On the Existence and Stability of a Neutral Stochastic Fractional Differential System
Abstract
:1. Introduction
2. Preliminaries
- (A1)
- There exist positive constants such that for all and
- (A2)
- Assume that and . Note that the condition implies .The next condition is a consequence of , but we list it here because of our easy access.
- (A3)
- Let , be the same constants in and there exist real numbers , such that for all and ,
- 1
- , where .
- 2
- is compact and continuous operator.
- 3
- is contraction operator.
3. Main Results
3.1. Existence and Uniqueness
- is adapted to with , ;
- has a continuous path on and for all , satisfies the following integral equation
3.2. The Ulam–Hyres Stability Results
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
U-Hs | Ulam-Hyers stability |
FDEs | Fractional Differential Equations |
EU | Existence and Uniqueness |
References
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional Calculus, an Introduction for Physicists; World Scientific Publishing Company: Singapore, 2011. [Google Scholar]
- Deng, W.; Hou, R.; Wang, W.; Xu, P. Modeling Anomalous Diffusion: From Statistics to Mathematics; World Scientific: Singapore, 2020. [Google Scholar]
- Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 2021, 68. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Balachandran, K.; Park, J.Y. Controllability of fractional integrodifferential systems in Banach spaces. Nonlinear Anal. Hybrid Syst. 2009, 3, 363–367. [Google Scholar] [CrossRef]
- Bellman, R. The stability of solutions of linear differential equations. Duke Math. J. 1943, 4, 643–647. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; Oliveira, E.C.D. On the Ψ-fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Caraballo, T.; Real, J.; Taniguchi, T. The exponential stability of neutral stochastic delay partial differential equations. Discret. Contin. Dyn. Syst. 2007, 18, 295–313. [Google Scholar] [CrossRef]
- Deinz, H. On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. Theory Methods Appl. 1983, 7, 1351–1371. [Google Scholar] [CrossRef]
- Chen, W.H.; Zheng, W.X. Delay–dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica 2007, 43, 95–104. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: New York, NY, USA, 2014. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Sethi, A.K.; Ghaderi, M.; Rezapour, S.; Kaabar, M.K.A.; Inc, M.; Masiha, H.P. Sufficient conditions for the existence of oscillatory solutions to nonlinear second order differential equations. J. Appl. Math. Comput. 2021. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Wang, G. Monotone iterative method for nonlinear fractional p-Laplacian differential equation in terms of ψ-Caputo fractional derivative equipped with a new class of nonlinear boundary conditions. Math. Methods Appl. Sci. 2022, 45, 967–976. [Google Scholar] [CrossRef]
- Wang, G.; Ren, X.; Zhang, L.; Ahmad, B. Symmetry of standing waves for two kinds of fractional Hardy-Schrödinger equations. Alex. Eng. J. 2021, 60, 3991–3995. [Google Scholar] [CrossRef]
- Guan, T.; Wang, G.; Xu, H. Initial boundary value problems for space-time fractional conformable differential equation. AIMS Math. 2021, 6, 5275–5291. [Google Scholar] [CrossRef]
- Guan, T.; Wang, G. Maximum Principle for the Space-Time Fractional Conformable Differential System Involving the Fractional Laplace Operator. J. Math. 2020, 2020, 7213146. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2021, 45, 496–519. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Alghanmi, M. Extremal solutions for generalized Caputo fractional differential equations with Stieltjes-type fractional integro-initial conditions. Appl. Math. Lett. 2019, 91, 113–120. [Google Scholar] [CrossRef]
- Ahmad, M.; Zada, A.; Alzabut, J. Hyers–Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. Demonstr. Math. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Ahmad, M.; Zada, A.; Alzabut, J. Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with p-Laplacian. Adv. Differ. Equ. 2019, 2019, 436. [Google Scholar] [CrossRef]
- Yan, B. Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 2001, 259, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Shu, X.; Mao, J. Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Monch fixed point. J. Math. Anal. Appl. 2018, 467, 398–420. [Google Scholar] [CrossRef]
- Dong, X.; Bai, Z.; Zhang, W. Positive solutions for nonlinear eigenvalue problems with conformable fractional differential derivatives. J. Shandong Univ. Sci. Technol. Nat. Sci. 2016, 35, 85–90. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Sakthivel, R.; Revathi, P.; Ren, Y. Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. 2013, 1, 70–86. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Agarwal, R.P.; Karapinar, E.; Kumari, P.S. Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 2019, 11, 686. [Google Scholar] [CrossRef] [Green Version]
- Sathiyaraj, T.; Wang, J.; Balasubramaniam, P. Ulam’s stability of Hilfer fractional stochastic differential systems. Eur. Phys. J. Plus 2019, 134, 605. [Google Scholar] [CrossRef]
- Wang, D.; Ding, X.L.; Ahmad, B. Existence and stability results for multi-time scale stochastic fractional neural networks. Adv. Differ. Equ. 2019, 2019, 441. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Gao, R.; Li, Z.; Wang, C. Stability of UlamHyers and UlamHyersRassias for a class of fractional differential equations. Adv. Differ. Equ. 2020, 2020, 103. [Google Scholar] [CrossRef]
- Guo, Y.; Shu, X.B.; Li, Y.; Xu, F. The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < β < 2. Bound. Value Probl. 2019, 2019, 59. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Karapinar, E.; Kumari, P.S.; Mlaiki, N. Solutions of boundary value problems on extended-Branciari b-distance. J. Inequal. Appl. 2020, 2020, 103. [Google Scholar] [CrossRef]
- Schiff, J.L. The Laplace Transform: Theory and Applications; Springer: New York, NY, USA, 1999. [Google Scholar]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Usp. Mat. Nauk 1955, 1, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, M.; Zada, A.; Ghaderi, M.; George, R.; Rezapour, S. On the Existence and Stability of a Neutral Stochastic Fractional Differential System. Fractal Fract. 2022, 6, 203. https://doi.org/10.3390/fractalfract6040203
Ahmad M, Zada A, Ghaderi M, George R, Rezapour S. On the Existence and Stability of a Neutral Stochastic Fractional Differential System. Fractal and Fractional. 2022; 6(4):203. https://doi.org/10.3390/fractalfract6040203
Chicago/Turabian StyleAhmad, Manzoor, Akbar Zada, Mehran Ghaderi, Reny George, and Shahram Rezapour. 2022. "On the Existence and Stability of a Neutral Stochastic Fractional Differential System" Fractal and Fractional 6, no. 4: 203. https://doi.org/10.3390/fractalfract6040203
APA StyleAhmad, M., Zada, A., Ghaderi, M., George, R., & Rezapour, S. (2022). On the Existence and Stability of a Neutral Stochastic Fractional Differential System. Fractal and Fractional, 6(4), 203. https://doi.org/10.3390/fractalfract6040203