Next Article in Journal
Uncertainty Observer-Based Control for a Class of Fractional- Order Non-Linear Systems with Non-Linear Control Inputs
Next Article in Special Issue
Radial Basis Functions Approximation Method for Time-Fractional FitzHugh–Nagumo Equation
Previous Article in Journal
Adaptive Backstepping Boundary Control for a Class of Modified Burgers’ Equation
Previous Article in Special Issue
Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint

by
Ahmed M. A. El-Sayed
1,
Antisar A. A. Alhamali
2,*,
Eman M. A. Hamdallah
1 and
Hanaa R. Ebead
1
1
Faculty of Science, Alexandria University, Alexandria 21521, Egypt
2
Faculty of Science, Al-Zaytoonah University, Bani Walid 38645, Libya
*
Author to whom correspondence should be addressed.
Fractal Fract. 2023, 7(12), 835; https://doi.org/10.3390/fractalfract7120835
Submission received: 25 October 2023 / Revised: 19 November 2023 / Accepted: 22 November 2023 / Published: 24 November 2023

Abstract

:
This manuscript investigates a constrained problem of an arbitrary (fractional) order quadratic functional integro-differential equation with a quadratic functional integro-differential constraint. We demonstrate that there is at least one solution x C [ 0 , T ] to the problem. Moreover, we outline the necessary demands for the solution’s uniqueness. In addition, the continuous dependence of the solution and the Hyers–Ulam stability of the problem are analyzed. In order to illustrate our results, we provide some particular cases and instances.

1. Introduction

Fractional-order differential and integral equations have a wide range of applications across various fields with examples in physics, engineering, and biomedical engineering. The nonlocal conditions are often encountered in mathematical and physical problems, where the behavior of a system depends on different factors or parameters; see [1,2,3,4,5,6,7,8,9,10].
In recent years, several scholars have concentrated their efforts on constrained integral equations. Their findings about functional integral equations have been expanded to include a particular set of constrained integral equations on a bounded interval (see [11,12,13]) and unbounded intervals (see [14]). Constrained problems are essential in the mathematical depiction of real-world situations, where such problems are transformed into mathematical models [15,16,17]. The relevance of handling constraints or control variables arises from the unanticipated elements that persistently disrupt biological systems in the real world; biological traits like survival rates might change as a result. The question of whether an ecosystem can survive those erratic, disruptive occurrences that happen for a short while is of practical significance to ecology. The disturbance functions are what we refer to as control variables in the context of control variables. Numerous papers address this type of problem; for instance, in [18], the authors discussed a nonlinear constrained problem involving a nonlinear functional integral equation. They also examined the appropriate conditions for the solution’s uniqueness and its continuous dependence on certain parameters. The authors applied Schauder’s fixed-point theorem to prove the existence of solutions. In [14], the authors studied the solvability of a constrained problem involving a nonlinear-delay functional equation subject to a quadratic functional integral constraint. By applying the De Blasi measure of noncompactness, they studied nondecreasing solutions in the bounded interval L 1 [ 0 , T ] and nonincreasing solutions in the unbounded interval L 1 ( R + ) .
Problems with a feedback control or control variable have great importance in numerous fields due to unforeseen factors that disrupt ecosystems in the real world. It could lead to changes in biological characteristics like survival rates; see [19,20,21,22]. Furthermore, ecology faces a practical challenge in determining whether an ecosystem can withstand unpredictable, disruptive events; see [15,23,24,25]. In addition, feedback control problems are crucial to establishing the solutions to delay population models; see [26,27,28,29]. In [23], the authors investigated the effect of feedback control on chemostat models; they studied a sufficient condition for the existence of a positive periodic solution tp the model. In [30], the author discussed a positive periodic solution to a nonlinear neutral delay population equation with feedback control. In [12], the authors studied fractional-order models of thermostats; they proved the existence of a solution and the continuous dependence of the unique solution on the control variable. In [13], the author investigated the solvability and the asymptotic stability of a class of nonlinear functional-integral equations with feedback control. For further relevant works, see [12,31,32,33,34,35].
Fixed-point theorems are a great tool for discussing the solvability of differential equation problems that have been studied in a number of monographs and publications; see [6,31,36,37,38,39,40].
Inspired by the above, we consider the constrained problem
d x d t = f t , g 1 ( t , D ζ x ( t ) ) · 0 ϑ ( t ) g 2 ( s , D γ x ( s ) ) d s , ζ , γ ( 0 , 1 ) , t ( 0 , T ]
with the quadratic functional integro-differential constrained
x ( τ ) = x 0 + 0 T τ h s , x ( s ) · D η x ( s ) d s , η ( 0 , 1 ) , τ [ 0 , T ] .
Our aim in this paper is to examine the existence of a solution x C ( 0 , T ] to the constrained problems (1) and (2). A sufficient hypothesis for the solution’s uniqueness will be given. Furthermore, we prove the Hyers–Ulam stability of the problem. The continuous dependence of the solution on the fractional-order derivative D ζ x ( t ) , the parameter x 0 , and the function h will be studied. To highlight our results, we present several examples and special cases. This study establishes conditions for the existence and uniqueness of the solution according to Schauder’s fixed-point theorem.

