Local Fuzzy Fractional Partial Differential Equations in the Realm of Fractal Calculus with Local Fractional Derivatives
Abstract
:1. Introduction
- The LFFHPSTM is clearly advantageous in comparison to the local fuzzy fractional homotopy perturbation method and LFADM as it combines two powerful mathematical tools to solve nonlinear LFFDEs. The combination of LFFHPM with the local fuzzy fractional Sumudu transform (LFFST) produces faster computations than LFFHPM; hence, this combination saves time. Furthermore, without requiring linearization, perturbation, or discretization, this method provides a convergent series solution. The LFHPSTM does not involve rounding errors and so consumes less time. Further, by using He’s polynomials to solve nonlinear terms, this approach can handle nonlinear LFDEs. The novelty and uniqueness of this work arise from the fact that the hybrid method used has never been applied to the studied LFFPDEs in the recent past. The technique has two features: the first is that it decomposes nonlinear terms using He’s polynomials, and the second is that it produces closed-form series solutions with fast convergence. Furthermore, the LFFHPSTM does not require the solution of complex Adomian polynomials. These attributes are decisive in the selection of this method to solve LFFPDEs.
- For the purpose of solving linear LFFPDEs, the combination of the ADM and the Sumudu transform method in the context of the local fractional derivative proves to be rather successful. Utilizing the series form of the solution proposed by the algorithm, rapid convergence will occur towards the exact solution. It is evident from the findings that the LFFSDM produces very accurate solutions with a minimal number of iterations. Therefore, given the effectiveness and flexibility of the application, as demonstrated by the provided examples, the work concludes that the LFFSDM can be used for additional linear LFFPDEs of higher order.
- The coupling of the VIM and the Sumudu transform method in the sense of local fractional derivatives has been shown to be highly effective in solving linear and nonlinear LFFPDEs. The local fuzzy fractional Sumudu variational iteration method (LFFSVIM) is a user-friendly solution for such problems. This method combines two potent techniques to obtain exact or approximate solutions to linear–nonlinear LFFPDEs. The modified LFFSVIM is an alternative algorithm to solve linear–nonlinear LFFPDEs.
- The fuzzy diffusion and wave equations defined on Cantor sets under fractal conditions are solved using the LFFLVIM. The method is found to be both useful and efficient in analytical applications. The LFFSEM, LFFVIM, and LFFADM all provide solutions to the same set of problems. All four approaches yield similar results; hence, the LFFLVIM is used as a viable alternative to the more standard technique of obtaining approximate solutions to linear–nonlinear fuzzy fractional differential equations.
2. Preliminaries
- denote a complete metric space,
- ,
- with .
- (i)
- for all sufficiently small, and the limits (in the metric D)or
- (ii)
- for all sufficiently small, and the limitsor
- (iii)
- for all sufficiently small, and the limitsor
- (iv)
- for all sufficiently small, and the limits
- (i)
- if ψ is an (i)-differentiable fuzzy function, then
- (ii)
- if ψ is an (ii)-differentiable fuzzy function, then
Local Fractional Calculus
