Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint
Abstract
:1. Introduction
2. Main Result
2.1. Formulation of the Problem
- (i)
- is continuous function such that .
- (ii)
- (iii)
- The following algebraic equation has a real positive root .
- (iv)
2.2. Existence of the Solution
3. Uniqueness of the Solution
- and : are measurable in and satisfy the Lipschitz condition [43]
4. Hyers–Ulam Stability
5. Continuous Dependence
6. Special Cases and Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]
- Banaś, J.; Zajac, T. A new approach to the theory of functional integral equations of fractional order. J. Math. Anal. Appl. 2011, 375, 375–387. [Google Scholar] [CrossRef]
- Boucherif, A.; Precup, R. On the nonlocal initial value problem for first order differential equations. Fixed Point Theory 2003, 4, 205–212. [Google Scholar]
- Caponetto, R. Fractional order systems. In Modeling and Control Applications; World Scientific: Singapore, 2010; Volume 72. [Google Scholar]
- Caputo, M. Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Kazemi, M.; Yaghoobnia, A.R. Application of fixed point theorem to solvability of functional stochastic integral equations. Appl. Math. Comput. 2022, 417, 126759. [Google Scholar] [CrossRef]
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Podlubny, I. Fractional-order systems and fractional-order controllers. Inst. Exp. Phys. Slovak Acad. Sci. Kosice 1994, 12.3, 1–18. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Integrals and Derivatives of the Fractional Order and Some of Their Applications; Nauka i Tehnika: Minsh, Belarus, 1987; (In Russian English Translation). [Google Scholar]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Alrashdi, M.A.H. On a functional integral equation with constraint existence of solution and continuous dependence. Int. J. Differ. Eq. Appl. 2019, 18, 37–48. [Google Scholar]
- Al-Issa, S.M.; El-Sayed, A.M.A.; Hashem, H.H.G. An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control. Fractal Fract. 2023, 7, 759. [Google Scholar] [CrossRef]
- Nasertayoob, P. Solvability and asymptotic stability of a class of nonlinear functional-integral equation with feedback control. Commun. Nonlinear Anal. 2018, 5, 19–27. [Google Scholar]
- El-Sayed, A.M.; Ba-Ali, M.M.; Hamdallah, E.M. An Investigation of a Nonlinear Delay Functional Equation with a Quadratic Functional Integral Constraint. Mathematics 2023, 11, 4475. [Google Scholar] [CrossRef]
- De la Sen, M.; Alonso-Quesada, S. Control issues for the Beverton–Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases. Appl. Math. Comput. 2009, 215, 2616–2633. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Agarwal, R.P.; Nonlaopon, K. On a Lyapunov-Type Inequality for Control of a y-Model Thermostat and the Existence of Its Solutions. Mathematics 2022, 10, 4023. [Google Scholar] [CrossRef]
- Zhao, K. Stability of a nonlinear Langevin system of ML-Type fractional derivative affected by time-varying delays and differential feedback control. Fractal Fract. 2022, 6, 725. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hamdallah, E.A.; Ahmed, R.G. On a nonlinear constrained problem of a nonlinear functional integral equation. Appl. Anal. Optim. 2022, 6, 95–107. [Google Scholar]
- Cosentino, C.; Bates, D. Feedback Control in Systems Biology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Cowan, N.J.; Ankarali, M.M.; Dyhr, J.P.; Madhav, M.S.; Roth, E.; Sefati, S.; Sponberg, S.; Stamper, S.A.; Fortune, E.S.; Daniel, T.L. Feedback control as a framework for understanding tradeoffs in biology. Am. Zool. 2014, 54, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, D.; Dy, A.J.; Qian, Y. Control theory meets synthetic biology. J. R. Soc. Interface 2016, 13, 20160380. [Google Scholar] [CrossRef] [PubMed]
- Peiffer, S.; Dan, T.B.B.; Frevert, T.; Cavari, B.Z. Survival of E. coli and enterococci in sediment-water systems of Lake Kinneret under (Feedback) controlled concentrations of hydrogen sulfide. Water Res. 1988, 22, 233–240. [Google Scholar] [CrossRef]
- De Leenheer, P.; Smith, H. Feedback control for chemostat models. J. Math. Biol. 2003, 46, 48–70. [Google Scholar] [CrossRef]