2. Main Result

2.1. Formulation of the Problem

Consider the constrained problem (1) and (2) under the next hypothesis. Let I = [ 0 , T ] .
(i)
ϑ : I I is continuous function such that ϑ ( t ) t .
(ii)
f , h and g i , i = 1 , 2 : I × R R are Caratheodry functions [41]. There exist bounded measurable functions [42] a and a i : I R and a positive constants b and b i such that
| f ( t , x ) | | a ( t ) | + b | x | a * + b | x | , a * = sup t I | a ( t ) | . | g i ( t , x ) | | a i ( t ) | + b i | x | a i * + b i | x | , a i * = sup t I | a i ( t ) | , i = 1 , 2 . | h ( t , x ) | | a 3 ( t ) | + b 3 | x | , sup s I 0 T τ | a 3 ( s ) | d s N .
(iii)
The following algebraic equation has a real positive root r 1 .
b b 1 b 2 T 2 γ r 1 2 + a * b 2 T 2 γ + b a 1 * b 2 T 2 γ + b b 1 a 2 * T 2 ζ 1 r 1 + a * a 2 * T 2 ζ + b a 1 * a 2 * T 2 ζ = 0 .
(iv)
r 1 b 3 T ζ η + 1 < 1 .
The next lemma demonstrates the equivalence between the constrained problem (1) and (2) and its corresponding integral equations.
Lemma 1.
If the solution to (1) and (2) exists, then it can be expressed by
x ( t ) = x 0 + 0 T τ h ( s , x ( s ) · I ζ η y ( s ) ) d s I ζ y ( τ ) + I ζ y ( t )
and
y ( t ) = I 1 ζ f t , g 1 ( t , y ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ( s ) ) d s .
Proof. 
Let x be the solution to (1) and (2). Operating by I 1 ζ in on both sides of (1), we obtain
D ζ x ( t ) = I 1 ζ d x d t = I 1 ζ f ( t , g 1 ( t , D ζ x ( t ) ) ) · 0 ϑ ( t ) g 2 ( s , D γ x ( s ) ) d s .
Taking D ζ x ( t ) = y ( t ) , then,
x ( t ) = x ( 0 ) + I ζ y ( t ) .
And we can deduce that
I ζ γ y ( t ) = I ζ γ D ζ x ( t ) = I ζ γ I 1 ζ d x d t = I 1 γ d x d t = D γ x ( t ) ,
and similarly,
I ζ η y ( t ) = I ζ η D ζ x ( t ) = I ζ η I 1 ζ d x d t = I 1 η d x d t = D η x ( t ) .
Substituting from (5)–(7) in (1) and (2), we obtain (4) and (3). Conversely, let x be a solution to (3). Differentiating (3), we obtain
d x d t = d d t [ x 0 + 0 T τ h ( s , x ( s ) · I ζ η y ( s ) ) d s I ζ y ( τ ) + I ζ y ( t ) ] . = d d t I ζ y = d d t I ζ I 1 ζ f ( t , g 1 ( t , D ζ x ( t ) ) · 0 ϑ ( t ) g 2 ( s , D γ x ( s ) ) d s = f ( t , g 1 ( t , D ζ x ( t ) ) ) · 0 ϑ ( t ) g 2 ( s , D γ x ( s ) ) d s
This proves the equivalence between the two systems (1) and (2) and (3) to (4). □

