Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations
Abstract
:1. Introduction
- This study uses the C-HFD to develop a new class of impulsive C-HIFI-DE with BCs.
- We additionally verify the E-UR of the solutions to Equations (1)–(3) using BCP and KFPT, respectively.
- We extend the C-HFD, nonlinear integral terms, and impulsive conditions to the results discussed in [25].
2. Supporting Notes
3. Main Results
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: Newyork, NY, USA, 1974. [Google Scholar]
- Kilbas, A.A. Hadamard type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Science, B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Nweyork, NY, USA, 1999. [Google Scholar]
- Agarwal, R.P.; Meehan, M.; O’Regan, D. Fixed Point Theory and Applications; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Hamoud, A.A.; Abdo, M.S.; Ghadle, K.P. Existence and uniqueness results for Caputo fractional integro-differential equations. J. Korean Soc. Ind. App. Math. 2018, 22, 163–177. [Google Scholar]
- Benchora, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 2008, 3, 1–12. [Google Scholar]
- Benhamida, W.; John, R.; Hamani, S. Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions. Frac. Diff. Calc. 2018, 8, 165–176. [Google Scholar] [CrossRef]
- Boutiara, A.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 2019, 5, 259–272. [Google Scholar]
- Derbazi, C.; Hammouche, H. Existence and uniqueness results for a class of nonlinear fractional differential equations with nonlocal boundary conditions. Jordan J. Math. Stat. 2020, 13, 341–361. [Google Scholar]
- Thiramanus, P.; Ntouyas, S.K.; Tariboon, J. Existence and uniqueness results for Hadamard type fractional differential equations with nonlocal fractional integral boundary conditions. Abstr. Appl. Anal. 2014, 2014, 902054. [Google Scholar] [CrossRef]
- Tian, Y.; Bai, Z. Impulsive boundary value problem for differential equations with fractional order. Differ. Equ. Dyn. Syst. 2013, 21, 253–260. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard type fractional integration operators and the Semigroup property. J. Math. Anal. Appl. 2002, 269, 387–400. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Mellin transform analysis and integration by parts for Hadamard type fractional integrals. J. Math. Anal. Appl. 2002, 270, 1–15. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the mellin setting and Hadamard type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef]
- Jarad, F.; Baleanu, D.; Abdeljawad, T. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 1–142. [Google Scholar] [CrossRef]
- Hamani, S.; Hammou, A.; Henderson, J. Impulsive fractional differential equations involving the Hadamard fractional derivative. Commun. Appl. Nonlinear Anal. 2017, 24, 48–58. [Google Scholar]
- Hamani, S.; Hammou, A.; Henderson, J. Impulsive Hadamard fractional differential equations in Banach spaces. Commun. Appl. Nonlinear Anal. 2018, 28, 52–62. [Google Scholar]
- Hamani, S.; Hammou, A.; Henderson, J. Initial value problems for impulsive Caputo-Hadamard fractional differential inclusions. Commun. Appl. Nonlinear Anal. 2019, 22, 17–35. [Google Scholar]
- Nain, A.K.; Vats, R.K.; Kumar, A. Caputo-Hadamard fractional differential equation with impulsive boundary conditions. J. Math. Model. 2021, 9, 93–106. [Google Scholar]
- Arioua, Y.; Basti, B.; Benhamidouche, N. Boundary value problem for Caputo-Hadamard fractional differential equations. Surv. Math. Appl. 2017, 12, 103–115. [Google Scholar]
- Irguedi, A.; Nisse, K.; Haman, S. Functional impulsive fractional differential equations involving the Caputo-Hadamard derivative and integral boundary conditions. Int. J. Anal. Appl. 2023, 21, 1–14. [Google Scholar] [CrossRef]
- Wafa, S.M. A Study of Caputo-Hadamard type fractional differential equations with nonlocal boundary conditions. J. Funct. Spaces 2016, 2016, 1–14. [Google Scholar]
- Bai, Y.; Kong, H. Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions. J. Nonlinear Sci. Appl. 2017, 10, 5744–5752. [Google Scholar] [CrossRef]
- Derdar, N. Nonlinear implicit Caputo-Hadamard fractional differential equations with fractional boundary conditions. Jordan J. Math. Stat. 2022, 15, 999–1014. [Google Scholar]
- Hadamard, J. Essai sur l’etude des fonctions donnees par leur development de Taylor. J. Math. Appl. 1892, 8, 101–186. [Google Scholar]
- Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Geetha, P.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E.S. On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions. Symmetry 2022, 15, 5. [Google Scholar] [CrossRef]
- Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E.S. Sequential Caputo-Hadamard Fractional Differential Equations with Boundary Conditions in Banach Spaces. Fractal Fract. 2021, 6, 730. [Google Scholar] [CrossRef]
- Yukunthorn, W.; Suantai, S.; Ntouyas, S.K.; Tariboon, J. Boundary value problems for impulsive multi-order Hadamard fractional differential equations. Bound. Value Probl. 2015, 148, 1–13. [Google Scholar] [CrossRef]
- Benhamida, W.; Hamani, S.; Henderson, J. Boundary value problems for Caputo-Hadamard fractional differential equations. Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 138–145. [Google Scholar]
- Burton, T.A. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruwaily, Y.; Venkatachalam, K.; El-hady, E.-s. Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations. Fractal Fract. 2023, 7, 884. https://doi.org/10.3390/fractalfract7120884
Alruwaily Y, Venkatachalam K, El-hady E-s. Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations. Fractal and Fractional. 2023; 7(12):884. https://doi.org/10.3390/fractalfract7120884
Chicago/Turabian StyleAlruwaily, Ymnah, Kuppusamy Venkatachalam, and El-sayed El-hady. 2023. "Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations" Fractal and Fractional 7, no. 12: 884. https://doi.org/10.3390/fractalfract7120884
APA StyleAlruwaily, Y., Venkatachalam, K., & El-hady, E. -s. (2023). Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations. Fractal and Fractional, 7(12), 884. https://doi.org/10.3390/fractalfract7120884