Next Article in Journal
Solutions of Initial Value Problems with Non-Singular, Caputo Type and Riemann-Liouville Type, Integro-Differential Operators
Previous Article in Journal
Study of a Fractional Creep Problem with Multiple Delays in Terms of Boltzmann’s Superposition Principle
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

(q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications

by
Muhammad Uzair Awan
1,
Muhammad Zakria Javed
1,
Ibrahim Slimane
2,
Artion Kashuri
3,
Clemente Cesarano
4 and
Kamsing Nonlaopon
5,*
1
Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
2
Faculty of Exact Sciences and Informatics, UMAB Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000, Algeria
3
Department of Mathematics, Faculty of Technical and Natural Sciences, University “Ismail Qemali”, 9400 Vlora, Albania
4
Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Rome, Italy
5
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(8), 435; https://doi.org/10.3390/fractalfract6080435
Submission received: 14 June 2022 / Revised: 21 July 2022 / Accepted: 8 August 2022 / Published: 10 August 2022
(This article belongs to the Section General Mathematics, Analysis)

Abstract

:
A new auxiliary result pertaining to twice ( q 1 , q 2 )-differentiable functions is derived. Using this new auxiliary result, some new versions of Hermite–Hadamard’s inequality involving the class of generalized m -convex functions are obtained. Finally, to demonstrate the significance of the main outcomes, some applications are discussed for hypergeometric functions, Mittag–Leffler functions, and bounded functions.