3. Local Fuzzy Fractional Partial Differential Equations
3.1. Local Fractional Sumudu Transform
3.2. Local Fuzzy Fractional Homotopy Perturbation Sumudu Transform Method
Convergence Analysis
3.3. Local Fuzzy Fractional Sumudu Decomposition Method
3.4. Local Fuzzy Fractional Sumudu Variational Iteration Method
3.5. Examples
4. Fuzzy Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators
4.1. Local Fuzzy Fractional Laplace Variational Iteration Method
4.2. Local Fuzzy Fractional Series Expansion Method
4.3. Local Fuzzy Fractional Variational Iteration and Decomposition Methods
4.3.1. Local Fuzzy Fractional Variational Iteration Method
4.3.2. Local Fuzzy Fractional Decomposition Method
4.4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-II. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 1975, 9, 43–80. [Google Scholar] [CrossRef]
- Zadeh, L.A. Toward a generalized theory of uncertainty (GTU)—An outline. Inf. Sci. 2005, 172, 1–40. [Google Scholar] [CrossRef]
- Zadeh, L.A. Is there a need for fuzzy logici? Inf. Sci. 2008, 178, 2751–2779. [Google Scholar] [CrossRef]
- Negoita, C.V.; Ralescu, D. Applications of Fuzzy Sets to Systems Analysis; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Aytar, S.; Pehlivan, S. Statistically monotonic and statistically bounded sequences of fuzzy numbers. Inf. Sci. 2006, 176, 734–744. [Google Scholar] [CrossRef]
- Aytar, S. Statistical limit points of sequences of fuzzy numbers. Inf. Sci. 2004, 165, 129–138. [Google Scholar] [CrossRef]
- Osman, M.; Xia, Y. Solving fuzzy fractional q-differential equations via fuzzy q-differential transform. J. Intell. Fuzzy Syst. 2023, 44, 2791–2846. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Ghanbari, B. On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach. Chaos Solitons Fractals 2020, 130, 109397. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Gouyandeh, Z.; Armand, A. Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J. Intell. Fuzzy Syst. 2014, 26, 1481–1490. [Google Scholar] [CrossRef]
- An, T.V.; Hoa, N.V. Fuzzy differential equations with Riemann-Liouville generalized fractional integrable impulses. Fuzzy Sets Syst. 2022, 429, 74–100. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Arshad, S.; O’Regan, D.; Lupulescu, V. Fuzzy frac-tional integral equations under compactness type condition. Fract. Calc. Appl. Anal. 2012, 15, 572–590. [Google Scholar] [CrossRef]
- Alinezhad, M.; Allahviranloo, T. On the Solution of Fuzzy Fractional Optimal Control Problems with the Caputo Derivative. Inf. Sci. 2017, 421, 218–236. [Google Scholar] [CrossRef]
- Dai, R.; Chen, M. The structure stability of periodic solutions for first-order uncertain dynamical systems. Fuzzy Sets Syst. 2020, 400, 134–146. [Google Scholar] [CrossRef]
- Dong, N.P.; Long, H.V.; Giang, N.L. The fuzzy fractional SIQR model of com-puter virus propagation in wireless sensor network using Caputo Atangana-Baleanu derivatives. Fuzzy Sets Syst. 2021, 429, 28–59. [Google Scholar] [CrossRef]
- Long, H.V.; Son, N.T.K.; Tam, H.T.T.; Yao, J.C. Ulam stability for fractional partial integro-differential equation with uncertainty. Acta Math. Vietnam 2017, 42, 675–700. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Lu, Z. On Caputo-Hadamard uncertain fractional differential equations. Chaos Solitons Fractals 2021, 146, 110894. [Google Scholar] [CrossRef]