2.2. Existence of the Solution

Here, we prove the existence of the continuous solution x C ( I ) of (1) and (2). For this purpose, we present the next theorem.
Theorem 1.
Assume that the hypotheses (i)–(iv) are satisfied; then, the solution x C ( I ) of (1) and (2) exists.
Proof. 
Define the closed sphere Q r 1 and the operator F 1 with
Q r 1 = { y C ( I ) : y r 1 } .
and
F 1 y ( t ) = I 1 ζ f t , g 1 ( t , y ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 2 ( s ) ) d s .
Let y Q r 1 ; then, for t [ 0 , T ] , and assumptions (i)–(ii), we obtain
| F 1 y ( t ) | = | I 1 ζ f t , g 1 ( t , y ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 2 ( s ) ) d s | I 1 ζ a * + b ( a 1 * + b 1 | y ( s ) | ) · 0 t ( a 2 * + b 2 I ζ γ | y ( s ) | ) d s ( a * + b ( a 1 * + b 1 r 1 ) ) ( I 2 ζ a 2 * + I 2 γ b 2 r 1 ) ( a * + b ( a 1 * + b 1 r 1 ) ) a 2 * t 2 ζ Γ ( 3 ζ ) + b 2 r 1 t 2 γ Γ ( 3 γ ) ( a * + b ( a 1 * + b 1 r 1 ) ) ( a 2 * T 2 ζ + b 2 r 1 T 2 γ ) = r 1 .
From assumption (iii), we obtain
F 1 y ( a * + b ( a 1 * + b 1 r 1 ) ) ( a 2 * T 2 ζ + b 2 r 1 T 2 γ ) = r 1 .
This proves that { F 1 y } is uniformly bounded on Q r 1 . Let y Q r 1 , t 1 , t 2 I such that t 2 > t 1 and t 1 t 2 δ . By using assumption (ii), then,
| F 1 y ( t 2 ) F 1 y ( t 1 ) | = | 0 t 2 ( t 2 s ) ζ Γ ( 1 ζ ) f ( s , g 1 ( s , y ( s ) ) ) · 0 ϑ ( s ) g 2 ( θ , I ζ γ y ( θ ) ) d θ d s 0 t 1 ( t 1 s ) ζ Γ ( 1 ζ ) f ( s , g 1 ( s , y ( s ) ) ) · 0 ϑ ( s ) g 2 ( θ , I ζ γ y ( θ ) ) d θ d s | | 0 t 1 ( t 2 s ) ζ Γ ( 1 ζ ) f ( s , g 1 ( s , y ( s ) ) ) · 0 ϑ ( s ) g 2 ( θ , I ζ γ y ( θ ) ) d θ d s + t 1 t 2 ( t 2 s ) ζ Γ ( 1 ζ ) f ( s , g 1 ( s , y ( s ) ) ) · 0 ϑ ( s ) g 2 ( θ , I ζ γ y ( θ ) ) d θ d s 0 t 1 ( t 1 s ) ζ Γ ( 1 ζ ) f ( s , g 1 ( s , y ( s ) ) ) · 0 ϑ ( s ) g 2 ( θ , I ζ γ y ( θ ) ) d θ d s | | 0 t 1 ( t 2 s ) ζ Γ ( 1 ζ ) ( t 1 s ) ζ Γ ( 1 ζ ) ( ( a * + b ( a 1 * + b 1 r 1 ) ) ( a 2 * T 2 ζ + b 2 r 1 T 2 γ ) ) d s + t 1 t 2 1 Γ ( 1 ζ ) ( t 2 s ) ζ ( ( a * + b ( a 1 * + b 1 r 1 ) ) ( a 2 * T 2 ζ + b 2 r 1 T 2 γ ) ) d s | 0 t 1 | ( t 2 s ) ζ ( t 1 s ) ζ Γ ( 1 ζ ) ( t 1 s ) ζ ( t 2 s ) ζ | ( ( a * + b ( a 1 * + b 1 r 1 ) ) ( a 2 * T 2 ζ + b 2 r 1 T 2 γ ) ) d s + t 1 t 2 1 Γ ( 1 ζ ) ( t 2 s ) ζ ( ( a * + b ( a 1 * + b 1 r 1 ) ) ( a 2 * T 2 ζ + b 2 r 1 T 2 γ ) ) d s .
This proves that F 1 : Q r 1 Q r 1 and that { F 1 y } is equi-continuous on Q r 1 . From [41], { F 1 y } is relatively compact. Hence, the operator F 1 is compact.
Let { y n } Q r 1 be such that y n y ; then,
F 1 y n ( t ) = I 1 ζ f t , g 1 ( t , y n ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y n ( s ) ) d s ,
Thus, by taking the limits for both sides and in view of Lebesgues dominated convergence Theorem [41] and assumption (ii), we obtain
lim n F 1 y n ( t ) = lim n I 1 ζ f t , g 1 ( t , y n ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y n ( s ) ) d s = I 1 ζ f t , g 1 ( t , lim n y n ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ lim n y n ( s ) ) d s = I 1 ζ f t , g 1 ( t , y ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ( s ) ) d s = F 1 y ( t ) ,
Hence, F 1 is continuous and the solution to (4) exists.
Now, for the validity of solutions x C ( I ) of (3), let the assumptions (i)–(iv) be satisfied. Define Q r 2 as the closed sphere
Q r 2 = { x C ( I ) : x r 2 } , r 2 = | x 0 | + N + 2 r 1 T ζ 1 b 3 r 1 T ζ η + 1
and define the operator F 2 as
F 2 x ( t ) = x 0 + 0 T τ h ( s , x ( s ) · I ζ η y ( s ) ) d s I ζ y ( τ ) + I ζ y ( t ) .
Let x Q r 2 ; then, by using assumption (ii), we obtain
| F 2 x ( t ) | = | x 0 + 0 T τ h s , x ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t ) | | x 0 | + 0 T τ | h ( s , x ( s ) · I ζ η y ( s ) ) | d s + I ζ | y ( τ ) | + I ζ | y ( t ) | | x 0 | + 0 T τ | a 3 ( s ) | + b 3 ( | x ( s ) I ζ η y ( s ) | ) d s + 2 r 1 I ζ | x 0 | + 0 T τ a 3 + b 3 r 1 r 2 T ζ η Γ ( ζ η + 1 ) d s + 2 r 1 T ζ Γ ( ζ + 1 ) | x 0 | + N + r 1 r 2 b 3 T ζ η Γ ( ζ η + 1 ) + 2 r 1 T ζ Γ ( ζ + 1 )
and from assumption (iv), we obtain
F 2 x | x 0 | + N + r 1 r 2 b 3 T ζ η + 2 r 1 T ζ = r 2 .
This shows that { F 2 x } is uniformly bounded on Q r 2 . Now, for x Q r 2 and t 1 , t 2 I , where t 2 > t 1 and t 1 t 2 δ , we obtain
| F 2 x ( t 2 ) F 2 x ( t 1 ) | = | x 0 + 0 T τ h s , x ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t 2 ) x 0 + 0 T τ h s , x ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t 1 ) | 0 t 2 | f s , g 1 ( s , y ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ( s ) ) d s | d s 0 t 1 | f s , g 1 ( s , y ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ( s ) ) d s | d s t 1 t 2 | f s , g 1 ( s , y ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ( s ) ) d s | d s .
This means that F 2 : Q r 2 Q r 2 and that { F 2 x } is equi-continuous on Q r 2 . From [41], { F 2 x } is relatively compact. Hence, F 2 is compact.
Assuming that { x n } Q r 2 , where x n x , then,
F 2 x n ( t ) = x 0 + 0 T τ h s , x n ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t )
and by passing the limit, we have
lim n F 2 x n ( t ) = lim n x 0 + 0 T τ h s , x n ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t )
Applying the Lebesgue dominated convergence Theorem [41], then,
lim n F 2 x n ( t ) = x 0 + 0 T τ h s , lim n x ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t ) = x 0 + 0 T τ h s , x ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t ) = F 2 x ( t ) .
This means that F 2 x n ( t ) F 2 x ( t ) . Therefore, F 2 is continuous. From [41], the solution x C ( I ) of (3) exists. As a result, the solution x C [ 0 , T ] to Problem (1) and (2) exists. □

