 ( p + ) 2 from assumption (ii), we obtain
B β ( t u 0 ) , ( t u 0 ) < a 4 p + + a 4 ( p + ) 2 a 3 θ p + p ( γ p ( x , y ) ( t u 0 ) ) θ + β ( θ p + q ) Ω | t u 0 | q ( x ) d x .
There arises two cases t < 1 and t > 1 . When 0 < t < 1 , we obtain
B β ( t u 0 ) , ( t u 0 ) < a 4 p + + a 4 ( p + ) 2 a 3 θ p + p t θ p + ( γ p ( x , y ) ( u 0 ) ) θ + β ( θ p q ) Ω t q | u 0 | q ( x ) d x < a 4 p + + a 4 ( p + ) 2 a 3 θ p + p t θ p + ( γ p ( x , y ) ( u 0 ) ) θ + β ( θ p q ) t q ρ q ( . ) ( u 0 ) a 4 p + + a 4 ( p + ) 2 a 3 θ p + p t θ p + u 0 θ p + β ( θ p q ) t q C u 0 q + .
Choosing β small enough, say β 3 , we obtain B β ( t u 0 ) , ( t u 0 ) < 0 .
Let t > 1 , then
B β ( t u 0 ) , ( t u 0 ) < a 4 p + + a 4 ( p + ) 2 a 3 θ p + p t θ p ( γ p ( x , y ) ( u 0 ) ) θ + β ( θ p q ) Ω t q + | u 0 | q ( x ) d x < a 4 p + + a 4 ( p + ) 2 a 3 θ p + p t θ p ( γ p ( x , y ) ( u 0 ) ) θ + β ( θ p q ) t q + ρ q ( . ) ( u 0 ) a 4 p + + a 4 ( p + ) 2 a 3 θ p + p t θ p u 0 θ p + C β ( θ p q ) t q + u 0 q + .
Choosing β small enough, say β 4 , we obtain B β ( t u 0 ) , ( t u 0 ) < 0 .
Hence, t u 0 N for β 2 = min { β 3 , β 4 } .
Now, we will prove that u n u 0 in X 0 . Since u n u 0 in X 0 so t u n t u 0 in X 0 and t u n t u 0 in X 0 . Hence, K ^ ( γ p ( x , y ) ( t u 0 ) ) < lim inf n K ^ ( γ p ( x , y ) ( t u n ) ) . Therefore,
I ( t u 0 ) = K ^ γ p ( x , y ) ( t u 0 ) β Ω | t u 0 | q ( x ) q ( x ) d x Ω h ( x ) | t u 0 | θ p ¯ ( x ) l n | t u 0 | θ p ¯ ( x ) d x + Ω h ( x ) | t u 0 | θ p ¯ ( x ) ( θ p ( x ) ) 2 d x = K ^ R 2 N | t u 0 ( x ) t u 0 ( y ) | p ( x , y ) p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | t u 0 | q ( x ) q ( x ) d x Ω h ( x ) | t u 0 | θ p ¯ ( x ) l n | t u 0 | θ p ¯ ( x ) d x + Ω h ( x ) | t u 0 | θ p ¯ ( x ) ( θ p ( x ) ) 2 d x < lim inf n K ^ R 2 N | t u n ( x ) t u n ( y ) | p ( x , y ) p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | t u n | q ( x ) q ( x ) d x Ω h ( x ) | t u n | θ p ¯ ( x ) l n | t u n | θ p ¯ ( x ) d x + Ω h ( x ) | t u n | θ p ¯ ( x ) ( θ p ( x ) ) 2 d x lim n K ^ R 2 N | t u n ( x ) t u n ( y ) | p ( x , y ) p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | t u n | q ( x ) q ( x ) d x Ω h ( x ) | t u n | θ p ¯ ( x ) l n | t u n | θ p ¯ ( x ) d x + Ω h ( x ) | t u n | θ p ¯ ( x ) ( θ p ( x ) ) 2 d x = lim n I ( t u n ) .
Furthermore, since u n u 0 and ( u n ) N , by using continuity of the function K, we obtain
I β ( u 0 ) , ( u 0 ) = K ( γ p ( x , y ) ( u 0 ) ) R 2 N | u 0 ( x ) u 0 ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | u 0 | q ( x ) d x Ω h ( x ) | u 0 | θ p ¯ ( x ) l n | u 0 | d x < lim inf n K ( γ p ( x , y ) ( u n ) ) R 2 N | u n ( x ) u n ( y ) | p ( x , y ) | x y | N + s p ( x , y ) d x d y β Ω | u n | q ( x ) d x Ω h ( x ) | u n | θ p ¯ ( x ) l n | u n | d x = I β ( u n ) , ( u n ) = 0 ,
which is a contradiction to u 0 N and hence t 1 . Furthermore, observe that the function I ( t u n ) attains its maximum at t = 1 . Thus, we have
I ( t u 0 ) < lim n I ( t u n ) lim n I ( u n ) = inf u N I ( u ) = i ,
which is absurd. Hence, u n u 0 in X 0 and therefore I ( u 0 ) = lim n I ( u n ) = inf u N I ( u ) . Thus, u 0 is a minimizer for I on N . □
Proof of Theorem 1.
By Lemmas 6 and 7, we conclude that there exist u 0 + N + and u 0 N such that I ( u 0 + ) = inf u N + I ( u ) < 0 and I ( u 0 ) = inf u N I ( u ) > 0 . Hence, we obtain at least two distinct nontrivial weak solutions of the considered problem for β ( 0 , β * * ) , where β * * = min { β 1 , β 2 } .