1. Introduction and Preliminaries

A set C R is said to be convex if
( 1 ϖ ˜ ) y 3 + ϖ ˜ y 4 C , y 3 , y 4 C , ϖ ˜ [ 0 , 1 ] .
A function B ˜ : C R is said to be convex if
( 1 ϖ ˜ ) B ˜ ( y 3 ) + ϖ ˜ B ˜ ( y 4 ) B ˜ ( ( 1 ϖ ˜ ) y 3 + ϖ ˜ y 4 ) , y 3 , y 4 C , ϖ ˜ [ 0 , 1 ] .
Hermite–Hadamard’s inequality (also known as the trapezium inequality) is a famous result pertaining to convex functions. It reads as follows:
Let B ˜ : [ y 3 , y 4 ] R be a convex function; then,
B ˜ ( y 3 ) + B ˜ ( y 4 ) 2 1 y 4 y 3 y 3 y 4 B ˜ ( x ) d x B ˜ y 3 + y 4 2 ,
Recently, a variety of different new approaches have been employed to obtain new refinements of trapezium’s inequality. For details, see [1,2]. Tariboon and Ntouyas [3] obtained a q 2 -analogue of trapezium’s inequality using the concepts of quantum calculus (also known as calculus without limits) on finite intervals. In quantum calculus, basically, we establish the q 2 -analogues of classical mathematical objects, which can be recaptured by taking q 2 1 (for details, see [4]). Alp et al. [5] obtained a corrected q 2 -analogue of trapezium’s inequality. For more information, interested readers are referred to [6,7,8,9,10,11]. In recent years, the classical concepts of quantum calculus have also been extended and generalized in different directions. Chakarabarti and Jagannathan [12] introduced post-quantum calculus, which is a significant generalization of quantum calculus. In quantum calculus, we deal with q 2 -numbers with one base q 2 , while in post-quantum calculus, we deal with q 1 and q 2 -numbers with two independent variables q 1 and q 2 . Tunç and Gov [13] introduced the concepts of ( q 1 , q 2 ) -derivatives y 3 D q 1 , q 2 B ˜ ( x ) and ( q 1 , q 2 ) -integrals on finite intervals
y 3 x B ˜ ( ϖ ˜ ) y 3 d q 1 , q 2 ϖ ˜
for all x y 3 , where x K R as follows.
Definition 1
([13]). Let B ˜ : K R R be a continuous function, and let x K , where 0 < q 2 < q 1 1 . Then, the ( q 1 , q 2 ) -derivative on K of function B ˜ at x is defined as
y 3 D q 1 , q 2 B ˜ ( x ) = B ˜ ( q 1 x + ( 1 q 1 ) y 3 ) B ˜ ( q 2 x + ( 1 q 2 ) y 3 ) ( q 1 q 2 ) ( x y 3 ) , x y 3 .
Definition 2
([13]). Let B ˜ : K R R be a continuous function. Then, ( q 1 , q 2 ) -integral on K is defined as
y 3 x B ˜ ( ϖ ˜ ) y 3 d q 1 , q 2 ϖ ˜ = ( q 1 q 2 ) ( x y 3 ) n = 0 q 2 n q 1 n + 1 B ˜ q 2 n q 1 n + 1 x + 1 q 2 n q 1 n + 1 y 3 ,
for x K and x y 3 .
Since its appearance, several new variants of classical integral inequalities have been obtained using the concepts of post-quantum calculus. For example, see [14,15,16,17,18,19,20,21].
The classical concepts of convexity have also been extended and generalized in different directions using novel and innovative ideas. For example, Cortez et al. [22] presented a new generalization of the convexity class as follows:
Definition 3
([22]). Let ˜ 1 , ˜ 2 > 0 and ˜ 3 = ( ˜ 3 ( 0 ) , , ˜ 3 ( k ) , ) be a bounded sequence of positive real numbers. A non-empty set I R is said to be generalized convex if
y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ( y 4 y 3 ) I , y 3 , y 4 I , ϖ ˜ [ 0 , 1 ] .
Definition 4
([22]). Let ˜ 1 , ˜ 2 > 0 and ˜ 3 = ( ˜ 3 ( 0 ) , , ˜ 3 ( k ) , ) be a bounded sequence of positive real numbers. A function B ˜ : I R R is said to be generalized convex if
B ˜ ( y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ( y 4 y 3 ) ) ( 1 ϖ ˜ ) B ˜ ( y 3 ) + ϖ ˜ B ˜ ( y 4 ) , y 3 , y 4 I , ϖ ˜ [ 0 , 1 ] .
Here, R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ( z ) is Raina’s function introduced and studied by [23], as follows:
R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ( z ) = R ˜ 1 , ˜ 2 ˜ 3 ( 0 ) , ˜ 3 ( 1 ) , ( z ) : = k = 0 ˜ 3 ( k ) Γ ( ˜ 1 k + ˜ 2 ) z k , z C ,
where ˜ 1 , ˜ 2 > 0 , with bounded modulus | z | < M , and ˜ 3 = { ˜ 3 ( 0 ) , ˜ 3 ( 1 ) , , ˜ 3 ( k ) , } is a bounded sequence of positive real numbers. For more details, see [23].
Taking inspiration from the above definition, we now define the class of generalized m -convex sets.
Definition 5.
A set K R is said to be generalized m -convex if m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 K for every y 3 , y 4 K and m ( 0 , 1 ] , ϖ ˜ [ 0 , 1 ] .
Now, we introduce the following class of generalized m -convex functions.
Definition 6.
A function B ˜ : K R is said to be generalized m -convex if
B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 m ( 1 ϖ ˜ ) B ˜ ( y 3 ) + ϖ ˜ B ˜ ( y 4 ) ,
y 3 , y 4 K , m ( 0 , 1 ] , ϖ ˜ [ 0 , 1 ] .
Remark 1.
Note the following:
  • I.If we take R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 = y 4 m y 3 in Definition 6, then we have the definition of an m -convex function; see [24].
  • II.If we choose m = 1 in Definition 6, then we have Definition 4.
The main motivation behind this paper is to derive a new post-quantum integral identity involving twice ( q 1 , q 2 ) -differentiable functions. Using this new identity as an auxiliary result, we obtain some new variants of Hermite–Hadamard’s inequality, essentially via the class of generalized m -convex functions. In order to support our theoretical results, we also offer some applications to hypergeometric functions, Mittag–Leffler functions, and bounded functions. We hope that the ideas and techniques in this paper will inspire interested readers working in this field.