- Mazandarani, M.; Kamyad, A.V. Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 12–21. [Google Scholar] [CrossRef]
- Mazandarani, M.; Najariyan, M. Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2354–2372. [Google Scholar] [CrossRef]
- Osman, M.; Xia, Y. Solving fuzzy fractional differential equations with applications. Alex. Eng. J. 2023, 69, 529–559. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions and dimension. Chaos 1996, 6, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012. [Google Scholar]
- Yang, Y.J.; Hua, L.Q. Variational iteration transform method for fractional dif-ferential equations with local fractional derivative. Abs. Appl. Anal. 2014, 9, 760957. [Google Scholar]
- Golmankhaneh, A.K.; Yang, X.J.; Baleanu, D. Einstein field equations within local fractional calculus. Rom. J. Phys. 2015, 60, 22–31. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Zhong, W.P. Approximate solutions for diffusion equations on cantor space-time. Proc. Rom. Acad. Ser. A 2013, 14, 127–133. [Google Scholar]
- Yang, X.J.; Srivastava, H.M.; Cattani, C. Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics. Rom. Rep. Phys. 2015, 67, 752–761. [Google Scholar]
- Yang, A.M.; Li, J.; Srivastava, H.M.; Xie, G.N.; Yang, X.J. Local fractional laplace variational iteration method for solving linear partial differential equations with local fractional derivative. Dis. Dyn. Nat. Soc. 2014, 8, 365981. [Google Scholar] [CrossRef]
- Jassim, H.K. Local fractional Laplace decomposition method for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative. Int. J. Adv. Appl. Math. Mech. 2015, 2, 1–7. [Google Scholar]
- Wang, K. Solitary wave dynamics of the Local fractional Bogoyavlen-sky-Konopelchenko model. Fractals 2023, 31, 2350054. [Google Scholar] [CrossRef]
- Wang, K. New solitary wave solutions for the fractional Jaulent-Miodek Hierarchy model. Fractals 2023, 31, 2350060. [Google Scholar]
- Watugala, G.K. Sumudu transform—A new integral transform to solve differential equations and control engineering problems. Int. J Math. Educ. Sci. Technol. 1998, 24, 35–43. [Google Scholar] [CrossRef]
- Weerakoon, S. Complex inversion formula for Sumudutransform. Int. J. Educ. Math. Sci. Technol. 1998, 29, 618–621. [Google Scholar]
- Asiru, M.A. Sumudu transform and solution of integralequations of convolution type. Int. Educ. Math. Sci. Technol. 2001, 32, 906–910. [Google Scholar] [CrossRef]
- Asiru, M.A. Applications of Sumudu transform to discretedynamic system. Int. J. Educ. Math. Sci. Technol. 2003, 34, 944–949. [Google Scholar] [CrossRef]
- Belgacem, F.M.; Karaballi, A.A. Sumudu transform fundamental properties investigation, applications. J. Appl. Math. Stoch. Anal. 2006, 2006, 91083. [Google Scholar] [CrossRef]
- Osman, M.; Xia, Y.; Omer, O.A.; Hamoud, A. On the fuzzy solution of linear-nonlinear partial differential equations. Mathematics 2022, 10, 2295. [Google Scholar] [CrossRef]
- Osman, M.; Gong, Z.T.; Mustafa, A.M.; Yong, H. Solving fuzzy (1 + n)-dimensional Burgers’ equation. Adv. Differ. Equ. 2021, 219, 219. [Google Scholar] [CrossRef]
- Osman, M.; Gong, Z.T.; Mustafa, A.M. Comparison of fuzzy Adomian decomposition method with fuzzy VIM for solving fuzzy heat-like and wave-like equations with variable coefficients. Adv. Differ. Equ. 2020, 327, 327. [Google Scholar] [CrossRef]
