An Analysis and Global Identification of Smoothless Variable Order of a Fractional Stochastic Differential Equation
Abstract
:1. Introduction
2. Preliminaries
- (A)
- on for some ,
- (B)
- f and g satisfy the Lipschitz continuity and the following growth condition for some constant :
3. Analysis of the SDE (2)
- Step 1: Convergence of in
- Step 2: Boundness of
- Step 3: Existence of a solution to problem (3)
- Step 4: Uniqueness of a solution to problem (3)
4. Uniqueness of Inverting the Variable Order
- ()
- .
5. Numerical Experiment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.C. An Introduction to Stochastic Differential Equations; American Mathematical Society: Providence, RI, USA, 2014. [Google Scholar]
- Klebaner, F.C. Introduction to Stochastic Calculus with Applications; World Scientific Publishing Company: Singapore, 2005. [Google Scholar]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Øksendal, B. Stochastic Differential Equations: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Shreve, S.E. Stochastic Calculus for Finance II: Continuous-Time Models; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Zhang, Z.; Karniadakis, G.E. Numerical Methods for Stochastic Partial Differential Equations with White Noise; Springer: Berlin/Heidelberg, Germany, 2017; Volume 196. [Google Scholar]
- Bagley, R.; Torvik, P. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar]
- Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 2004, 87, 3518–3524. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Ser. Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2004. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Lutz, E. Fractional Langevin equation. Phys. Rev. E 2001, 64, 051106. [Google Scholar] [CrossRef] [PubMed]
- Ahmadova, A.; Mahmudov, N. Existence and uniqueness results for a class of fractional stochastic neutral differential equations. Chaos Solitons Fractals 2020, 139, 110253. [Google Scholar] [CrossRef]
- Dai, X.; Bu, W.; Xiao, A. Well-posedness and EM approximations for non-Lipschitz stochastic fractional integro-differential equations. J. Comput. Appl. Math. 2019, 356, 377–390. [Google Scholar] [CrossRef]
- Gunzburger, M.; Li, B.; Wang, J. Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comp. 2019, 88, 1715–1741. [Google Scholar] [CrossRef]
- Shi, K.; Wang, Y. On a stochastic fractional partial differential equation driven by a Lévy space-time white noise. J. Math. Anal. Appl. 2010, 364, 119–129. [Google Scholar] [CrossRef]
- Huang, J.; Huo, Z.; Zhang, J.; Tang, Y. An Euler-Maruyama method and its fast implementation for multiterm fractional stochastic differential equations. Math. Methods Appl. Sci. 2023, 46, 1556–1573. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, Z.; Guo, L.; Tang, Y.; Karniadakis, G. A spectral method for stochastic fractional PDEs using dynamically-orthogonal/bi-orthogonal decomposition. J. Comput. Phys. 2022, 461, 111213. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, J.; Huang, J.; Tang, Y. A fast Euler-Maruyama method for Riemann-Liouville stochastic fractional nonlinear differential equations. Phys. D 2023, 446, 133685. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Y.; Huang, J. A fast Euler-Maruyama method for fractional stochastic differential equations. J. Appl. Math. Comput. 2023, 69, 273–291. [Google Scholar] [CrossRef]
- Embrechts, P.; Maejima, M. Selfsimilar Processes; Princeton Series in Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; Series: De Gruyter Studies in Mathematics; De Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Samko, S.; Ross, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Chen, Y. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A Stat. Mech. Its Appl. 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, X. Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 2019, 475, 1778–1802. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, Z.; Karniadakis, G. A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 2015, 37, A2710–A2732. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef]
- Hatano, Y.; Nakagawa, J.; Wang, S.; Yamamoto, M. Determination of order in fractional diffusion equation. J. Math-for-Ind. 2013, 5A, 51–57. [Google Scholar]