3. Uniqueness of the Solution

Consider the next additional hypothesis:
( i ) *
f , h and g i : I × R R are measurable in t I , x R and satisfy the Lipschitz condition [43]
| f ( t , x ) f ( t , y ) | b | x y | , | g i ( t , x ) g i ( t , y ) | b i | x y | | h ( t , x ) h ( t , y ) | b 3 | x y |
with Lipschitz constants b , b i , b 3 > 0 and t I , x , y R , i = 1 , 2 .
Remark 1.
From assumption ( i ) * , we deduce assumption (ii) as follows:
| f ( t , x ) | | f ( t , 0 ) | + b | x | ,
| f ( t , x ) | a + b | x | , w h e r e a = sup t I | f ( t , 0 ) | .
Also,
| g i ( t , x ) | | g i ( t , 0 ) | + b i | x | ,
| g i ( t , x ) | a i + b i | x | , w h e r e a i = sup t I | g i ( t , 0 ) | , i = 1 , 2 .
and
| h ( t , x ) | | h ( t , 0 ) | + b 3 | x | ,
| h ( t , x ) | a 3 + b 3 | x | , w h e r e a 3 = sup t I | h ( t , 0 ) | .
Theorem 2.
Let the hypotheses (i)–(iv) and (i*) be valid. If
( a * b 2 + b b 2 ( a 1 * + b 1 r 1 ) ) T 2 γ + b b 1 ( a 2 * T 2 ζ + r 1 b 2 T 2 γ ) < 1 ,
Hence, the solution to (1) and (2) is unique.
Proof. 
It is clear that all hypotheses of Theorem 1 are valid, and thus, the solution to (4) exists. Now, assume that y 1 , y 2 are two solutions of (4); then,
| y 2 ( t ) y 1 ( t ) | = | I 1 ζ f t , g 1 ( t , y 2 ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 2 ( s ) ) d s I 1 ζ f t , g 1 ( t , y 1 ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 1 ( s ) ) d s | = | I 1 ζ f t , g 1 ( t , y 2 ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 2 ( s ) ) d s I 1 ζ f t , g 1 ( t , y 2 ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 1 ( s ) ) d s + I 1 ζ f t , g 1 ( t , y 2 ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 1 ( s ) ) d s I 1 ζ f t , g 1 ( t , y 1 ( s ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y 1 ( s ) ) d s | I 1 ζ | f ( t , g 1 ( t , y 2 ( t ) ) | · 0 ϑ ( t ) | g 2 ( s , I ζ γ y 2 ( s ) ) g 2 ( s , I ζ γ y 1 ( s ) ) | d s + I 1 ζ ( | f ( t , g 1 ( t , y 2 ( t ) ) f ( t , g 1 ( t , y 1 ( t ) ) | ) · 0 ϑ ( t ) | g 2 ( s , I ζ γ y 1 ( s ) ) | d s I 1 ζ ( a * + b ( a 1 * + b 1 r 1 ) ) · b 2 0 t I ζ γ | y 2 ( s ) y 1 ( s ) | d s + I 1 ζ b b 1 | y 2 ( s ) y 1 ( s ) | 0 t ( a 2 * + b 2 I ζ γ | y ( s ) | ) d s ( a * + b ( a 1 * + b 1 r 1 ) ) · b 2 I 2 γ y 2 y 1 + b b 1 ( a 2 * T 2 ζ + r 1 b 2 T 2 γ ) y 2 y 1 .
Hence,
y 2 y 1 1 ( a * b 2 + b b 2 ( a 1 * + b 1 r 1 ) ) T 2 γ + b b 1 ( a 2 * T 2 ζ + r 1 b 2 T 2 γ ) 0 .
Since
( a * b 2 + b b 2 ( a 1 * + b 1 r 1 ) ) T 2 γ + b b 1 ( a 2 * T 2 ζ + r 1 b 2 T 2 γ ) < 1 .
Then, the solution of (4) is unique.
Now, for every solution y C ( I ) to (4), there exists a unique solution x C ( I ) of (3).
Let y C ( I ) be a solution to (4), and let x 1 , x 2 be two solutions to Equation (3); then,
| x 2 ( t ) x 1 ( t ) | = | x 0 + 0 T τ h s , x 2 ( s ) · I ζ η y ( s ) d s I ζ y ( τ ) + I ζ y ( t ) x 0 0 T τ h s , x 1 ( s ) · I ζ η y ( s ) d s + I ζ y ( τ ) I ζ y ( t ) | . 0 T τ | h ( s , x 2 ( s ) · I ζ η y ( s ) ) h ( s , x 1 ( s ) · I ζ η y ( s ) ) | d s r 1 b 3 0 T τ | x 2 ( s ) x 1 ( s ) | I ζ η d s , r 1 b 3 x 2 x 1 T ζ η + 1 Γ ( 1 + ζ η ) ,
from assumption (iv), we obtain
x 2 x 1 ( 1 ( r 1 b 3 T ζ η + 1 Γ ( 1 + ζ η ) ) ) 0 .