- Osman, M.; Almahi, A.; Omer, O.A.; Mustafa, A.M.; Altaie, S.A. Approximation solution for fuzzy fractional-order partial differential equations. Fractal Fract. 2022, 6, 646. [Google Scholar] [CrossRef]
- Osman, M.; Xia, Y.; Marwan, M.; Omer, O.A. Novel Approaches for solving fuzzy fractional partial differential equations. Fractal Fract. 2022, 6, 656. [Google Scholar] [CrossRef]
- Patela, T.; Meher, R. A Study on Temperature Distribution, Efficiency and Effectiveness of longitudinal porous fins by using Adomian Decomposition Sumudu Transform Method. Procedia Eng. 2015, 127, 751–758. [Google Scholar] [CrossRef]
- Saadeh, R.; Ahmed, S.A.; Qazza, A.; Elzaki, T.M. Adapting partial differential equations via the modified double ARA-Sumudu decomposition method. Partial. Differ. Equ. Appl. Math. 2023, 8, 100539. [Google Scholar] [CrossRef]
- He, J.H. Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl. Mech. Eng. 1998, 167, 69–73. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 2000, 114, 115–123. [Google Scholar] [CrossRef]
- Shah, N.A.; Dassios, I.; El-Zahar, E.R.; Chung, J.D.; Taherifar, S. The Variational It-eration Transform Method for Solving the Time-Fractional Fornberg-Whitham Equation and Comparison with Decomposition Transform Method. Mathematics 2021, 9, 141. [Google Scholar] [CrossRef]
- Singh, G.; Singh, I. Semi-analytical solutions of three-dimensional (3D) coupled Burgers’ equations by new Laplace variational iteration method. Part. Differ. Equ. Appl. Math. 2022, 6, 100438. [Google Scholar] [CrossRef]
- Prakasha, A.; Kumar, M.; Baleanu, D. A new iterative technique for a fractional model of nonlinear Zakharov-Kuznetsov equations via Sumudu transform. Appl. Math. Comput. 2018, 334, 30–40. [Google Scholar] [CrossRef]
- Anac, H.; Merdan, M.; Kesemen, T. Solving for the random component time-fractional partial diferential equations with the new Sumudu transform iterative method. SN Appl. Sci. 2020, 2, 1112. [Google Scholar] [CrossRef]
- Bhargava, A.; Jain, D.; Suthar, D.L. Applications of the Laplace variational iteration method to fractional heat like equations. Partial. Differ. Equ. Appl. Math. 2023, 8, 100540. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, F.; Ahmad, H. Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients. Comput. Math. Appl. 2019, 78, 2052–2062. [Google Scholar] [CrossRef]
- Zhang, Y.; Cattani, C.; Yang, X.J. Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy 2015, 17, 6753–6764. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Nieto, J.J. A reliable algorithm for a local fractional tricomi equation arising in fractal transonic flow. Entropy 2016, 18, 206. [Google Scholar] [CrossRef]
- Zhao, D.; Singh, J.; Kumar, D.; Rathore, S.; Yang, X.J. An efficient computational technique for local fractional heat conduction equations in fractal media. J. Nonlinear Sci. Appl. 2017, 10, 1478–1486. [Google Scholar] [CrossRef]
- Kumar, D.; Tchier, F.; Singh, J.; Baleanu, D. An efficient computational technique for fractal vehicular traffic flow. Entropy 2018, 20, 259. [Google Scholar] [CrossRef]
- Prakash, A.; Kaur, H. An efficient hybrid computational technique for solving nonlinear local fractional partial differential equations arising in fractal media. Nonlinear Eng. 2018, 7, 229–235. [Google Scholar] [CrossRef]