4. Conclusions

In this article, we address the multiplicity of the solutions of an elliptic problem with variable exponents involving logarithmic nonlinearity and a nonlocal term using the analysis of the fibering map and Nehari manifold. The Nehari manifold technique via the fibering map applied for the variable exponents problem is interesting because of the non-homogeneity that arises from the variable exponents. It is likewise well worth citing that due to the presence of the variable exponents, most of the estimates are not maintained straight away, unlike inside the regular exponent set-up. Hence, to overcome this problem, some rigorous analysis has been performed.

Author Contributions

Writing—original draft preparation, A.S. and J.Z.; validation, D.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research is supported by Natural Science Foundational of Huaiyin Institute of Technology (Grant/Award number: 20HGZ002).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to thank A. Bahrouni ([email protected]) for his fruitful suggestions. The work is supported by the Fundamental Research Funds for Central Universities (2019B44914) and the National Key Research and Development Program of China (2018YFC1508100). The author Amita Soni thanks the Department of Computational Sciences, Christ University, Delhi NCR, and the author Debajyoti Choudhuri thanks the Department of Mathematics, NIT Rourkela, Odisha.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Chen, Y.M.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
  2. Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017; Springer: Heidelberg, Germany, 2011. [Google Scholar]
  3. Ružia, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin, Germany, 2002. [Google Scholar]
  4. Alves, C.O.; Ferreira, M.C. Existence of solutions for a class of p(x)-Laplacian equations involving a concave-convex nonlinearity with critical growth in RN. Topol. Methods Nonlinear Anal. 2015, 45, 399–422. [Google Scholar] [CrossRef]
  5. Liu, J.; Pucci, P.; Wu, H.; Zhang, Q. Existence and blow-up rate of large solutions of p(x)-Laplacian equations with gradient terms. J. Math. Anal. Appl. 2018, 457, 944–977. [Google Scholar] [CrossRef]
  6. Pucci, P.; Zhang, Q. Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 2014, 257, 1529–1566. [Google Scholar] [CrossRef]
  7. Rădulescu, V.D.; Repovš, D.D. Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
  8. Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
  9. Filippucci, R.; Pucci, P.; Rigoli, M. Nonlinear Weighted p-Laplacian elliptic inequalities with gradient term. Commun. Contemp. Math. 2010, 12, 501–535. [Google Scholar] [CrossRef]
  10. Lan, H.-Y.; Nieto, J.J. On a system of semilinear Elliptic coupled inequalities for S-contractive type involving Demicontinuous operators and constant harvesting. Dyn. Syst. Appl. 2019, 28, 625–649. [Google Scholar]
  11. Kaufmann, U.; Rossi, J.D.; Vidal, R. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electron. J. Qual. Theory 2017, 76, 1–10. [Google Scholar] [CrossRef]
  12. Bahrouni, A. Comparison and sub-supersolution principles for the fractional p(x)-Laplacian. J. Math. Anal. Appl. 2018, 458, 1363–1372. [Google Scholar] [CrossRef]
  13. Azroul, E.; Benkirane, A.; Shimi, M.; Srati, M. On a class of fractional p(x)-Kirchoff type problems. Appl. Anal. 2019, 100, 383–402. [Google Scholar] [CrossRef]
  14. Bahrouni, A.; Rădulescu, V.D. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst.-S 2018, 11, 379–389. [Google Scholar] [CrossRef] [Green Version]
  15. Bahrouni, A.; Ho, K.Y. Remarks on eigenvalue problems for fractional p(x)-Laplacian. Asymptot. Anal. 2021, 123, 139–156. [Google Scholar] [CrossRef]
  16. Berghout, M.; Baalal, A. Compact embedding theorems for fractional Sobolev spaces with variable exponents. Adv. Oper. Theory 2020, 5, 83–93. [Google Scholar] [CrossRef]
  17. Azroul, E.; Benkirane, A.; Shimi, M. An introduction to generalized fractional Sobolev space with variable exponent. arXiv 2019, arXiv:1901.05687. [Google Scholar]
