Numerical Solution of Time Fractional Black–Scholes Model Based on Legendre Wavelet Neural Network with Extreme Learning Machine
Abstract
:1. Introduction
- It is a single hidden layer feed-forward network; we only should train the weights of the output layer; the input layer weights can be randomly selected.
- ELM can be classified as unsupervised learning; the optimization scheme is unnecessary; besides, it has a fast learning rate and can avoid over-fitting.
- It converts the European options pricing problem to a group of algebraic equations, which can substantially facilitate analysis.
2. Double Barrier Option under Time Fractional B-S Model
2.1. Time Fractional B-S Model
2.2. Double Barrier Option
3. Legendre Wavelet and Its Properties
4. Operational Matrix of Fractional Derivative
5. ELM Algorithm for LWNN Training
Algorithm 1 Extreme learning machine algorithm. |
Input: , , and denote the weights and bias of the input layer, respectively. , , represent the nodes of the input, hidden, and output layer, respectively. Step 1: Attribute random parameters of the hidden layer nodes, weights, and biases. Step 2: Calculate the output matrix of the hidden layer nodes H. Step 3: Calculate the output weight . where is the Moore–Penrose generalized inverse of the hidden layer output matrix H, Y is the training data target. |
- 1.
- If matrix H is square and invertible, then .
- 2.
- If matrix H is rectangle, then ; β is the minimal least square solution; in other words, .
- 3.
- If matrix H is singular, then , where ; λ is a regularization parameter, which can be set based on a specific norm.
Algorithm 2 The procedure for solving the European options pricing model based on the LWNN-ELM. |
Input: , , , , , ⋯, , , ⋯, Step 1: Constructing a numerical solution by the Legendre wavelet as the activation function, that is . Step 2: Substituting the numerical solution and its derivative into the PDEs, the initial condition, and its boundary. Step 3: Solving by ELM and obtaining the network weights , . Step 4: To obtain the numerical solution . |
6. Numerical Experiment and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B-S | Black–Scholes |
ELM | Extreme learning machine |
LWNN | Legendre wavelet neural network |
PDE | Partial differential equation |
WNN | Wavelet neural network |
BP | Back-propagation |
CPU | Central processing unit |
HDD | Hard disk drive |
References
- Podisuk, M. Regulatory quality, financial integration and equity cost of capital. Rev. Int. Econ. 2019, 27, 916–935. [Google Scholar]
- Clère, R. A new way to estimate cost of capital. J. Int. Fin. Manag. Acc. 2019, 4, 223–249. [Google Scholar] [CrossRef]
- Basu, P. Capital adjustment cost and inconsistency in inconsistency dynamic panel models with fixed effects. Ger. Econ. Rev. 2019, 20, 1002–1018. [Google Scholar] [CrossRef]
- Staveley-O’Carroll, J. Exchange rate targeting in the presence of foreign debt obligations. J. Macroecon. 2018, 56, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Dudin, B. Resource Allocation with Automated QoE Assessment in 5G/B5G Wireless Systems. IEEE Netw. 2019, 33, 76–81. [Google Scholar] [CrossRef]
- Dudin, B. OKRA: Optimal task and resource allocation for energy minimization in mobile edge computing systems. Wirel. Netw. 2019, 25, 2851–2867. [Google Scholar]
- Samuelson, P.A.; Davis, M.; Etheridge, A. Louis Bachelier’s Theory of Speculation: The Origins of Modern Finance; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Black, F. The pricing of options and corporate liabilities. J. Polit. Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.C. Theory of rational options pricing. J. Econ. Manag. Sci. 1973, 4, 141–183. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L. The Finite Moment Log Stable Process and Option Pricing. J. Financ. 2003, 58, 753–777. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics; Academic Press: London, UK, 2016. [Google Scholar]
- Caputo, M. Linear Models of Dissipation whose Q is almost Frequency Independent—II. Geophys. J. Int. 1966, 19, 529–539. [Google Scholar] [CrossRef]
- Caputo, M. Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar]
- Guariglia, E.; Silvestrov, S. Fractional-wavelet analysis of positive definite distributions and wavelets on . In Engineering Mathematics II; Springer: Berlin/Heidelberg, Germany, 2016; pp. 337–353. [Google Scholar]
