(q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications
Abstract
:1. Introduction and Preliminaries
- I.If we take in Definition 6, then we have the definition of an -convex function; see [24].
- II.If we choose in Definition 6, then we have Definition 4.
2. Main Results
3. Applications
3.1. Applications to Hypergeometric Functions
3.2. Applications to Mittag–Leffler Functions
3.3. Applications to Bounded Functions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butt, S.I.; Umar, M.; Khan, K.A.; Kashuri, A.; Emadifar, H. Fractional Hermite–Jensen–Mercer integral inequalities with respect to another function and application. Complexity 2021, 2021, 9260828. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite–Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2011, 54, 2709–2717. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q2-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some Quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2017, 7, 501–522. [Google Scholar]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α,m)–convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef] [PubMed]
- Kalsoom, H.; Vivas-Cortez, M.; Abidin, M.Z.; Marwan, M.; Khan, Z.A. Montgomery identity and Ostrowski-type inequalities for generalized quantum calculus through convexity and their applications. Symmetry 2022, 14, 1449. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some generalizations of different types of quantum integral inequalities for differentiable convex functions with applications. Fractal Fract. 2022, 6, 129. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (q1,q2)–oscillator realization of two-parameter quantum algebras. J. Phys. A 1991, 24, 13. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. Some integral inequalities via (q1,q2)–calculus on finite intervals. RGMIA Res. Rep. Coll. 2016, 19, 95. [Google Scholar]
- Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I.; Chu, Y.M. On post quantum integral inequalities. J. Math. Inequal. 2021, 15, 629–654. [Google Scholar] [CrossRef]
- Kunt, M.; İşcan, İ.; Alp, N.; Sarikaya, M.Z. (p,q)–Hermite–Hadamard inequalities and (p,q)–estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A. Some new post–quantum integral inequalities involving twice (p,q)–differentiable ψ-preinvex functions and applications. Axioms 2021, 10, 283. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum integral inequalities of Hermite–Hadamard–type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Murtaza, G.; Ali, M.A.; Ntouyas, S.K.; Adeel, M.; Soontharanon, J. On Some new trapezoidal type inequalities for twice (p,q) differentiable convex functions in post-quantum calculus. Symmetry 2021, 13, 1605. [Google Scholar] [CrossRef]
- Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite–Hadamard inclusions for co-ordinated interval-valued functions via post-quantum calculus. Symmetry 2021, 13, 1216. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Qaisar, S.; Sial, I.B.; Jansem, S.; Mateen, A. On some new Simpson’s formula type inequalities for convex functions in post-quantum calculus. Symmetry 2021, 13, 2419. [Google Scholar] [CrossRef]
- Sial, I.B.; Ali, M.A.; Murtaza, G.; Ntouyas, S.K.; Soontharanon, J.; Sitthiwirattham, T. On some new inequalities of Hermite–Hadamard midpoint and trapezoid type for preinvex functions in (p,q)-calculus. Symmetry 2021, 13, 1864. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Liko, R.; Kashuri, A.; Hernández, J.E.H. New quantum estimates of trapezium-type inequalities for generalized φ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East As. Math. J. 2015, 21, 191–203. [Google Scholar]
- Mihesan, V.G. A Generalization of the Convexity, Seminar on Functional Equations Approximity and Convexivity, Cluj-Napoca (Romania); Science and Education Publishing: Newark, DE, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awan, M.U.; Javed, M.Z.; Slimane, I.; Kashuri, A.; Cesarano, C.; Nonlaopon, K. (q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications. Fractal Fract. 2022, 6, 435. https://doi.org/10.3390/fractalfract6080435
Awan MU, Javed MZ, Slimane I, Kashuri A, Cesarano C, Nonlaopon K. (q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications. Fractal and Fractional. 2022; 6(8):435. https://doi.org/10.3390/fractalfract6080435
Chicago/Turabian StyleAwan, Muhammad Uzair, Muhammad Zakria Javed, Ibrahim Slimane, Artion Kashuri, Clemente Cesarano, and Kamsing Nonlaopon. 2022. "(q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications" Fractal and Fractional 6, no. 8: 435. https://doi.org/10.3390/fractalfract6080435
APA StyleAwan, M. U., Javed, M. Z., Slimane, I., Kashuri, A., Cesarano, C., & Nonlaopon, K. (2022). (q1,q2)-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications. Fractal and Fractional, 6(8), 435. https://doi.org/10.3390/fractalfract6080435