2. Main Results

In this section, we derive a new post-quantum integral identity. This result will be helpful in obtaining the main results of this paper. First, let us denote
R ˜ 1 , ˜ 2 ε ˜ 3 y 4 m y 3 : = R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ε .
Lemma 1.
Let B ˜ : I R be a twice ( q 1 , q 2 ) -differentiable function on I (the interior of I) and m y 3 D q 1 , q 2 2 B ˜ be continuous on I , where 0 < q 2 < q 1 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) = q 2 B ˜ ( m y 3 ) + q 1 B ˜ m y 3 + q 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 + q 2 1 q 1 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 m y 3 m y 3 + q 1 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ ( x ) m y 3 d q 1 , q 2 x = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 0 d q 1 , q 2 ϖ ˜ .
Proof. 
Applying Definition 1, we have
m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 = m y 3 D q 1 , q 2 m y 3 D q 1 , q 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 = m y 3 D q 1 , q 2 B ˜ m y 3 + q 1 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 m y 3 D q 1 , q 2 B ˜ m y 3 + q 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ϖ ˜ ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 = 1 ϖ ˜ ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ m y 3 + q 1 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ m y 3 + q 1 q 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ϖ ˜ p ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ m y 3 + q 1 q 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ m y 3 + q 2 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ϖ ˜ q ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 2 B ˜ m y 3 + q 1 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 = ( q 1 + q 2 ) B ˜ m y 3 + q 1 q 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 + q 1 B ˜ m y 3 + q 2 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 ϖ ˜ 2 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 .
Now using Definition 2, we obtain
0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 0 d q 1 , q 2 ϖ ˜ = 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) × q 2 B ˜ m y 3 + q 1 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) B ˜ m y 3 + q 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 + q 1 B ˜ m y 3 + q 2 2 ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ϖ ˜ 2 q 1 q 2 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 0 d q 1 , q 2 ϖ ˜ = 1 q 1 q 2 ( q 1 q 2 ) R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 × q 2 n = 0 B ˜ m y 3 + q 1 2 q 2 n q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) n = 0 B ˜ m y 3 + q 1 q 2 n + 1 q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 + q 1 n = 0 B ˜ m y 3 + q 2 n + 2 q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 2 q 2 ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 q 2 n q 1 n + 1 B ˜ m y 3 + q 1 2 q 2 n q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 q 2 n + 1 q 1 n + 1 B ˜ m y 3 + q 1 q 2 n + 1 q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 2 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 + q 1 ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 q 2 n + 2 q 1 n + 1 B ˜ m y 3 + q 2 n + 2 q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 3 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 = q 2 n = 0 B ˜ m y 3 + q 1 2 q 2 n q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 B ˜ m y 3 + q 1 q 2 n + 1 q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 ( q 1 q 2 ) R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 n = 0 B ˜ m y 3 + q 1 q 2 n + 1 q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 B ˜ m y 3 + q 2 n + 2 q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 ( q 1 q 2 ) R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 2 q 2 ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 q 2 n q 1 n + 1 B ˜ m y 3 + q 1 2 q 2 n q 1 n + 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 q 1 2 ( q 1 + q 2 ) ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 q 2 n + 1 q 1 n + 2 B ˜ m y 3 + q 1 2 q 2 n + 1 q 1 n + 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 2 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 + q 1 3 ( q 1 q 2 ) R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 n = 0 q 2 n + 2 q 1 n + 3 B ˜ m y 3 + q 1 2 q 2 n + 2 q 1 n + 3 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 1 q 2 3 ( q 1 q 2 ) 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 = q 2 B ˜ ( m y 3 + q 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ ( m y 3 ) q 1 B ˜ ( m y 3 + q 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ) B ˜ ( m y 3 ) q 1 q 2 ( q 1 q 2 ) R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 q 1 3 q 2 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 m y 3 m y 3 + q 1 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ ( x ) 0 d q 1 , q 2 ϖ ˜ q 2 2 + q 1 q 2 q 1 q 1 q 2 2 ( q 1 q 2 ) R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 B ˜ m y 3 + q 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 + B ˜ ( m y 3 + q 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 ) q 2 ( q 1 q 2 ) R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 = B ˜ ( m y 3 ) q 1 q 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 + B ˜ m y 3 + q 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 q 1 3 q 2 2 R ˜ 1 , ˜ 2 3 ˜ 3 y 4 m y 3 m y 3 m y 3 + q 1 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 B ˜ ( x ) m y 3 d q 1 , q 2 x .
Multiplying both sides of the above equality by q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 , we acquire the required result. □
Using Lemma 1, we can obtain the following new results.
Theorem 1.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | is a generalized m -convex function, then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | ) ( q 1 + q 2 ) 2 ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) .
Proof. 
Using Lemma 1, the property of the modulus and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | 0 1 ϖ ˜ ( 1 ϖ ˜ ) ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | 0 1 ϖ ˜ 2 ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | ) ( q 1 + q 2 ) 2 ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) .
This completes the proof. □
Theorem 2.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m D 1 | y 3 D q 1 , q 2 2 B ˜ ( m y 3 ) | r + d 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where
d 1 : = ( q 1 q 2 ) n = 0 q 2 2 n q 1 2 n + 2 q 2 3 n q 1 3 n + 3 1 q 2 n + 1 q 1 n + 1 r ,
d 2 : = ( q 1 q 2 ) n = 0 q 2 3 n q 1 3 n + 3 1 q 2 n + 1 q 1 n + 1 r .
Proof. 
Using Lemma 1, the power mean inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ 0 d q 1 , q 2 ϖ ˜ 1 1 r 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) r | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 1 q 1 + q 2 1 1 r m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ϖ ˜ ( 1 ϖ ˜ ) ( 1 q 2 ϖ ˜ ) r 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ 2 ( 1 q 2 ϖ ˜ ) r 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m D 1 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + D 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