- Berry, M.V.; Lewis, Z.V. On the Weierstrass-Mandelbrot Fractal Function. Proc. Soc. Lond. 1980, 370, 459–484. [Google Scholar]
- Lin, Y.; Xu, C. Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 2008, 56, 1138–1145. [Google Scholar]
- Langlands, T.A.M.; Henry, B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205, 719–736. [Google Scholar] [CrossRef]
- Chen, W.; Xiang, X.; Zhu, S.P. Analytically pricing European-style options under the modified Black–Scholes equation with a spatial-fractional derivative. Q. Appl. Math. 2014, 72, 597–611. [Google Scholar] [CrossRef]
- Song, L.; Wei, G. Solution of the Fractional Black–Scholes Option Pricing Model by Finite Difference Method. Abstract Appl. Anal. 2013, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cen, Z.; Huang, J.; Xu, A.; Le, A. Numerical approximation of a time-fractional Black–Scholes equation. Comput. Math. Appl. 2018, 75, 2874–2887. [Google Scholar] [CrossRef]
- Rezaei, M.; Yazdanian, A.R.; Ashrafi, A.; Mahmoudi, S.M. Numerical pricing based on fractional Black–Scholes equation with time-dependent parameters under the CEV model: Double barrier options. Comput. Math. Appl. 2021, 90, 104–111. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Turner, I.; Yang, Q. Numerical solution of the time fractional Black–Scholes model governing European options. Comput. Math. Appl. 2016, 71, 1772–1783. [Google Scholar] [CrossRef]
- Staelen, R.H.; Hendy, A.S. Numerically pricing double barrier options in a time-fractional Black–Scholes model. Comput. Math. Appl. 2017, 74, 1166–1175. [Google Scholar] [CrossRef]
- Yavuz, M.; Özdemir, N. A different approach to the European options pricing model with new fractional operator. Math. Model. Nat. Phenom. 2018, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Özdemir, N. European vanilla options pricing model of fractional order without singular kernel. Fractal Fract. 2018, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Elbeleze, A.A.; Kilicman, A.; Taib, B.M. Homotopy Perturbation Method for Fractional Black–Scholes European Option Pricing Equations Using Sumudu Transform. Math. Probl. Eng. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Singh, J. Numerical computation of fractional Black–Scholes equation arising in financial market. Egypt. J. Basic Appl. Sci. 2014, 1, 177–183. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H. Homotopy analysis method for options pricing under stochastic volatility. Appl. Math. Lett. 2011, 24, 1740–1744. [Google Scholar] [CrossRef] [Green Version]
- Gülka, V. The homotopy perturbation method for the Black–Scholes equation. J. Stat. Comput. Simul. 2010, 80, 1349–1354. [Google Scholar] [CrossRef]
- Liao, S. Homotopy Analysis Method in Nonlinear Differential Equations; Higher Education Press: Beijing, China, 2012. [Google Scholar]
- Ahmad, J.; Shakeel, M.; Hassan, Q. Mahmood, Ul.; Mohyud-Din, ST. Analytical solution of Black–Scholes model using fractional variational iteration method. Int. J. Mod. Math. Sci. 2013, 5, 133–142. [Google Scholar]
- Baleanu, D.; Srivastava, H.M.; Yang, X.J. Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets. Prog. Fract. Differ. Appl. 2015, 1, 1–10. [Google Scholar]
- Yavuz, M.; Ozdemir, N.; Okur, Y.Y. Generalized differential transform method for fractional partial differential equation from finance. In Proceedings of the International Conference on Fractional Differentiation and its Applications, Novi Sad, Serbia, 18–20 July 2016. [Google Scholar]
- Yavuz, M.; Zdemir, N. A Quantitative Approach to Fractional Option Pricing Problems with Decomposition Series. Appl. Math. Sci. 2018, 6, 102–109. [Google Scholar]
- Edeki, S.O.; Motsepa, T.; Khalique, C.M. The Greek parameters of a continuous arithmetic Asian options pricing model via Laplace Adomian decomposition method. Open Phys. 2018, 16, 780–785. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. Adomian decomposition: A tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 2015, 301, 508–518. [Google Scholar] [CrossRef] [Green Version]
- El-Borai, M.M.; El-Sayed, W.G.; Jawad, A.M. Adomian Decomposition Method For solving Fractional Differential Equations. Int. Res. J. Eng. Technol. 2015, 2, 296–306. [Google Scholar]
- Wyss, W. The fractional Black–Scholes equation. Fract. Calc. Appl. Anal. 2000, 3, 51–61. [Google Scholar]