- Dubey, V.P.; Singh, J.; Alshehri, A.M.; Dubey, S.; Kumar, D. A comparative analysis of two computational schemes for solving local fractional Laplace equations. Math. Meth. Appl. Sci. 2021, 44, 13540–13559. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.J. Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. 2014, 2014, 620529. [Google Scholar] [CrossRef]
- Rivaz, A.; Fard, O.S.; Bidgoli, T.A. Solving fuzzy fractional differential equations by generalized differential transform method. SeMA J. 2016, 73, 149–170. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Wu, C.; Gong, Z. On Henstock integral of fuzzy-number-valued functions (1). Fuzzy Sets Syst. 2001, 120, 523–532. [Google Scholar] [CrossRef]
- Yang, H.; Gong, Z. I11-Posedness for fuzzy Fredholm integral equations of the first kind and regularization methods. Fuzzy Sets Syst. 2019, 358, 132–149. [Google Scholar] [CrossRef]
- Bede, B.; Stefanini, L. Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 2013, 230, 119–141. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiable fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Gouyandeha, Z.; Armanda, A.; Hasanoglub, A. On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets Syst. 2015, 265, 1–23. [Google Scholar] [CrossRef]
- Salahshour, S.; Allahviranloo, T.; Abbasbandy, S. Solving fuzzy fractional differential equa-tions by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1372–1381. [Google Scholar] [CrossRef]
- Yang, X.J. Local Fractional Functional Analysis and Its Applications; Asian Academic: Hong Kong, China, 2011. [Google Scholar]
- Ziane, D.; Baleanu, D.; Belghaba, K.; Cherif, M. Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. J. King Saud. Univ. Sci. 2019, 31, 83–88. [Google Scholar] [CrossRef]
- Hu, M.S.; Agarwal, R.P.; Yang, X.J. Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012, 2012, 567401. [Google Scholar] [CrossRef]
Lower E-S | Lower A-S | Lower Error | Upper E-S | Upper A-S | Upper Error | |
---|---|---|---|---|---|---|
0 | 33,369 | 482.42 | 32,887 | 33370 | 483.42 | 32,887 |
0.1 | 33,369 | 482.47 | 32,887 | 33,370 | 483.37 | 32,887 |
0.2 | 33,369 | 482.52 | 32,887 | 33,370 | 483.32 | 32,887 |
0.3 | 33,369 | 482.57 | 32,887 | 33,370 | 483.27 | 32,887 |
0.4 | 33,369 | 482.62 | 32,887 | 33,370 | 483.22 | 32,887 |
0.5 | 33,370 | 482.67 | 32,887 | 33,370 | 483.17 | 32,887 |
0.6 | 33,370 | 482.72 | 32,887 | 33,370 | 483.12 | 32,887 |
0.7 | 33,370 | 482.77 | 32,887 | 33,370 | 483.07 | 32,887 |
0.8 | 33,370 | 482.82 | 32,887 | 33,370 | 483.02 | 32,887 |
0.9 | 33,370 | 482.87 | 32,887 | 33,370 | 482.97 | 32,887 |
1 | 33,370 | 482.92 | 32,887 | 33,370 | 482.92 | 32,887 |
Lower E-S | Lower A-S | Lower Error | Upper E-S | Upper A-S | Upper Error | |
---|---|---|---|---|---|---|
0 | 0.75 | 0.36299 | 0.38701 | 2.25 | 1.089 | 1.161 |
0.1 | 0.825 | 0.39929 | 0.42571 | 2.175 | 1.0527 | 1.1223 |
0.2 | 0.9 | 0.43559 | 0.46441 | 2.1 | 1.0164 | 1.0836 |
0.3 | 0.975 | 0.47189 | 0.50311 | 2.025 | 0.98008 | 1.0449 |
0.4 | 1.05 | 0.50819 | 0.54181 | 1.95 | 0.94378 | 1.0062 |
0.5 | 1.125 | 0.54449 | 0.58051 | 1.875 | 0.90748 | 0.96752 |
0.6 | 1.2 | 0.58079 | 0.61921 | 1.8 | 0.87119 | 0.92881 |
0.7 | 1.275 | 0.61709 | 0.65791 | 1.725 | 0.83489 | 0.89011 |
0.8 | 1.35 | 0.65339 | 0.69661 | 1.65 | 0.79859 | 0.85141 |
0.9 | 1.425 | 0.68969 | 0.73531 | 1.575 | 0.76229 | 0.81271 |
1 | 1.5 | 0.72599 | 0.77401 | 1.5 | 0.72599 | 0.77401 |
Lower E-S | Lower A-S | Lower Error | Upper E-S | Upper A-S | Upper Error | |
---|---|---|---|---|---|---|
0 | 0.75 | 0.4886 | 0.2614 | 2.25 | 1.4658 | 0.78419 |