This completes the proof. □
Theorem 3.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 3 1 s m ( q 2 2 + q 1 2 + q 1 q 2 q 1 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + ( q 1 + q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r ,
where
d 3 : = ( q 1 q 2 ) n = 0 q 2 2 n q 1 2 n + 2 1 q 2 n q 1 n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) s 0 d q 1 , q 2 ϖ ˜ 1 s 0 1 ϖ ˜ | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) s 0 d q 1 , q 2 ϖ ˜ 1 s × m | y 3 D q 1 , q 2 2 B ˜ ( m y 3 ) | r 0 1 ϖ ˜ ( 1 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ 2 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 3 1 s m ( q 2 2 + q 1 2 + q 1 q 2 q 1 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + ( q 1 + q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r .
This completes the proof. □
Theorem 4.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) m D 4 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + D 5 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where
d 4 : = ( q 1 q 2 ) n = 0 q 2 n q 1 n + 1 r + 1 1 q 2 n q 1 n + 1 1 q 2 n + 1 q 1 n + 1 r
and
d 5 : = ( q 1 q 2 ) n = 0 q 2 n q 1 n + 1 r + 3 1 q 2 n + 1 q 1 n + 1 r .
Proof. 
Using Lemma 1, the power mean inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 1 0 d q 1 , q 2 ϖ ˜ 1 1 r 0 1 ϖ ˜ r ( 1 q 2 ϖ ˜ ) r | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ϖ ˜ r ( 1 ϖ ˜ ) ( 1 q 2 ϖ ˜ ) r 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ r + 2 ( 1 q 2 ϖ ˜ ) r 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) m D 4 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + d 5 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
This completes the proof. □
Theorem 5.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 6 1 s m ( q 1 + q 2 1 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) 1 r ,
where
d 6 : = ( q 1 q 2 ) n = 0 q 2 n q 1 n + 1 s + 1 1 q 2 n + 1 q 1 n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ s ( 1 q 2 ϖ ˜ ) s 0 d q 1 , q 2 ϖ ˜ 1 s 0 1 | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 × 0 1 ϖ ˜ s ( 1 q 2 ϖ ˜ ) s 0 d q 1 , q 2 ϖ ˜ 1 s m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ( 1 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 6 1 s m ( q 1 + q 2 1 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) 1 r .
This completes the proof. □
Theorem 6.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) q 1 q 2 q 1 s + 1 q 2 s + 1 1 s m d 7 | y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + d 8 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where
d 7 : = ( q 1 q 2 ) n = 0 q 2 n q 1 n + 1 q 2 2 n q 1 2 n + 2 1 q 2 n + 1 q 1 n + 1 r
and
d 8 : = ( q 1 q 2 ) n = 0 q 2 2 n q 1 2 n + 2 1 q 2 n + 1 q 1 n + 1 r .
Proof. 
Using Lemma 1, Hölder’s inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ s 0 d q 1 , q 2 ϖ ˜ 1 s 0 1 ( 1 q 2 ϖ ˜ ) r | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 q 1 q 2 q 1 s + 1 q 2 s + 1 1 s m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ( 1 ϖ ˜ ) ( 1 q 2 ϖ ˜ ) r 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) r 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) q 1 q 2 q 1 s + 1 q 2 s + 1 1 s m D 7 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + D 8 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
This completes the proof. □
Theorem 7.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 9 1 s m q 1 q 2 q 1 r + 1 q 2 r + 1 q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where
d 9 : = ( q 1 q 2 ) n = 0 q 2 n q 1 n + 1 1 q 2 n + 1 q 1 n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ( 1 q 2 ϖ ˜ ) s 0 d q 1 , q 2 ϖ ˜ 1 s 0 1 ϖ ˜ r | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ( 1 q 2 ϖ ˜ ) s 0 d q 1 , q 2 ϖ ˜ 1 s m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ϖ ˜ r ( 1 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ r + 1 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 9 1 s m q 1 q 2 q 1 r + 1 q 2 r + 1 q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
This completes the proof. □
Theorem 8.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 2 1 r q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r q 1 2 q 2 2 + q 1 q 2 + q 1 2 1 1 r m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r .
Proof. 
Using Lemma 1, the power mean inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 1 r 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 1 r × m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ϖ ˜ ( 1 ϖ ˜ ) ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ 2 ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 2 1 r q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r q 1 2 q 2 2 + q 1 q 2 + q 1 2 1 1 r m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r .
This completes the proof. □
Theorem 9.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 2 1 r q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m q 1 q 2 q 1 r + 1 q 2 r + 1 ( q 1 q 2 ) ( 1 + q 2 ) q 1 r + 2 q 2 r + 2 + q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
Proof. 
Using Lemma 1, the power mean inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 1 r 0 1 ϖ ˜ r ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 1 r × m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ϖ ˜ r ( 1 ϖ ˜ ) ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ r + 1 ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 2 1 r q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m q 1 q 2 q 1 r + 1 q 2 r + 1 ( q 1 q 2 ) ( 1 + q 2 ) q 1 r + 2 q 2 r + 2 + q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
This completes the proof. □
Theorem 10.
Under the assumptions of Lemma 1, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) D 10 1 s m ( q 1 3 q 1 2 + q 1 q 2 2 + q 1 2 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r ,
where
d 10 : = ( q 1 q 2 ) n = 0 q 2 n q 1 n + 1 s + 1 1 q 2 n + 1 q 1 n + 1 s .
Proof. 
Using Lemma 1, Hölder’s inequality, and the given hypothesis, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | 0 d q 1 , q 2 ϖ ˜ q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ s ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 s 0 1 ( 1 q 2 ϖ ˜ ) | m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 y 4 m y 3 | r 0 d q 1 , q 2 ϖ ˜ 1 r q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ s ( 1 q 2 ϖ ˜ ) s 0 d q 1 , q 2 ϖ ˜ 1 s × m | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r 0 1 ( 1 ϖ ˜ ) ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) 0 d q 1 , q 2 ϖ ˜ 1 r = q 1 q 2 2 R ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 10 1 s m ( q 1 3 q 1 2 + q 1 q 2 2 + q 1 2 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r .
This completes the proof □