Thus, there is only one solution to (3). As a result, there is only one solution to (1) and (2). □

4. Hyers–Ulam Stability

Definition 1.
[44] Let the solution to (1) and (2) exist. The constrained problem (1) and (2) is Hyers–Ulam-stable if ϵ > 0 , δ ( ϵ ) > 0 such that, for any solution x s C [ 0 , T ] of (1) and (2) satisfying
| d x s d t f ( t , g 1 ( t , D ζ x s ( t ) ) · 0 ϑ ( t ) g 2 ( s , D γ x s ( s ) ) ) | δ .
Then
x x s c ϵ .
Theorem 3.
Assume that the hypothesis of Theorem 2 is satisfied; then, problem (1) and (2) is Hyers–Ulam-stable.
Proof. 
Let the condition of Equation (8) be satisfied; then, we have
δ d x s ( t ) d t f ( t , g 1 ( t , D ζ x s ( t ) ) · 0 ϑ ( t ) g 2 ( s , D γ x s ( s ) ) d s ) δ , T 1 ζ δ Γ ( 2 ζ ) I 1 ζ d x s ( t ) d t I 1 ζ f ( t , g 1 ( t , D ζ x s ( t ) ) · 0 ϑ ( t ) g 2 ( s , D γ x s ( s ) ) d s ) T 1 ζ δ Γ ( 2 ζ ) , δ 1 y s ( t ) I 1 ζ f ( t , g 1 ( t , y s ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y s ( s ) ) d s ) δ 1 .
Now,
| y ( t ) y s ( t ) | = | I 1 ζ f ( t , g 1 ( t , y ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ( s ) ) d s ) y s ( t ) I 1 ζ f ( t , g 1 ( t , y s ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y s ( s ) ) d s ) + I 1 ζ f ( t , g 1 ( t , y s ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y s ( s ) ) d s ) | | I 1 ζ f ( t , g 1 ( t , y ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ( s ) ) d s ) I 1 ζ f ( t , g 1 ( t , y s ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y s ( s ) ) d s ) | + | I 1 ζ f ( t , g 1 ( t , y s ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y s ( s ) ) d s ) y s ( t ) | I 1 ζ | f ( t , g 1 ( t , y ( t ) ) | · 0 ϑ ( t ) | g 2 ( s , I ζ γ y ( s ) ) g 2 ( s , I ζ γ y s ( s ) ) ) | d s + I 1 ζ | f ( t , g 1 ( t , y ( t ) ) f ( t , g 1 ( t , y s ( t ) ) | · 0 ϑ ( t ) | g 2 ( s , I ζ γ y s ( s ) ) ) | d s + δ 1 I 1 ζ ( a * + b ( a 1 * + b 1 r 1 ) ) · b 2 0 t I ζ γ | y ( s ) y s ( s ) | d s . + I 1 ζ b b 1 | y ( s ) y s ( s ) | · 0 t ( a 2 * + b 2 I ζ γ | y s | ) d s + δ 1 ( a * + b ( a 1 * + b 1 r 1 ) ) · b 2 T 2 γ y y s + b 1 b ( a 2 * T 2 ζ + r 1 . b 2 T 2 γ ) y y s + δ 1 .
Hence,
y y s 1 ( a * + b ( a 1 * + b 1 r 1 ) ) · b 2 T 2 γ + b 1 b ( a 2 * T 2 ζ + r 1 · b 2 T 2 γ ) δ 1
and
y y s δ 1 1 ( a * + b ( a 1 * + b 1 r 1 ) ) · b 2 T 2 γ + b 1 b ( a 2 * T 2 ζ + r 1 · b 2 T 2 γ ) .
Since
( a * + b ( a 1 * + b 1 r 1 ) ) · b 2 T 2 γ + b 1 b ( a 2 * T 2 ζ + r 1 · b 2 T 2 γ ) < 1 ,
then
y y s < ϵ .
Also, using assumption (iv), we obtain
| x ( t ) x s ( t ) | = | x 0 + 0 T τ h ( s , x ( s ) · I ζ η y ( s ) ) d s I ζ y ( τ ) + I ζ y ( t ) x 0 0 T τ h ( s , x s ( s ) · I ζ η y s ( s ) ) d s + I ζ y s ( τ ) I ζ y s ( t ) | 0 T τ | h ( s , x ( s ) · I ζ η y ( s ) ) h ( s , x s ( s ) · I ζ η y s ( s ) ) | d s + 2 I ζ y y s b 3 0 T τ ( | x ( s ) x s ( s ) | I ζ η | y ( s ) | + I ζ η | y ( s ) y s ( s ) | | x s | ) d s + 2 T ζ Γ ( ζ + 1 ) ϵ r 1 b 3 T ζ η + 1 Γ ( ζ η + 1 ) x x s + r 2 b 3 T ζ η + 1 Γ ( ζ η + 1 ) ϵ + 2 T ζ Γ ( ζ + 1 ) ϵ ,
x x * ( r 2 b 3 T ζ η + 1 Γ ( ζ η + 1 ) + 2 T ζ Γ ( ζ + 1 ) ) ϵ 1 ( r 1 b 3 T ζ η + 1 Γ ( ζ η + 1 ) ) .
Since
r 1 b 3 T ζ η + 1 Γ ( ζ η + 1 ) < 1 ,
thus,
x x * ϵ .
Then, the problem (1) and (2) is Hyers–Ulam-stable. □