- Marshall, S.H.; Smith, D.R. Feedback control and the distribution of prime numbers. Math. Mag. 2013, 86, 189–203. [Google Scholar] [CrossRef]
- Stewart, G.E.; Dimitry, M.G.; Dumont, G.A. Feedback controller design for a spatially distributed system: The paper machine problem. IEEE Trans. Control. Syst. Technol. 2003, 11.5, 612–628. [Google Scholar] [CrossRef]
- Chen, F.; Lin, F.; Chen, X. Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control. Appl. Math. Comput. 2004, 158, 45–68. [Google Scholar] [CrossRef]
- Matveeva, I. Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients. Electron. J. Differ. Eq. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Saker, S.H. Periodic solutions, oscillation and attractivity of discrete nonlinear delay population model. Math. Comput. Model. 2008, 47, 278–297. [Google Scholar] [CrossRef]
- Yang, Z. Positive periodic solutions of a class of single-species neutral models with state-dependent delay and feedback control. Eur. J. Appl. Math. 2006, 17, 735–757. [Google Scholar] [CrossRef]
- Nasertayoob, P.; Vaezpour, S.M. Positive periodic solution for a nonlinear neutral delay population equation with feedback control. J. Nonlinear Sci. Appl. 2013, 6, 152–161. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A. Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. C 2005, 16, 1017–1026. [Google Scholar] [CrossRef]
- Banaś, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic solutions of a class of quadratic integral equations of Volterra type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Gaafar, F.M. Fractional calculus and some intermediate physical processes. J. A. Math.Comp. 2003, 144, 117–126. [Google Scholar] [CrossRef]
- Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Phil. Trans. R. Soc. 2020, 378, 20200050. [Google Scholar] [CrossRef] [PubMed]
- Sumelka, W. Fractional viscoplasticity. Mech. Res. Commun. 2014, 56, 31–36. [Google Scholar] [CrossRef]
- Bader, R.; Papageorgiou, N.S. Nonlinear multivalued boundary value problems. Discuss. Math. Differ. Inclusions Control. Optim. 2001, 21, 127–148. [Google Scholar] [CrossRef]
- Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus; Springer Nature: Singapore, 2022. [Google Scholar]
- Gasiński, L.; Papageorgiou, N.S. Nonlinear second-order multivalued boundary value problems. Proc. Indian Acad. Sci. (Math. Sci.) 2003, 113, 293–319. [Google Scholar] [CrossRef]
- Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J. Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions. Fixed Point Theory Appl. 2019, 2019, 2. [Google Scholar] [CrossRef]
- Tidke, H.L.; Kharat, V.V.; More, G.N. Some results on nonlinear mixed fractional integro differential equations. J. Adv. Math. Stud. 2022, 15, 274–287. [Google Scholar]
- Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Dunford, N.; Schwartz, J.T. Linear Operators, (Part 1), General Theory; NewYork Interscience: New York, NY, USA, 1957. [Google Scholar]
- Cobzaş, Ş.; Miculescu, R.; Nicolae, A. Lipschitz Functions; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Jung, S.M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 48. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, A.M.A.; Alhamali, A.A.A.; Hamdallah, E.M.A.; Ebead, H.R. Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint. Fractal Fract. 2023, 7, 835. https://doi.org/10.3390/fractalfract7120835
El-Sayed AMA, Alhamali AAA, Hamdallah EMA, Ebead HR. Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint. Fractal and Fractional. 2023; 7(12):835. https://doi.org/10.3390/fractalfract7120835
Chicago/Turabian StyleEl-Sayed, Ahmed M. A., Antisar A. A. Alhamali, Eman M. A. Hamdallah, and Hanaa R. Ebead. 2023. "Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint" Fractal and Fractional 7, no. 12: 835. https://doi.org/10.3390/fractalfract7120835
APA StyleEl-Sayed, A. M. A., Alhamali, A. A. A., Hamdallah, E. M. A., & Ebead, H. R. (2023). Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint. Fractal and Fractional, 7(12), 835. https://doi.org/10.3390/fractalfract7120835