- Hu, Y.; OKsendal, B. Fractional White Noise Calculus and Applications to Finance. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2003, 6, 1–32. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Zhao, X.; Ge, X. Fractional Order Stochastic Differential Equation with Application in European Option Pricing. Discrete Dyn. Nat. Soc. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jumarie, G. Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Comput. Math. Appl. 2010, 59, 1142–1164. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.K.; Chang, J.J. A closed-form approximation for the fractional Black–Scholes model with transaction costs. Comput. Math. Appl. 2013, 56, 1719–1726. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neural Comput. 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Albadra, M.A.A.; Tiuna, S. Extreme Learning Machine: A Review. Int. J. Appl. Eng. Res. 2017, 12, 4610–4623. [Google Scholar]
- Li, C.; Xue, D.; Hu, Z.; Chen, H. A Survey for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks. In International Conference on Information Technologies in Biomedicine; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep Learning for Sensor-based Activity Recognition: A Survey. Pattern Recognit. Lett. 2017, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Bahiuddin, I.; Mazlan, S.A.; Shapiai, M.I. Study of extreme learning machine activation functions for magnetorheological fluid modelling in medical devices application. In Proceedings of the International Conference on Robotics, Automation and Sciences, Nelaka, Malaysia, 27–29 November 2017. [Google Scholar]
- Liu, X.; Lin, S.; Fang, J.; Xu, Z. Is extreme learning machine feasible? A theoretical assessment (part I). IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, X.; Fang, J.; Xu, Z. Is Extreme Learning Machine Feasible? A Theoretical Assessment (Part II). IEEE Trans. Neural Netw. Learn. Syst. 2017, 26, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, S.G.; Ayyaswamy, S.K.; Balachandar, S.R. The Legendre wavelet method for solving initial value problems of Bratu-type. Comput. Math. Appl. 2012, 63, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Heydari, M.H.; Hooshmandasl, M.R.; Ghaini, F. A new approach of the Chebyshev wavelets method partial differential equations with boundary conditions of the telegraph type. Appl. Math. Model. 2014, 38, 1597–1606. [Google Scholar] [CrossRef]
- Keshavarz, E.; Ordokhani, Y.; Razzaghi, M. The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations. Appl. Numer. Math. 2018, 128, 205–216. [Google Scholar] [CrossRef]
- Zheng, X.; Tang, Y.Y.; Zhou, J. A framework of adaptive multiscale wavelet decomposition for signals on undirected graphs. IEEE Trans. Signal Process. 2019, 67, 1696–1711. [Google Scholar] [CrossRef]
- Zhang, Q.; Benveniste, A. Wavelet network. IEEE Trans. Neural Netw. 1992, 3, 889–898. [Google Scholar] [CrossRef]
- Zhang, J.; Walter, G.G.; Miao, Y. Wavelet neural networks for function learning. IEEE Trans. Signal Process. 1995, 43, 1485–1497. [Google Scholar] [CrossRef]
- Daugman, J.G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Audio Speech Lang. Process. 1988, 36, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.J.; Al-Jumeily, D.; Radi, N.; Lisboa, P. Hybrid Neural Network Predictive-Wavelet Image Compression System. Neurocomputing 2015, 151, 975–984. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Xiang, W. Deep Scattering Network with Fractional Wavelet Transform. IEEE Trans. Signal Process. 2021, 69, 4740–4757. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Xiang, W. Novel fractional wavelet packet transform: Theory, implementation, and applications. IEEE Trans. Signal Process. 2020, 68, 4041–4054. [Google Scholar] [CrossRef]
- Jahangiri, F.; Doustmohammadi, A.; Menhaj, M.B. An adaptive wavelet differential neural networks based identifier and its stability analysis. Neurocomputing 2012, 77, 12–19. [Google Scholar] [CrossRef]
- Pan, H.; Xia, L.Z. Efficient Object Recognition Using Boundary Representation and Wavelet Neural Network. IEEE Trans. Neural Netw. 2008, 19, 2132–2148. [Google Scholar] [CrossRef]
- Liang, J.R.; Wang, J.; Zhang, W.J.; Qiu, W.Y.; Ren, F.Y. The solutions to a bi-fractional black-scholes-merton differential equation. Int. J. Pure Appl. Math 2010, 128, 99–112. [Google Scholar]