3. Applications

In this section, we discuss some applications of our main results.

3.1. Applications to Hypergeometric Functions

Now, we derive some other inequalities involving hypergeometric functions and Mittag–Leffler functions.
From the relation in (1), if we set ˜ 1 = 1 , ˜ 2 = 0 and ˜ 3 ( k ) = ( ϕ ) k ( ψ ) k ( η ) k 0 , where ϕ , ψ , and η are parameters that may be real or complex values; ( m ) k is defined as ( m ) k = Γ ( m + k ) Γ ( m ) , and its domain is restricted as | x | 1 , then we have the following hypergeometric function:
R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ( ϕ , ψ ; η , x ) : = k = 0 ( ϕ ) k ( ψ ) k k ! ( η ) k x k .
Let us denote
R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 : = R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 2 .
Lemma 2.
Let B ˜ : I R be a twice ( q 1 , q 2 ) -differentiable function on I (the interior of I) and m y 3 D q 1 , q 2 2 B ˜ be continuous and I , where 0 < q 2 < q 1 1 . Then,
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) = q 2 B ˜ ( m y 3 ) + q 1 B ˜ m y 3 + q 1 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 q 1 + q 2 1 q 1 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 m y 3 m y 3 + q 1 2 R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 B ˜ ( x ) m y 3 d q 1 , q 2 x = q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) m y 3 D q 1 , q 2 2 B ˜ m y 3 + ϖ ˜ R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 0 d q 1 , q 2 ϖ ˜ .
Theorem 11.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | is a generalized m -convex function, then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | ) ( q 1 + q 2 ) 2 ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) .
Theorem 12.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) 2 1 r m D 1 | y 3 D q 1 , q 2 2 B ˜ ( m y 3 ) | r + D 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 1 and d 2 are given by (4) and (5), respectively.
Theorem 13.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) d 3 1 s m ( q 2 2 + q 1 2 + q 1 q 2 q 1 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + ( q 1 + q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r ,
where d 3 is given by (6).
Theorem 14.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) m D 4 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + D 5 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 4 and d 5 are given by (7) and (8).
Theorem 15.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) d 6 1 s m ( q 1 + q 2 1 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) 1 r ,
where d 6 is given by (9).
Theorem 16.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) q 1 q 2 q 1 s + 1 q 2 s + 1 1 s m d 7 | y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + d 8 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 7 and d 8 are given by (10) and (11).
Theorem 17.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) d 9 1 s × m q 1 q 2 q 1 r + 1 q 2 r + 1 q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 9 is given by (12).
Theorem 18.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 2 1 r q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) 2 1 r q 1 2 q 2 2 + q 1 q 2 + q 1 2 1 1 r × m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r .
Theorem 19.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 2 1 r q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) 2 1 r m q 1 q 2 q 1 r + 1 q 2 r + 1 ( q 1 q 2 ) ( 1 + q 2 ) q 1 r + 2 q 2 r + 2 + q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
Theorem 20.
Under the assumptions of Lemma 2, if | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 , then
Ξ ¯ 1 ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 ϕ , ψ ; η ; y 4 m y 3 ( q 1 + q 2 ) d 10 1 s m ( q 1 3 q 1 2 + q 1 q 2 2 + q 1 2 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r ,
where d 10 is given by (13).