5. Continuous Dependence

Definition 2.
The solution to (1) and (2) depends continuously on y = D ζ x , h and x 0 , and if ϵ > 0 , δ ( ϵ ) > 0 such that
max { y y ˇ , h h ˇ , | x 0 x 0 ˇ | δ } x x ˇ ϵ ,
where x ˇ and y ˇ are the solutions to
x ˇ ( t ) = x 0 ˇ + 0 T τ h ˇ ( s , x ˇ ( s ) · I ζ η y ˇ ( s ) ) d s I ζ y ˇ ( τ ) + I ζ y ˇ ( t ) ,
y ˇ ( t ) = I 1 ζ f t , g 1 ( t , y ˇ ( t ) ) · 0 ϑ ( t ) g 2 ( s , I ζ γ y ˇ ( s ) ) d s .
Theorem 4.
Suppose that the hypotheses of Theorem 2 are satisfied; then, the solution to (1) and (2) depends continuously on y , h , a n d x 0 .
Proof. 
If x ( t ) and x ˇ ( t ) are the solutions to (3) and (9), respectively, using assumption ( i ) * , we obtain
| x ( t ) x ˇ ( t ) | = | x 0 + 0 T τ h ( s , x ( s ) · I ζ η y ( s ) ) d s I ζ y ( τ ) + I ζ y ( t ) x 0 ˇ 0 T τ h ˇ ( s , x ˇ ( s ) I ζ η y ˇ ( s ) ) d s + I ζ y ˇ ( τ ) I ζ y ˇ ( t ) | | x x 0 ˇ | + | 0 T τ h ( s , x ( s ) · I ζ η y ( s ) ) h ˇ ( s , x ˇ ( s ) · I ζ η y ˇ ( s ) ) d s d s + I ζ ( y ( τ ) y ˇ ( τ ) ) + I ζ ( y ( t ) y ˇ ( t ) ) | | x x 0 ˇ | + 0 T τ | h ( s , x ( s ) · I ζ η y ( s ) ) h ( s , x ˇ ( s ) · I ζ η y ˇ ( s ) ) + h ( s , x ˇ ( s ) · I ζ η y ˇ ( s ) ) h ˇ ( s , x ˇ ( s ) · I ζ η y ˇ ( s ) ) | d s + 2 I ζ y y ˇ | x x 0 ˇ | + b 3 0 T τ | x ( s ) I ζ η y ( s ) x ˇ ( s ) I ζ η y ˇ ( s ) | d s + b 3 0 T τ h h ˇ d s + 2 I ζ y y ˇ | x x 0 ˇ | + b 3 0 T τ | x ( s ) I ζ η y ( s ) x ( s ) I ζ η y ˇ ( s ) + x ( s ) I ζ η y ˇ ( s ) x ˇ ( s ) I ζ η y ˇ ( s ) | d s + b 3 h h ˇ T + y y ˇ 2 T ζ Γ ( ζ + 1 ) δ + b 3 0 T τ | x ( s ) | I ζ η | y ( s ) y ˇ ( s ) | d s + b 3 0 T τ | x ( s ) x ˇ ( s ) | I ζ η | y ˇ ( s ) | d s + b 3 T δ + 2 T ζ δ Γ ( ζ + 1 ) δ + b 3 r 2 y y ˇ T ζ η + 1 Γ ( ζ η + 1 ) + b 3 r 1 x x ˇ T ζ η + 1 Γ ( ζ η + 1 ) + b 3 T δ + 2 δ T ζ Γ ( ζ + 1 ) δ + b 3 r 2 δ T ζ η + 1 Γ ( ζ η + 1 ) + b 3 r 1 x x ˇ T ζ η + 1 Γ ( ζ η + 1 ) + b 3 T δ + 2 δ T ζ Γ ( ζ + 1 ) .
Hence,
x x ˇ ( 1 r 1 b 3 T ζ η + 1 Γ ( ζ η + 1 ) ) 1 + r 2 b 3 T ζ η + 1 Γ ( ζ η + 1 ) + 2 T ζ Γ ( ζ + 1 ) + b 3 T δ
and
x x ˇ = 1 + r 2 b 3 T ζ η + 1 Γ ( ζ η + 1 ) + 2 T ζ Γ ( ζ + 1 ) + b 3 T δ 1 r 1 b 3 T ζ η + 1 Γ ( ζ η + 1 ) = ϵ .
Since r 1 b 3 T ζ η + 1 Γ ( ζ η + 1 ) < 1 , therefore, the solution to (3) depends continuously on y , h , x 0 . Consequently, the solution x C [ 0 , T ] of (1) and (2) depends continuously on y , h , x 0 . □

