Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions
Abstract
:1. Introduction
2. Some New Definitions
3. Fractional Versions of Hadamard-Type Inequalities for Strongly --Convex Functions
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- If ,
- (i)
- If ,
- (ii)
- ,
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 72–75. [Google Scholar]
- Vial, J.P. Strong convexity of sets and functions. J. Math. Econ. 1982, 9, 187–205. [Google Scholar] [CrossRef]
- Miheşan, V.G. A Generalization of the Convexity, Seminar on Functional Equations; Approx. Convex.: Cluj-Napoca, Romania, 1993. [Google Scholar]
- Anastassiou, G.A. Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s, m)-convexity. Facta Univ. Ser. Math. Inform. 2013, 28, 107–126. [Google Scholar]
- Özdemir, M.E.; Akdemri, A.O.; Set, E. On (h − m)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 2016, 8, 51–58. [Google Scholar]
- Fang, Z.B.; Shi, R. On the (p, h)-convex function and some integral inequalities. J. Inequal. Appl. 2014, 2014, 45. [Google Scholar] [CrossRef] [Green Version]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.S.; Wan, J.P. p-Convex functions and their properties. Pure Appl. Math. 2007, 23, 130–133. [Google Scholar]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications: A Contemporary Approach; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Toader, G. Some Generalizations of the Convexity, Proceedings of the Colloquium on Approximation and Optimization; Univ. Cluj-Napoca: Cluj-Napoca, Romania, 1985; pp. 329–338. [Google Scholar]
- Lara, T.; Merentes, N.; Quintero, R.; Rosales, E. On strongly m-convex functions. Math. Aeterna 2015, 5, 521–535. [Google Scholar]
- Bracamonte, M.R.; Gimènez, J.; Vivas-Cortez, M. Hermite-Hadamard-Fejér type inequalities for strongly (s, m)-convex functions with modulus c, in second sense. Appl. Math. Inf. Sci. 2016, 10, 2045–2053. [Google Scholar] [CrossRef]
- Dong, Y.; Saddiqa, M.; Ullah, S.; Farid, G. Study of fractional integral operators containing Mittag-Leffler functions via strongly (α, m)-convex functions. Math. Prob. Eng. 2021, 2021, 6693914. [Google Scholar] [CrossRef]
- Zhang, Z.; Farid, G.; Mahreen, K. Inequalities for unified integral operators via strongly (α, h − m)-convexity. J. Funct. Spaces 2021, 2021, 6675826. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Bibi, S.; Chu, Y.M. Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results. Open J. Math. Sci. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- Set, E.; Sardari, M.; Ozdemir, M.E.; Rooin, J. On generalizations of the Hadamard inequality for (α, m)-convex functions. Kyungpook Math. J. 2012, 52, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Guessab, A. Approximations of differentiable convex functions on arbitrary convex polytopes. Appl. Math. Comput. 2014, 240, 326–338. [Google Scholar] [CrossRef]
- Wu, S. On the weighted generalization of the Hermite-Hadamard inequality and its applications. Rocky Mountain J. Math. 2009, 39, 1741–1749. [Google Scholar] [CrossRef]
- İşcan, İ. Ostrowski type inequalities for p-convex functions. NTMSCI 2016, 4, 140–150. [Google Scholar] [CrossRef]
- Bracamonte, M.R.; Giménez, J.; Viloria, J.M. Sandwich theorem for reciprocally strongly convex functions. Rev. Colomb. Mat. 2018, 52, 171–184. [Google Scholar] [CrossRef]
- Bracamonte, M.R.; Viloria, J.M.; Cortez, M.V. Some inequalities for reciprocally (s, m)-convex in the second sense functions and applications to special means. J. Math. Inequal. Appl. 2020, 14, 483–500. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Barrera, D.; Guessab, A.; Ibezan, M.J.; Nouisser, O. Increasing the approximation order of spline quasi-interpolants. J. Comput. Appl. Math. 2013, 252, 27–39. [Google Scholar] [CrossRef]
- Chu, Y.M.; Khan, M.A.; Ali, T.; Dragomir, S.S. Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, 2017, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farid, G.; Rehman, A.U.; Ain, Q.U. k-Fractional integral inequalities of Hadamard type for (h − m)-convex functions. Comput. Methods Differ. Equ. 2020, 8, 119–140. [Google Scholar]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Du, T.S.; Noor, K.I. New refinements of fractional Hermite-Hadamard inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 21–29. [Google Scholar] [CrossRef]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Merentes, N.; Nikodem, K. Remarks on strongly convex functions. Aequationes Math. 2010, 80, 193–199. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Tariq, B.; Waheed, A. On Hadamard type inequalities for m-convex functions via fractional integrals. J. Inequal. Spec. Funct. 2016, 7, 150–167. [Google Scholar]
- İşcan, İ.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Farid, G.; Akbar, S.B.; Mishra, V.N.; Mishra, V.N. Riemann-Liouville fractional versions of Hadamard inequality for strongly m-convex functions. Int. J. Anal. Appl. 2022, 20, 5. [Google Scholar] [CrossRef]
- Turhan, S.; Demirel, A.K.; Maden, S.; İşcan, İ. Hermite-Hadamard type integral inequalities for strongly p-convex functions. Turk. J. Math. Comput. Sci. 2018, 10, 184–189. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Hermite-Hadamard inequalities for strongly harmonic convex functions. J. Inequal. Spec. Funct. 2016, 7, 99–113. [Google Scholar]
- Jia, W.; Yussouf, M.; Farid, G.; Khan, K.A. Hadamard and Fejér-Hadamard inequalities for (α, h − m)-p-convex functions via Riemann-Liouville fractional integrals. Math. Probl Eng. 2021, 2021, 9945114. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Fractional Ostrowski inequalities for (s, m)-Godunova-Levin functions. Facta Univ. Ser. Math. Inf. 2015, 30, 489–499. [Google Scholar]
- İşcan, İ. Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 2015, 3, 63–74. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- He, C.Y.; Wang, Y.; Xi, B.Y.; Qi, F. Hermite-Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions. J. Nonlinear Sci. Appl. 2017, 10, 205–214. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Farid, G.; Yasmeen, H.; Shim, S.H.; Jung, C.Y. Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions. Fractal Fract. 2022, 6, 168. https://doi.org/10.3390/fractalfract6030168
Yan T, Farid G, Yasmeen H, Shim SH, Jung CY. Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions. Fractal and Fractional. 2022; 6(3):168. https://doi.org/10.3390/fractalfract6030168
Chicago/Turabian StyleYan, Tao, Ghulam Farid, Hafsa Yasmeen, Soo Hak Shim, and Chahn Yong Jung. 2022. "Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions" Fractal and Fractional 6, no. 3: 168. https://doi.org/10.3390/fractalfract6030168
APA StyleYan, T., Farid, G., Yasmeen, H., Shim, S. H., & Jung, C. Y. (2022). Inequalities for Fractional Integrals of a Generalized Class of Strongly Convex Functions. Fractal and Fractional, 6(3), 168. https://doi.org/10.3390/fractalfract6030168