- Giona, M.; Roman, H.E. Fractional diffusion equation on fractals: One-dimensional case and asymptotic behaviour. J. Phys. A-Math. Gen. 1999, 25, 2093. [Google Scholar] [CrossRef]
- Mehaute, A.L. Transfer processes in fractal media. J. Phys. A-Math. Gen. 1984, 36, 665–676. [Google Scholar] [CrossRef]
- Jumarie, G. Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black–Scholes equations. Insur. Math. Econ. 2008, 42, 271–287. [Google Scholar] [CrossRef]
- Jumarie, G. Merton’s model of optimal portfolio in a Black–Scholes Market driven by a fractional Brownian motion with short-range dependence. Insur. Math. Econ. 2005, 37, 585–598. [Google Scholar] [CrossRef]
- Hussaini, M.Y.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: Berlin, Germany, 1986. [Google Scholar]
- Razzaghi, M.; Yousefi, S. Legendre wavelets direct method for variational problems. Math. Comput. Simul. 2000, 63, 185–192. [Google Scholar] [CrossRef]
- Kreyszig, E. Introduction Functional Analysis with Applications; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Liu, N.; Lin, E.B. Legendre wavelet method for numerical solutions of partial differential equations. Numer. Meth. Part Differ. Equ. 2010, 26, 81–94. [Google Scholar] [CrossRef]
- Heydari, M.H.; Hooshmandasl, M.R.; Ghaini, F.M.M. Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Eng. Anal. Bound. Elem. 2013, 37, 1331–1338. [Google Scholar] [CrossRef]
- Steeb, W.H.; Shi, T.K. Matrix Calculus and Kronecker Product with Applications and C++ Programs; World Scientific Publishing Company: Singapore, 1997. [Google Scholar]
- Hardy, Y.; Steeb, W. Problems and Solutions in Introductory and Advanced Matrix Calculus; World Scientific Publishing Company: Singapore, 2016. [Google Scholar]
- Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Faulhaber, O. Analytic Methods for Pricing Double Barrier Options in the Presence of Stochastic Volatility. Ph.D. Thesis, Technische Universitat Kaiserslautern, Kaiserslautern, Germany, 2002. [Google Scholar]
- Chen, C.; Wang, Z.; Yang, Y. A new operator splitting method for American options under fractional Black–Scholes models. Comput. Math. Appl. 2019, 77, 2130–2144. [Google Scholar] [CrossRef]
Method | LWNN-ELM | IDM | ||
---|---|---|---|---|
Time Consumption (seconds) | ||||
Expiration (years) | ||||
1 | 5.2853 | 75.2167 | ||
0.5 | 4.3862 | 62.4791 | ||
2 | 6.7541 | 83.3754 |
Method | LWNN-ELM | ||
---|---|---|---|
Time Consumption (seconds) | |||
Expiration (years) | |||
1 | 27.6381 | ||
0.5 | 24.9635 | ||
2 | 31.7652 |
(,) | Method | Stock Price | |||||
---|---|---|---|---|---|---|---|
(230,500) | LWNN-ELM | 17.6089 | 9.0658 | 3.5568 | 1.1969 | 0.4472 | 0.1727 |
IDM | 17.6088 | 9.0656 | 3.5571 | 1.1968 | 0.4473 | 0.1726 | |
(460,500) | LWNN-ELM | 17.5861 | 9.2083 | 3.5714 | 1.2866 | 0.4707 | 0.1757 |
IDM | 17.5862 | 9.2083 | 3.5715 | 1.2867 | 0.4706 | 0.1755 |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | ||
---|---|---|---|---|---|---|---|---|---|---|
250 | 1.02 | 1.05 | 1.02 | 1.04 | 1.02 | 1.04 | 1.02 | 1.02 | 0.98 | |
500 | 1.01 | 1.01 | 1.03 | 1.03 | 1.01 | 1.00 | 1.04 | 0.99 | 1.01 | |
1000 | 1.01 | 1.01 | 1.00 | 1.02 | 1.00 | 1.03 | 1.02 | 1.02 | 0.99 | |
2000 | 1.00 | 1.00 | 1.02 | 1.01 | 1.01 | 1.00 | 0.99 | 1.01 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yang, J.; Zhao, Y. Numerical Solution of Time Fractional Black–Scholes Model Based on Legendre Wavelet Neural Network with Extreme Learning Machine. Fractal Fract. 2022, 6, 401. https://doi.org/10.3390/fractalfract6070401
Zhang X, Yang J, Zhao Y. Numerical Solution of Time Fractional Black–Scholes Model Based on Legendre Wavelet Neural Network with Extreme Learning Machine. Fractal and Fractional. 2022; 6(7):401. https://doi.org/10.3390/fractalfract6070401
Chicago/Turabian StyleZhang, Xiaoning, Jianhui Yang, and Yuxin Zhao. 2022. "Numerical Solution of Time Fractional Black–Scholes Model Based on Legendre Wavelet Neural Network with Extreme Learning Machine" Fractal and Fractional 6, no. 7: 401. https://doi.org/10.3390/fractalfract6070401
APA StyleZhang, X., Yang, J., & Zhao, Y. (2022). Numerical Solution of Time Fractional Black–Scholes Model Based on Legendre Wavelet Neural Network with Extreme Learning Machine. Fractal and Fractional, 6(7), 401. https://doi.org/10.3390/fractalfract6070401