6. Special Cases and Examples

Corollary 1.
Let the hypothesis of Theorem 1 be valid; if we put τ = T in (2), then the backward problem
d x d t = f ( t , g 1 ( t , D ζ x ( t ) ) 0 ϑ ( t ) g 2 ( s , D γ x ( s ) d s ) ) , ζ , γ ( 0 , 1 ) , t ( 0 , T ] ,
x ( T ) = x 0 ,
has a solution x C [ 0 , T ] . Consequently, if the hypotheses of Theorem 2 are valid, it has a unique solution x C [ 0 , T ] .
Corollary 2.
Let the hypothesis of Corollary 1 be valid. If τ = T , γ = 1 ζ , then the backward problem
d x d t = f ( t , g 1 ( t , D ζ x ( t ) ) 0 ϑ ( t ) g 2 ( s , D 1 ζ x ( s ) d s ) ) , ζ ( 1 2 , 1 ) , t ( 0 , T ] ,
x ( T ) = x 0 .
has a solution x C [ 0 , T ] . Consequently, if the hypotheses of Theorem 2 are valid, it has a unique solution x C [ 0 , T ] .
Example 1.
Consider the next problem,
d x d t = 1 2 ( e t 1 + e t ) + 1 8 ( t 2 2 + 1 6 D 1 2 x ( t ) ) · 0 ρ t ( s 3 4 + 1 3 D 1 2 x ( s ) ) d s , t ( 0 , 1 ] ,
x ( τ ) = 1 4 + 0 1 τ ( s i n s 6 + 1 2 x ( s ) · D 1 2 x ( s ) ) d s ,
where
ζ = η = γ = 1 2 , ρ ( 0 , 1 ) , x ( 0 ) = 1 4 .
Then
f t , g 1 ( t , D ζ x ( t ) ) · 0 ϑ ( t ) g 2 ( s , D γ x ( s ) d s ) = 1 2 ( e t 1 + e t ) + 1 8 t 2 2 + 1 6 D 1 2 x ( t ) · 0 ρ t ( s 3 4 + 1 3 D 1 2 x ( s ) ) d s .
Set
g 1 ( t , D ζ x ( t ) ) = t 2 2 + 1 6 D 1 2 x ( t ) g 2 ( t , D γ x ( t ) ) = t 3 4 + 1 3 D 1 2 x ( t ) h ( t , x ( t ) · D η x ( t ) ) = s i n t 6 + 1 2 x ( t ) · D 1 2 x ( t ) .
Here, we have
a * = a 1 * = 1 2 , a 2 * = 1 4 , b = 1 8 , b 1 = 1 6 , b 2 = 1 3 , b 3 = 1 2 N = 1 6 , r 1 0.2 , a n d r 2 0.9 .
It is obvious that all the hypotheses of Theorem 1 are valid. Hence there exists at least one solution x [ 0 , 1 ] of (12)–(15). Moreover, we have
a * b 2 + b b 2 ( a 1 * + b 1 r 1 ) T 2 γ + b b 1 ( a 2 * T 2 ζ + r 1 b 2 T 2 γ ) = 0.1950 < 1 .
Thus, all the hypotheses of Theorem 2 are valid, so the solution of Problem (12)–(15) is unique.
Example 2.
Consider the problem
d x d t = 1 4 e t 2 c o s ( 2 t ) + 1 3 1 3 ( 1 5 t + D 1 3 x ( t ) ) · 0 1 2 t 1 5 ( e s s + 2 + D 1 4 x ( s ) ) d s t [ 0 , 1 ] ,
x ( τ ) = 1 5 + 0 1 τ 1 18 s 2 ( s i n ( 2 s + 1 ) ) + 1 6 x ( s ) D 1 5 x ( s ) d s ,
where
ζ = 1 3 , η = 1 5 , γ = 1 4 , t ( 0 , 1 ] , x ( 0 ) = 1 5 .
Then,
f ( t , g 1 ( t , D ζ x ( t ) ) 0 ϑ ( t ) g 2 ( s , D γ x ( s ) d s ) ) = 1 4 e t 2 c o s ( 2 t ) + 1 3 ( 1 3 1 5 t + D 1 3 x ( t ) ) · 0 1 2 t 1 5 ( e s s + 2 + D 1 4 x ( s ) ) d s .
Set
g 1 ( t , D ζ x ( t ) ) = 1 3 ( 1 5 t + D 1 3 x ( t ) ) g 2 ( t , D γ x ( t ) ) = 1 5 ( e t t + 2 + D 1 4 x ( t ) ) h ( t , x ( t ) · D η x ( t ) ) = 1 6 ( 1 3 t 2 ( s i n ( 2 t + 1 ) ) + x ( t ) D 1 5 x ( t ) ) .
Here, we have
a * = 1 4 , a 1 * = 1 12 , a 2 * = 1 10 , b = b 1 = 1 3 , b 2 = 1 5 , b 3 = 1 6 , N = 1 18 , r 1 = 0.3 , r 2 = 0.05 .
It is obvious that all the hypotheses of Theorem 1 are valid. Hence the solution x [ 0 , T ] of (13) and (14) exists. Moreover, we have
a * b 2 + b b 2 ( a * + b 1 r 1 ) t 2 γ + b b 1 ( a 2 * t 2 γ + r 1 b 2 t 2 γ ) = 0.2314 < 1 ,
Thus, all the hypotheses of Theorem 2 are valid, and then the solution to (13)–(14) is unique.
Example 3.
Consider the next problem
d x d t = 1 4 ( t t 3 + 1 ) + 1 3 ( 7 + 3 t 16 + ln ( 1 + | D 1 5 x ( t ) | ) 5 t + 7 ) · 0 t 4 ( 1 9 s + ( D 1 7 x ( s ) ) 2 6 ( 1 + | D 1 7 x ( s ) | ) ) d s , t ( 0 , 1 3 ] ,
x ( τ ) = 1 4 + 0 1 3 τ ( s 2 s 2 + 1 + ln ( 1 + | x ( s ) · D 1 4 x ( s ) | ) 8 + s 2 ) d s .
Here, we have
x 0 = 1 4 , ζ = 1 5 , η = 1 7 , γ = 1 4 , ϑ ( t ) = t 4 ,
and
f t , g 1 ( t , D ζ x ( t ) ) · 0 ϑ ( t ) g 2 ( s , D η x ( s ) d s ) = 1 4 ( t t 3 + 1 ) + 1 3 ( 7 + 3 t 16 + ln ( 1 + | D 1 5 x ( t ) | ) 5 t + 7 ) · 0 t 4 ( 1 9 s + ( D 1 7 x ( s ) ) 2 6 ( 1 + | D 1 7 x ( s ) | ) ) d s .
Set
ϑ ( t ) = t 4 , g 1 ( t , D ζ x ( t ) ) = 7 + 3 t 16 + ln ( 1 + | D 1 5 x ( t ) | ) 5 t + 7 , g 2 ( t , D γ x ( t ) ) = 1 9 s + ( D 1 7 x ( s ) ) 2 6 ( 1 + | D 1 7 x ( s ) | ) , h ( t , x ( t ) · D η x ( t ) ) = t 2 t 2 + 1 + ln ( 1 + | x ( t ) · D 1 4 x ( t ) | ) 8 + t 2 .
Thus, we obtain
a * = 1 12 , a 1 * = 1 2 , a 2 * = 3 26 , N = 1 9 , b = 1 3 , b 1 = 1 7 , b 2 = 1 6 , b 3 = 1 8 , r 1 0.03 , a n d r 2 0.42 .
It is clear that all assumptions of Theorem 1 are satisfied. Hence, there exists at least one solution x [ 0 , T ] of (12)–(15). Moreover, we have
a * b 2 + b b 2 ( a 1 * + b 1 r 1 ) t 2 γ + b b 1 ( a 2 * t 2 γ + r 1 b 2 t 2 γ ) = 0.043 < 1 .
Thus, all assumptions of Theorem 2 are satisfied, and then the solution of the problem (12)–(15) is unique.