3.2. Applications to Mittag–Leffler Functions

Moreover, if we take ˜ 3 = ( 1 , 1 , 1 , ) , ˜ 2 = 1 , and ˜ 1 = ϕ with ( ϕ ) > 0 , then we obtain the well-known Mittag–Leffler function:
R ˜ ¯ ϕ ( x ) : = k = 0 1 Γ ( 1 + ϕ k ) x k .
Let us denote
R ˜ ¯ ϕ 2 y 4 m y 3 : = R ˜ ¯ ϕ y 4 m y 3 2 .
Lemma 3.
Let B ˜ : I R be a twice ( q 1 , q 2 ) -differentiable function on I (the interior ofI) and m y 3 D q 1 , q 2 2 B ˜ be continuous and I , where 0 < q 2 < q 1 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) = q 2 B ˜ ( m y 3 ) + q 1 B ˜ m y 3 + q 1 R ˜ ¯ ϕ y 4 m y 3 q 1 + q 2 1 q 1 2 R ˜ ¯ ϕ y 4 m y 3 m y 3 m y 3 + q 1 2 R ˜ ¯ ϕ y 4 m y 3 B ˜ ( x ) m y 3 d q 1 , q 2 x = q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 q 1 + q 2 0 1 ϖ ˜ ( 1 q 2 ϖ ˜ ) m y 3 D q 1 , q 2 2 B ˜ m y 3 + m ϖ ˜ R ˜ ¯ ϕ y 4 m y 3 0 d q 1 , q 2 ϖ ˜ .
Theorem 21.
Under the assumptions of Lemma 3, if | m y 3 D q 1 , q 2 2 B ˜ | is a generalized m -convex function, then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | ) ( q 1 + q 2 ) 2 ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) .
Theorem 22.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 , then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m d 1 | y 3 D q 1 , q 2 2 B ˜ ( m y 3 ) | r + D 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 1 and d 2 are given by (4) and (5), respectively.
Theorem 23.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) d 3 1 s m ( q 2 2 + q 1 2 + q 1 q 2 q 1 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + ( q 1 + q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r ,
where d 3 is given by (6).
Theorem 24.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 . Then
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) m d 4 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + D 5 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 4 and d 5 are given by (7) and (8).
Theorem 25.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) d 6 1 s m ( q 1 + q 2 1 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) 1 r ,
where d 6 is given by (9).
Theorem 26.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) q 1 q 2 q 1 s + 1 q 2 s + 1 1 s m d 7 | y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + d 8 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 7 and d 8 are given by (10) and (11).
Theorem 27.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) x q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) d 9 1 s m q 1 q 2 q 1 r + 1 q 2 r + 1 q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r ,
where d 9 is given by (12).
Theorem 28.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 2 1 r q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) 2 1 r q 1 2 q 2 2 + q 1 q 2 + q 1 2 1 1 r m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r .
Theorem 29.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 2 1 r q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m q 1 q 2 q 1 r + 1 q 2 r + 1 ( q 1 q 2 ) ( 1 + q 2 ) q 1 r + 2 q 2 r + 2 + q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 q 2 q 1 r + 2 q 2 r + 2 q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r 1 r .
Theorem 30.
Under the assumptions of Lemma 3, | m y 3 D q 1 , q 2 2 B ˜ | r is a generalized m -convex function for r > 1 and 1 s + 1 r = 1 . Then,
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ϕ ) q 1 q 2 2 R ˜ ¯ ϕ 2 y 4 m y 3 ( q 1 + q 2 ) d 10 1 s m ( q 1 3 q 1 2 + q 1 q 2 2 + q 1 2 q 2 ) | m y 3 D q 1 , q 2 2 B ˜ ( y 3 ) | r + q 1 2 | m y 3 D q 1 , q 2 2 B ˜ ( y 4 ) | r ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r ,
where d 10 is given by (13).