  18. Azroul, E.; Benkirane, A.; Shimi, M. Existence and multiplicity of solutions for fractional p(x,.)-Kirchhoff-type problems in RN. Appl. Anal. 2019, 100, 2029–2048. [Google Scholar] [CrossRef]
  19. Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
  20. Fiscella, A.; Valdinoci, E. A critical Kirchhoff-type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
  21. Chen, S.; Tang, X. Ground state sign-changing solutions for elliptic equations with logarithmic nonlinearity. Acta Math. Hung. 2019, 157, 27–38. [Google Scholar] [CrossRef]
  22. Bouizem, Y.; Boulaaras, S.; Djebbar, B. Some existence results for an elliptic equation of Kirchoff-type with changing sign data and a logarithmic nonlinearity. Math. Methods Appl. Sci. 2019, 42, 2465–2474. [Google Scholar] [CrossRef]
  23. Tian, S.Y. Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity. J. Math. Anal. Appl. 2017, 454, 816–828. [Google Scholar] [CrossRef]
  24. Truong, L.X. The Nehari manifold for a class of Schrödinger equation involving fractional p-Laplacian and sign-changing logarithmic nonlinearity. J. Math. Phys. 2019, 60, 111505. [Google Scholar] [CrossRef]
  25. Truong, L.X. The Nehari manifold for fractional p-Laplacian equation with logarithmic nonlinearity on whole space. Comput. Math. Appl. 2019, 78, 3931–3940. [Google Scholar] [CrossRef]
  26. Xiang, M.; Hu, D.; Yang, D. Least energy solutions for fractional Kirchoff problems with logarithmic nonlinearity. Nonlinear Anal. 2020, 198, 111899. [Google Scholar] [CrossRef]
  27. Xiang, M.; Yang, D.; Zhang, B. Degenerate Kirchoff-type fractional diffusion problem with logarithmic nonlinearity. Asymptot. Anal. 2020, 118, 313–329. [Google Scholar]
  28. Rasouli, S.H. On a PDE involving the Variable Exponent Operator with Nonlinear Boundary Conditions. Mediterr. J. Math. 2015, 12, 821–837. [Google Scholar] [CrossRef]
  29. Rasouli, S.H.; Fallah, K. The Nehari Manifold Approach for a p(x)-Laplacian problem with nonlinear boundary conditions. Ukr. Math. J. 2017, 69, 111–125. [Google Scholar] [CrossRef]
  30. Fiscella, A.; Mishra, P.K. The Nehari manifold for fractional Kirchoff problems involving singular and critical terms. Nonlinear Anal. 2019, 186, 6–32. [Google Scholar] [CrossRef]
  31. Mashiyev, R.A.; Ogras, S.; Yucedag, Z.; Avci, M. The Nehari manifold approach for Dirichlet problem involving the p(x)-Laplacian equation. J. Korean Math. Soc. 2010, 47, 845–860. [Google Scholar] [CrossRef]
  32. Chen, W. Multiplicity of solutions for a fractional Kirchhoff type problem. Commun. Pure Appl. Anal. 2015, 14, 2009–2020. [Google Scholar] [CrossRef]
  33. Ferrara, M.; Xiang, M.; Zhang, B. Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities. Proc. R. Soc. A 2015, 471, 20150034. [Google Scholar]
  34. Cammaroto, F.; Vilasi, L. Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator. Nonlinear Anal. 2011, 74, 1841–1852. [Google Scholar] [CrossRef]
  35. Xiang, M.; Zhang, B. Degenerate Kirchhoff problems involving the fractional p-Laplacian without the (AR) condition. Complex Var. Elliptic Equ. 2015, 60, 1277–1287. [Google Scholar] [CrossRef]
  36. Kováčik, O.; Rákosník, J. On spaces Lp(x) and W1,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zuo, J.; Soni, A.; Choudhuri, D. Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity. Fractal Fract. 2022, 6, 106. https://doi.org/10.3390/fractalfract6020106

AMA Style

Zuo J, Soni A, Choudhuri D. Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity. Fractal and Fractional. 2022; 6(2):106. https://doi.org/10.3390/fractalfract6020106

Chicago/Turabian Style

Zuo, Jiabin, Amita Soni, and Debajyoti Choudhuri. 2022. "Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity" Fractal and Fractional 6, no. 2: 106. https://doi.org/10.3390/fractalfract6020106

APA Style

Zuo, J., Soni, A., & Choudhuri, D. (2022). Fractional p(·)-Kirchhoff Type Problems Involving Variable Exponent Logarithmic Nonlinearity. Fractal and Fractional, 6(2), 106. https://doi.org/10.3390/fractalfract6020106

Article Metrics

Back to TopTop