Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials
Abstract
:1. Introduction
2. Coefficients Bounds for the Functions of Class
3. Fekete–Szegö Inequalities for the Functions of Class
4. Second Hankel Determinant for the Class
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften. Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Srivastava, H.M.; Owa, S. Current Topics in Analytic Function Theory; World Scientific: Singapore, 1992. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Fine, N.J. Basic Hypergeometric Series and Applications, Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1988; Volume 27. [Google Scholar]
- Andrews, G.E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. In Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1986; Volume 66. [Google Scholar]
- Koornwinder, T.H. Orthogonal polynomials in connection with quantum groups. In Orthogonal Polynomials, Theory and Practice; Nevai, P., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; Volume 294, pp. 257–292. [Google Scholar]
- Koornwinder, T.H. Compact quantum groups and q-special functions. In Representations of Lie Groups and Quantum Groups, Pitman Research Notes in Mathematics Series; Baldoni, V., Picardello, M.A., Eds.; Longman Scienti1c & Technical: NewYork, NY, USA, 1994; Volume 311, pp. 46–128. [Google Scholar]
- Vilenkin, N.J.; Klimyk, A.U. Representations of Lie Groups and Special Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Volume I–III. [Google Scholar]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus. In Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Fekete, M.; Szego, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1993, 8, 85–89. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shaba, T.G.; Murugusundaramoorthy, G.; Wanas, A.K.; Oros, G.I. The fekete-Szego functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator. AIMS Math. 2022, 8, 340–360. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. Pro-Ceedings Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Srivastava, R.; Tang, H. Third-Order Hankel and Toeplitz Determinants for Starlike Functions Connected with the Sine Function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient Bounds for the Inverse of a Function with Derivative. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Hu, Q.; Shaba, T.G.; Younis, J.; Khan, B.; Mashwani, W.K.; Caglar, M. Applications of q-derivative operator to Subclasses of bi-Univalent Functions involving Gegenbauer polynomial. Appl. Math. Sci. Eng. 2022, 30, 501–520. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multlivalent q-starlike functions involving higher-order q-derivatives. Mathematics 2020, 8, 1490. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Araci, S.; Khan, N.; Ahmad, Z. Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions. Adv. Differ. Equ. 2021, 440. [Google Scholar] [CrossRef]
- Taj, Y.; Zainab, S.; Xin, Q.; Tawfiq, F.M.O.; Raza, M.; Malik, S.N. Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function. Fractal Fract. 2022, 6, 645. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractal Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, S.; Shaba, T.G.; Xin, Q.; Tchier, F.; Khan, B.; Malik, S.N. Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials. Fractal Fract. 2023, 7, 295. https://doi.org/10.3390/fractalfract7040295
Riaz S, Shaba TG, Xin Q, Tchier F, Khan B, Malik SN. Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials. Fractal and Fractional. 2023; 7(4):295. https://doi.org/10.3390/fractalfract7040295
Chicago/Turabian StyleRiaz, Sadia, Timilehin Gideon Shaba, Qin Xin, Fairouz Tchier, Bilal Khan, and Sarfraz Nawaz Malik. 2023. "Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials" Fractal and Fractional 7, no. 4: 295. https://doi.org/10.3390/fractalfract7040295
APA StyleRiaz, S., Shaba, T. G., Xin, Q., Tchier, F., Khan, B., & Malik, S. N. (2023). Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials. Fractal and Fractional, 7(4), 295. https://doi.org/10.3390/fractalfract7040295