3.3. Applications to Bounded Functions

We suppose that the following condition is satisfied:
m y 3 D q 1 , q 2 2 B ˜ M ,
which means that the twice ( q 1 , q 2 ) -differentiable function B ˜ is in an absolute value bounded from the positive real number M .
Proposition 1.
Under the conditions of Theorem 1, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) + q 1 3 ) M ( q 1 + q 2 ) 2 ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) .
Proposition 2.
Under the conditions of Theorem 2, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m d 1 + d 2 1 r M .
Proposition 3.
Under the conditions of Theorem 3, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 3 1 s m ( q 2 2 + q 1 2 + q 1 q 2 q 1 q 2 ) + q 1 + q 2 ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r M .
Proposition 4.
Under the conditions of Theorem 4, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) m d 4 + d 5 1 r M .
Proposition 5.
Under the conditions of Theorem 5, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 6 1 s m ( q 1 + q 2 1 ) + 1 ( q 1 + q 2 ) 1 r M .
Proposition 6.
Under the conditions of Theorem 6, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) q 1 q 2 q 1 s + 1 q 2 s + 1 1 s m d 7 + d 8 1 r M .
Proposition 7.
Under the conditions of Theorem 7, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 9 1 s m q 1 q 2 q 1 r + 1 q 2 r + 1 q 1 q 2 q 1 r + 2 q 2 r + 2 + q 1 q 2 q 1 r + 2 q 2 r + 2 1 r M .
Proposition 8.
Under the conditions of Theorem 8, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 2 1 r q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r q 1 2 q 2 2 + q 1 q 2 + q 1 2 1 1 r m ( q 1 4 q 1 3 + q 1 2 q 2 2 ) + q 1 3 ( q 1 + q 2 ) ( q 1 2 + q 2 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r M .
Proposition 9.
Under the conditions of Theorem 9, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 2 1 r q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) 2 1 r m q 1 q 2 q 1 r + 1 q 2 r + 1 ( q 1 q 2 ) ( 1 + q 2 ) q 1 r + 2 q 2 r + 2 + q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 + q 1 q 2 q 1 r + 2 q 2 r + 2 q 2 ( q 1 q 2 ) q 1 r + 3 q 2 r + 3 1 r M .
Proposition 10.
Under the conditions of Theorem 10, we have
Ξ ¯ ( B ˜ ; q 1 , q 2 ; R ˜ ¯ ˜ 1 , ˜ 2 ˜ 3 ) q 1 q 2 2 R ˜ ¯ ˜ 1 , ˜ 2 2 ˜ 3 y 4 m y 3 ( q 1 + q 2 ) d 10 1 s m ( q 1 3 q 1 2 + q 1 q 2 2 + q 1 2 q 2 ) + q 1 2 ( q 1 + q 2 ) ( q 2 2 + q 1 q 2 + q 1 2 ) 1 r M .
Remark 2.
Interested readers can derive several new inequalities from our main results using special means of positive real numbers. We omit their proofs here.

4. Conclusions

We established a new integral identity utilizing twice ( q 1 , q 2 ) -differentiable functions. Some new variants of Hermite–Hadamard’s inequality essentially involving the class of generalized m -convex functions were derived. In order to illustrate the efficiency and significance of our main outcomes, some applications regarding hypergeometric functions, Mittag–Leffler functions, and twice ( q 1 , q 2 ) -differentiable functions that are bounded were discussed in detail. To the best of our knowledge, these results are new in the literature. Note that these ( q 1 , q 2 ) -trapezium inequalities involving twice differentiable generalized m -convex functions are connected to theoretical methods and have applications related to fractional operators. It is also worth mentioning here that one can extend these results using fractional quantum integrals. This will be an interesting problem for future research.

Author Contributions

Conceptualization, M.U.A., M.Z.J. and I.S.; methodology, M.U.A., M.Z.J. and I.S.; software, M.U.A., A.K. and K.N.; validation, I.S., A.K. and C.C.; formal analysis, M.U.A., M.Z.J., I.S., A.K., C.C. and K.N.; investigation, M.U.A., M.Z.J., I.S. and A.K.; resources, C.C. and K.N.; data curation, A.K. and K.N.; writing—original draft preparation, M.U.A., M.Z.J., I.S. and A.K.; writing—review and editing, M.U.A., M.Z.J., A.K. and K.N.; supervision, M.U.A., M.Z.J. and C.C. All authors have read and agreed to the final version of the manuscript.