0.1 | 0.825 | 0.53746 | 0.28754 | 2.175 | 1.4169 | 0.75805 |
0.2 | 0.9 | 0.58632 | 0.31368 | 2.1 | 1.3681 | 0.73191 |
0.3 | 0.975 | 0.63518 | 0.33982 | 2.025 | 1.3192 | 0.70577 |
0.4 | 1.05 | 0.68404 | 0.36596 | 1.95 | 1.2704 | 0.67963 |
0.5 | 1.125 | 0.7329 | 0.3921 | 1.875 | 1.2215 | 0.65349 |
0.6 | 1.2 | 0.78176 | 0.41824 | 1.8 | 1.1726 | 0.62735 |
0.7 | 1.275 | 0.83062 | 0.44438 | 1.725 | 1.1238 | 0.60121 |
0.8 | 1.35 | 0.87948 | 0.47052 | 1.65 | 1.0749 | 0.57507 |
0.9 | 1.425 | 0.92834 | 0.49666 | 1.575 | 1.0261 | 0.54893 |
1 | 1.5 | 0.97721 | 0.52279 | 1.5 | 0.97721 | 0.52279 |
Lower E-S | Lower A-S | Lower Error | Upper E-S | Upper A-S | Upper Error | |
---|---|---|---|---|---|---|
0 | 0.75 | 0.62006 | 0.12994 | 2.25 | 1.8602 | 0.38981 |
0.1 | 0.825 | 0.68207 | 0.14293 | 2.175 | 1.7982 | 0.37682 |
0.2 | 0.9 | 0.74408 | 0.15592 | 2.1 | 1.7362 | 0.36382 |
0.3 | 0.975 | 0.80608 | 0.16892 | 2.025 | 1.6742 | 0.35083 |
0.4 | 1.05 | 0.86809 | 0.18191 | 1.95 | 1.6122 | 0.33784 |
0.5 | 1.125 | 0.93009 | 0.19491 | 1.875 | 1.5502 | 0.32484 |
0.6 | 1.2 | 0.9921 | 0.2079 | 1.8 | 1.4882 | 0.31185 |
0.7 | 1.275 | 1.0541 | 0.22089 | 1.725 | 1.4261 | 0.29885 |
0.8 | 1.35 | 1.1161 | 0.23389 | 1.65 | 1.3641 | 0.28586 |
0.9 | 1.425 | 1.1781 | 0.24688 | 1.575 | 1.3021 | 0.27287 |
1 | 1.5 | 1.2401 | 0.25987 | 1.5 | 1.2401 | 0.25987 |
Lower E-S | Lower A-S | Lower Error | Upper E-S | Upper A-S | Upper Error | |
---|---|---|---|---|---|---|
0 | 838.39 | 161.01 | 677.39 | 2328.9 | 447.25 | 1881.6 |
0.1 | 895.22 | 171.92 | 723.3 | 2236.7 | 429.54 | 1807.1 |
0.2 | 953.91 | 183.19 | 770.71 | 2146.3 | 412.18 | 1734.1 |
0.3 | 1014.5 | 194.82 | 819.64 | 2057.8 | 395.19 | 1662.6 |
0.4 | 1076.9 | 206.81 | 870.06 | 1971.2 | 378.55 | 1592.6 |
0.5 | 1141.1 | 219.15 | 922 | 1886.4 | 362.27 | 1524.1 |
0.6 | 1207.3 | 231.85 | 975.44 | 1803.5 | 346.35 | 1457.1 |
0.7 | 1275.3 | 244.91 | 1030.4 | 1722.4 | 330.78 | 1391.7 |
0.8 | 1345.2 | 258.33 | 1086.8 | 1643.3 | 315.58 | 1327.7 |
0.9 | 1416.9 | 272.1 | 1144.8 | 1565.9 | 300.73 | 1265.2 |
1 | 1490.5 | 286.24 | 1204.2 | 1490.5 | 286.24 | 1204.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, M.; Marwan, M.; Shah, S.O.; Loudahi, L.; Samar, M.; Bittaye, E.; Mohammed Mustafa, A. Local Fuzzy Fractional Partial Differential Equations in the Realm of Fractal Calculus with Local Fractional Derivatives. Fractal Fract. 2023, 7, 851. https://doi.org/10.3390/fractalfract7120851
Osman M, Marwan M, Shah SO, Loudahi L, Samar M, Bittaye E, Mohammed Mustafa A. Local Fuzzy Fractional Partial Differential Equations in the Realm of Fractal Calculus with Local Fractional Derivatives. Fractal and Fractional. 2023; 7(12):851. https://doi.org/10.3390/fractalfract7120851
Chicago/Turabian StyleOsman, Mawia, Muhammad Marwan, Syed Omar Shah, Lamia Loudahi, Mahvish Samar, Ebrima Bittaye, and Altyeb Mohammed Mustafa. 2023. "Local Fuzzy Fractional Partial Differential Equations in the Realm of Fractal Calculus with Local Fractional Derivatives" Fractal and Fractional 7, no. 12: 851. https://doi.org/10.3390/fractalfract7120851
APA StyleOsman, M., Marwan, M., Shah, S. O., Loudahi, L., Samar, M., Bittaye, E., & Mohammed Mustafa, A. (2023). Local Fuzzy Fractional Partial Differential Equations in the Realm of Fractal Calculus with Local Fractional Derivatives. Fractal and Fractional, 7(12), 851. https://doi.org/10.3390/fractalfract7120851