- Janno, J. Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation. Elect J. Differ. Eqs. 2016, 199, 1–28. [Google Scholar]
- Jin, B.; Rundell, W. An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 2012, 28, 75010–75028. [Google Scholar] [CrossRef]
- Kian, Y.; Oksanen, L.; Soccorsi, E.; Yamamoto, M. Global uniqueness in an inverse problem for time fractional diffusion equations. J. Diff. Eqs. 2018, 264, 1146–1170. [Google Scholar] [CrossRef]
- Li, Z.; Yamamoto, M. Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation. Appl. Anal. 2015, 94, 570–579. [Google Scholar] [CrossRef]
- Liang, J.; Chen, Y.; Vinagre, B.; Podlubny, I. Identifying diffusion-wave constant, fractional order and boundary profile of a time-fractional diffusion-wave equation from noisy boundary measurements. In Fractional Differentiation and Its Applications; Mehauté, A., Tenreiro, J., Trigeassou, J., Sabatier, J., Eds.; Ubooks: Mossautal, Germany, 2005; pp. 517–532. [Google Scholar]
- Liu, J.; Yamamoto, M. A backward problem for the time-fractional diffusion equation. Appl. Anal. 2010, 89, 1769–1788. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, J.; Yamamoto, M. Carleman estimate for a fractional diffusion equation with half order and application. Appl. Anal. 2011, 90, 1355–1371. [Google Scholar] [CrossRef]
- Zheng, G.; Wei, T. A new regularization method for the time fractional inverse advection-dispersion problem. SIAM J. Numer. Anal. 2011, 49, 1972–1990. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Jia, X.; Yamamoto, M. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 2013, 29, 065014. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Yamamoto, M. A stability result for the determination of order in time-fractional diffusion equations. J. Inv. Ill-Posed Prob. 2019, 28, 379–388. [Google Scholar] [CrossRef]
- Kian, Y.; Soccorsi, E.; Yamamoto, M. On time-fractional diffusion equations with space-dependent variable order. Ann. Henri Poincaré 2018, 19, 3855–3881. [Google Scholar] [CrossRef]
- Mao, Z.; Li, Z.; Karniadakis, G.E. Nonlocal flocking dynamics: Learning the fractional order of PDEs from particle simulations. Commun. Appl. Math. Comp. 2019, 1, 597–619. [Google Scholar] [CrossRef]
- Mehta, P.; Pang, G.; Song, F.; Karniadakis, G.E. Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network. Fract. Calc. Appl. Anal. 2019, 22, 1675–1688. [Google Scholar] [CrossRef]
- Zheng, X.; Cheng, J.; Wang, H. Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations. Inverse Probl. 2019, 35, 125002. [Google Scholar] [CrossRef]
- Adams, R.A.; Fournier, J.J.F. Sobolev Spaces; Elsevier: San Diego, CA, USA, 2003. [Google Scholar]
- Brunner, H. Collocation Methods for Volterra Integral and Related Functional Differential Equations; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Le Gall, J.F. Brownian Motion, Martingales, and Stochastic Calculus; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zheng, X.; Zhang, Z.; Wang, H. Analysis of a nonlinear variable-order fractional stochastic differential equation. Appl. Math. Lett. 2020, 107, 106461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zheng, X.; Wang, H.; Yang, Z.; Guo, X. An Analysis and Global Identification of Smoothless Variable Order of a Fractional Stochastic Differential Equation. Fractal Fract. 2023, 7, 850. https://doi.org/10.3390/fractalfract7120850
Li Q, Zheng X, Wang H, Yang Z, Guo X. An Analysis and Global Identification of Smoothless Variable Order of a Fractional Stochastic Differential Equation. Fractal and Fractional. 2023; 7(12):850. https://doi.org/10.3390/fractalfract7120850
Chicago/Turabian StyleLi, Qiao, Xiangcheng Zheng, Hong Wang, Zhiwei Yang, and Xu Guo. 2023. "An Analysis and Global Identification of Smoothless Variable Order of a Fractional Stochastic Differential Equation" Fractal and Fractional 7, no. 12: 850. https://doi.org/10.3390/fractalfract7120850
APA StyleLi, Q., Zheng, X., Wang, H., Yang, Z., & Guo, X. (2023). An Analysis and Global Identification of Smoothless Variable Order of a Fractional Stochastic Differential Equation. Fractal and Fractional, 7(12), 850. https://doi.org/10.3390/fractalfract7120850