7. Conclusions

In this manuscript, we considered the constrained problem of the fractional-order integro-differential equation (1) under the quadratic functional integro-differential constraint (2). We proved the existence of solutions to the problem (1) and (2). The sufficient conditions for the uniqueness of the solution have been presented. The Hyers–Ulam stability of the problem (1) and (2) has been analyzed. The continuous dependence of the unique solution on its fractional-order derivative D ζ x ( t ) , the parameter x 0 , and the function h has been studied. We introduced several examples and special cases.

Author Contributions

A.M.A.E.-S., Formal analysis, Supervision; A.A.A.A., Methodology; E.M.A.H., Formal analysis; H.R.E., Methodology. All authors have read and agreed to the published version of this manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]
  2. Banaś, J.; Zajac, T. A new approach to the theory of functional integral equations of fractional order. J. Math. Anal. Appl. 2011, 375, 375–387. [Google Scholar] [CrossRef]
  3. Boucherif, A.; Precup, R. On the nonlocal initial value problem for first order differential equations. Fixed Point Theory 2003, 4, 205–212. [Google Scholar]
  4. Caponetto, R. Fractional order systems. In Modeling and Control Applications; World Scientific: Singapore, 2010; Volume 72. [Google Scholar]
  5. Caputo, M. Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 1967, 13, 529–539. [Google Scholar] [CrossRef]
  6. Kazemi, M.; Yaghoobnia, A.R. Application of fixed point theorem to solvability of functional stochastic integral equations. Appl. Math. Comput. 2022, 417, 126759. [Google Scholar] [CrossRef]
  7. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
  8. Podlubny, I. Fractional-order systems and fractional-order controllers. Inst. Exp. Phys. Slovak Acad. Sci. Kosice 1994, 12.3, 1–18. [Google Scholar]
  9. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Integrals and Derivatives of the Fractional Order and Some of Their Applications; Nauka i Tehnika: Minsh, Belarus, 1987; (In Russian English Translation). [Google Scholar]
  10. Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134. [Google Scholar] [CrossRef]
  11. El-Sayed, A.M.A.; Alrashdi, M.A.H. On a functional integral equation with constraint existence of solution and continuous dependence. Int. J. Differ. Eq. Appl. 2019, 18, 37–48. [Google Scholar]
  12. Al-Issa, S.M.; El-Sayed, A.M.A.; Hashem, H.H.G. An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control. Fractal Fract. 2023, 7, 759. [Google Scholar] [CrossRef]
  13. Nasertayoob, P. Solvability and asymptotic stability of a class of nonlinear functional-integral equation with feedback control. Commun. Nonlinear Anal. 2018, 5, 19–27. [Google Scholar]
  14. El-Sayed, A.M.; Ba-Ali, M.M.; Hamdallah, E.M. An Investigation of a Nonlinear Delay Functional Equation with a Quadratic Functional Integral Constraint. Mathematics 2023, 11, 4475. [Google Scholar] [CrossRef]
  15. De la Sen, M.; Alonso-Quesada, S. Control issues for the Beverton–Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases. Appl. Math. Comput. 2009, 215, 2616–2633. [Google Scholar] [CrossRef]
  16. Rezapour, S.; Etemad, S.; Agarwal, R.P.; Nonlaopon, K. On a Lyapunov-Type Inequality for Control of a y-Model Thermostat and the Existence of Its Solutions. Mathematics 2022, 10, 4023. [Google Scholar] [CrossRef]
  17. Zhao, K. Stability of a nonlinear Langevin system of ML-Type fractional derivative affected by time-varying delays and differential feedback control. Fractal Fract. 2022, 6, 725. [Google Scholar] [CrossRef]
  18. El-Sayed, A.M.A.; Hamdallah, E.A.; Ahmed, R.G. On a nonlinear constrained problem of a nonlinear functional integral equation. Appl. Anal. Optim. 2022, 6, 95–107. [Google Scholar]
  19. Cosentino, C.; Bates, D. Feedback Control in Systems Biology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
  20. Cowan, N.J.; Ankarali, M.M.; Dyhr, J.P.; Madhav, M.S.; Roth, E.; Sefati, S.; Sponberg, S.; Stamper, S.A.; Fortune, E.S.; Daniel, T.L. Feedback control as a framework for understanding tradeoffs in biology. Am. Zool. 2014, 54, 223–237. [Google Scholar] [CrossRef] [PubMed]
  21. Del Vecchio, D.; Dy, A.J.; Qian, Y. Control theory meets synthetic biology. J. R. Soc. Interface 2016, 13, 20160380. [Google Scholar] [CrossRef] [PubMed]
  22. Peiffer, S.; Dan, T.B.B.; Frevert, T.; Cavari, B.Z. Survival of E. coli and enterococci in sediment-water systems of Lake Kinneret under (Feedback) controlled concentrations of hydrogen sulfide. Water Res. 1988, 22, 233–240. [Google Scholar] [CrossRef]
  23. De Leenheer, P.; Smith, H. Feedback control for chemostat models. J. Math. Biol. 2003, 46, 48–70. [Google Scholar] [CrossRef]
  24. Marshall, S.H.; Smith, D.R. Feedback control and the distribution of prime numbers. Math. Mag. 2013, 86, 189–203. [Google Scholar] [CrossRef]
  25. Stewart, G.E.; Dimitry, M.G.; Dumont, G.A. Feedback controller design for a spatially distributed system: The paper machine problem. IEEE Trans. Control. Syst. Technol. 2003, 11.5, 612–628. [Google Scholar] [CrossRef]
  26. Chen, F.; Lin, F.; Chen, X. Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control. Appl. Math. Comput. 2004, 158, 45–68. [Google Scholar] [CrossRef]
  27. Matveeva, I. Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients. Electron. J. Differ. Eq. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
  28. Saker, S.H. Periodic solutions, oscillation and attractivity of discrete nonlinear delay population model. Math. Comput. Model. 2008, 47, 278–297. [Google Scholar] [CrossRef]
  29. Yang, Z. Positive periodic solutions of a class of single-species neutral models with state-dependent delay and feedback control. Eur. J. Appl. Math. 2006, 17, 735–757. [Google Scholar] [CrossRef]
  30. Nasertayoob, P.; Vaezpour, S.M. Positive periodic solution for a nonlinear neutral delay population equation with feedback control. J. Nonlinear Sci. Appl. 2013, 6, 152–161. [Google Scholar] [CrossRef]
  31. Ahmed, E.; El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A. Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. C 2005, 16, 1017–1026. [Google Scholar] [CrossRef]
  32. Banaś, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic solutions of a class of quadratic integral equations of Volterra type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef]
  33. El-Sayed, A.M.A.; Gaafar, F.M. Fractional calculus and some intermediate physical processes. J. A. Math.Comp. 2003, 144, 117–126. [Google Scholar] [CrossRef]
  34. Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Phil. Trans. R. Soc. 2020, 378, 20200050. [Google Scholar] [CrossRef] [PubMed]
  35. Sumelka, W. Fractional viscoplasticity. Mech. Res. Commun. 2014, 56, 31–36. [Google Scholar] [CrossRef]
  36. Bader, R.; Papageorgiou, N.S. Nonlinear multivalued boundary value problems. Discuss. Math. Differ. Inclusions Control. Optim. 2001, 21, 127–148. [Google Scholar] [CrossRef]
  37. Debnath, P.; Srivastava, H.M.; Kumam, P.; Hazarika, B. Fixed Point Theory and Fractional Calculus; Springer Nature: Singapore, 2022. [Google Scholar]
  38. Gasiński, L.; Papageorgiou, N.S. Nonlinear second-order multivalued boundary value problems. Proc. Indian Acad. Sci. (Math. Sci.) 2003, 113, 293–319. [Google Scholar] [CrossRef]
  39. Kamenskii, M.; Obukhovskii, V.; Petrosyan, G.; Yao, J. Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions. Fixed Point Theory Appl. 2019, 2019, 2. [Google Scholar] [CrossRef]
  40. Tidke, H.L.; Kharat, V.V.; More, G.N. Some results on nonlinear mixed fractional integro differential equations. J. Adv. Math. Stud. 2022, 15, 274–287. [Google Scholar]
  41. Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
  42. Dunford, N.; Schwartz, J.T. Linear Operators, (Part 1), General Theory; NewYork Interscience: New York, NY, USA, 1957. [Google Scholar]
  43. Cobzaş, Ş.; Miculescu, R.; Nicolae, A. Lipschitz Functions; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
  44. Jung, S.M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 48. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

El-Sayed, A.M.A.; Alhamali, A.A.A.; Hamdallah, E.M.A.; Ebead, H.R. Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint. Fractal Fract. 2023, 7, 835. https://doi.org/10.3390/fractalfract7120835

AMA Style

El-Sayed AMA, Alhamali AAA, Hamdallah EMA, Ebead HR. Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint. Fractal and Fractional. 2023; 7(12):835. https://doi.org/10.3390/fractalfract7120835

Chicago/Turabian Style

El-Sayed, Ahmed M. A., Antisar A. A. Alhamali, Eman M. A. Hamdallah, and Hanaa R. Ebead. 2023. "Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint" Fractal and Fractional 7, no. 12: 835. https://doi.org/10.3390/fractalfract7120835

APA Style

El-Sayed, A. M. A., Alhamali, A. A. A., Hamdallah, E. M. A., & Ebead, H. R. (2023). Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint. Fractal and Fractional, 7(12), 835. https://doi.org/10.3390/fractalfract7120835

Article Metrics

Back to TopTop