Funding

This research received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are thankful to the editors and the anonymous reviewers for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Butt, S.I.; Umar, M.; Khan, K.A.; Kashuri, A.; Emadifar, H. Fractional Hermite–Jensen–Mercer integral inequalities with respect to another function and application. Complexity 2021, 2021, 9260828. [Google Scholar] [CrossRef]
  2. Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite–Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
  3. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef]
  4. Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
  5. Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q2-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
  6. Noor, M.A.; Noor, K.I.; Awan, M.U. Some Quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  7. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef]
  8. Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
  9. Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α,m)–convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef] [PubMed]
  10. Kalsoom, H.; Vivas-Cortez, M.; Abidin, M.Z.; Marwan, M.; Khan, Z.A. Montgomery identity and Ostrowski-type inequalities for generalized quantum calculus through convexity and their applications. Symmetry 2022, 14, 1449. [Google Scholar] [CrossRef]
  11. Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some generalizations of different types of quantum integral inequalities for differentiable convex functions with applications. Fractal Fract. 2022, 6, 129. [Google Scholar] [CrossRef]
  12. Chakrabarti, R.; Jagannathan, R. A (q1,q2)–oscillator realization of two-parameter quantum algebras. J. Phys. A 1991, 24, 13. [Google Scholar] [CrossRef]
  13. Tunç, M.; Göv, E. Some integral inequalities via (q1,q2)–calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 95. [Google Scholar]
  14. Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I.; Chu, Y.M. On post quantum integral inequalities. J. Math. Inequal. 2021, 15, 629–654. [Google Scholar] [CrossRef]
  15. Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p,q)–Hermite–Hadamard inequalities and (p,q)–estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 969–992. [Google Scholar] [CrossRef]
  16. Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A. Some new post–quantum integral inequalities involving twice (p,q)–differentiable ψ-preinvex functions and applications. Axioms 2021, 10, 283. [Google Scholar] [CrossRef]
  17. Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum integral inequalities of Hermite–Hadamard–type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef]
  18. Sitthiwirattham, T.; Murtaza, G.; Ali, M.A.; Ntouyas, S.K.; Adeel, M.; Soontharanon, J. On Some new trapezoidal type inequalities for twice (p,q) differentiable convex functions in post-quantum calculus. Symmetry 2021, 13, 1605. [Google Scholar] [CrossRef]
  19. Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite–Hadamard inclusions for co-ordinated interval-valued functions via post-quantum calculus. Symmetry 2021, 13, 1216. [Google Scholar] [CrossRef]
  20. Vivas-Cortez, M.; Ali, M.A.; Qaisar, S.; Sial, I.B.; Jansem, S.; Mateen, A. On some new Simpson’s formula type inequalities for convex functions in post-quantum calculus. Symmetry 2021, 13, 2419. [Google Scholar] [CrossRef]
  21. Sial, I.B.; Ali, M.A.; Murtaza, G.; Ntouyas, S.K.; Soontharanon, J.; Sitthiwirattham, T. On some new inequalities of Hermite–Hadamard midpoint and trapezoid type for preinvex functions in (p,q)-calculus. Symmetry 2021, 13, 1864. [Google Scholar] [CrossRef]
  22. Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández, J.E.H. New quantum estimates of trapezium-type inequalities for generalized φ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef]
  23. Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East As. Math. J. 2015, 21, 191–203. [Google Scholar]
  24. Mihesan, V.G. A Generalization of the Convexity, Seminar on Functional Equations Approximity and Convexivity, Cluj-Napoca (Romania); Science and Education Publishing: Newark, DE, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Awan, M.U.; Javed, M.Z.; Slimane, I.; Kashuri, A.; Cesarano, C.; Nonlaopon, K. (q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications. Fractal Fract. 2022, 6, 435. https://doi.org/10.3390/fractalfract6080435

AMA Style

Awan MU, Javed MZ, Slimane I, Kashuri A, Cesarano C, Nonlaopon K. (q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications. Fractal and Fractional. 2022; 6(8):435. https://doi.org/10.3390/fractalfract6080435

Chicago/Turabian Style

Awan, Muhammad Uzair, Muhammad Zakria Javed, Ibrahim Slimane, Artion Kashuri, Clemente Cesarano, and Kamsing Nonlaopon. 2022. "(q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications" Fractal and Fractional 6, no. 8: 435. https://doi.org/10.3390/fractalfract6080435

APA Style

Awan, M. U., Javed, M. Z., Slimane, I., Kashuri, A., Cesarano, C., & Nonlaopon, K. (2022). (q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications. Fractal and Fractional, 6(8), 435. https://doi.org/10.3390/fractalfract6080435

Article Metrics

Back to TopTop