Next Article in Journal
Fractional Scale Calculus: Hadamard vs. Liouville
Next Article in Special Issue
Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials
Previous Article in Journal
Finite-Time Synchronization for Fractional Order Fuzzy Inertial Cellular Neural Networks with Piecewise Activations and Mixed Delays
Previous Article in Special Issue
Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials

1
Department of Mathematics, National University of Modern Languages, Islamabad 44000, Pakistan
2
Department of Mathematics, Landmark University, Omu-Aran 251103, Nigeria
3
Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands, Denmark
4
Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
5
School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
6
Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2023, 7(4), 295; https://doi.org/10.3390/fractalfract7040295
Submission received: 24 January 2023 / Revised: 23 March 2023 / Accepted: 28 March 2023 / Published: 29 March 2023
(This article belongs to the Special Issue Fractional Calculus and Hypergeometric Functions in Complex Analysis)

Abstract

:
Some well-known authors have extensively used orthogonal polynomials in the framework of geometric function theory. We are motivated by the previous research that has been conducted and, in this study, we solve the Fekete–Szegö problem as well as give bound estimates for the coefficients and an upper bound estimate for the second Hankel determinant for functions in the class  G Σ ( v , σ )  of analytical and bi-univalent functions, implicating the Euler polynomials.

1. Introduction

Let the collection of all functions f be expressed by  A  and has the following form of series.
f ( ξ ) = ξ + l = 2 s l ξ l = ξ + s 2 ξ 2 + s 3 ξ 3 + + s l ξ l + , s l C ,
which are holomorphic in  U  where
U = { ξ C : | ξ | < 1 }
in the complex plane. If a function never yields the same value twice, it is said to be univalent in  U . Mathematically
ξ 1 ξ 2 for all points ξ 1 and ξ 2 in U implies f ξ 1 f ξ 2 .
Let  S  represent the family of all univalent functions in  A  as well. As the families of starlike and convex functions of order  ϕ , respectively, the sets  S * ( ϕ )  and  C ( ϕ )  are some of the significant and well-researched subclasses of  S , therefore, have been added here as follows (see [1,2]).
S * ( ϕ ) = f S : ξ f ( ξ ) f ( ξ ) > ϕ , ϕ [ 0 , 1 ) , ξ U
and
C ( ϕ ) = f S : 1 + ξ f ( ξ ) f ( ξ ) > ϕ , ϕ [ 0 , 1 ) , ξ U .
Remark 1.
It is easy to seen that
S * ( 0 ) = S * a n d C ( 0 ) = C ,
where  S *  and  C  are the well-known function classes of starlike and convex functions, respectively.
Suppose g and f be analytical functions in  U . For an analytic function w with
| ω ( ξ ) | < 1 and ω ( 0 ) = 0 ( ξ U ) ,
The function f is considered to be subordinate to g if the relation below holds, that is
g ( ω ( ξ ) ) = f ( ξ ) .
In addition to that, if the function  g S , then the following equivalency exists:
f ( ξ ) g ( ξ ) if g ( 0 ) = f ( 0 )
and
f ( U ) g ( U ) .
For details, see [1]. The inverse function for every  f S , is defined by
F ( f ( ξ ) ) = ξ , f ( F ( w ) ) = w , | w | < r 0 ( f ) , r 0 ( f ) 1 4 and ( ξ , w U ) ,
where
F ( w ) = w s 2 w 2 + ( 2 s 2 2 s 3 ) w 3 + ( 5 s 2 3 + 5 s 2 s 3 s 4 ) w 4 + .
A function f which is analytic is said to be bi-univalent in  U  if both f and  f 1  are univalent in  U . The classes of all such function is denoted by  Σ .
The housebreaking research of Srivastava et al. [3] in fact, in the past decades, revitalized the examination of bi-univalent functions. Following the study of Srivastava et al. [3], numerous unique subclasses of the class  Σ  were presented and similarly explored by numerous authors. The function classes  H Σ ( γ , ε , μ . ς ; α )  and  H Σ ( γ , ε , μ . ς ; β )  as an illustration, were defined and Srivastava et al. [4] produced estimates for the Taylor–Maclaurin coefficients  a 2  and  a 3 . Many authors were motivated by the work of Srivastava and have defined a number of other subclasses of analytic and bi-univalent functions, and for their defined functions classes different types of results were obtained. In this paper, motivated by the work of Srivastava, we define certain new classes of bi-univalent functions and obtain some remarkable results for our defined function’s classes, including, for example, the initial bonds for the coefficients, the Fekete–Szegö problem and the second Hankel determinant.
The theory of special functions, originating from their numerous applications, is a very old branch of analysis. The long existing interest in them has recently grown due to their new applications and further generalizations. The contemporary intensive development of this theory touches various unexpected areas of applications and is based on the tools of numerical analysis and computer algebra system, used for analytical evolutions and graphical representations of special functions. Additionally, in Computer Science, special functions are used as activation functions, which play a significant role in this area. Particularly, orthogonal polynomials are an important and intriguing class of special functions. Many branches of the natural sciences contain them, including discrete mathematics, theta functions, continuous fractions, Eulerian series, elliptic functions, etc.; see [5,6], also [7,8,9].
In pure mathematics, the functions mentioned above have numerous uses. A lot of researchers have started working in a variety of fields as a result of the widespread use of these functionalities. Modern geometric function theory research focuses on the geometric features of special functions, including hypergeometric functions, Bessel functions, and certain other related functions. We refer to [10,11] and any relevant references in relation to some of the geometric characteristics of these functions. In this paper, we develop a new class of bi-univalent functions and use a particular special function, the Euler polynomial.
Using the generating function, the Eulers polynomials  E m ( v )  are frequently defined (see, e.g., [12,13]):
L ( v , t ) = 2 e t v e t + 1 = m = 0 E m ( v ) t m m ! , | t | < π
An explicit formula for  E m ( v )  is given by
E n v = m = 0 n 1 2 m k = 0 m 1 k m k v + k n
Now  E m v  in terms of  E k  can be obtained from the equation above as:
E m ( v ) = k = 0 m m k E k 2 k v 1 2 m k .
The initial Euler polynomials are:
E 0 ( v ) = 1 E 1 ( v ) = 2 v 1 2 E 2 ( v ) = v 2 v E 3 ( v ) = 4 v 3 6 v 2 + 1 4 E 4 ( v ) = v 4 2 v 3 + v .
Geometric function theory continues to struggle with the subject of determining bounds on the coefficients. The size of their coefficients can have an impact on a variety of aspects of analytic functions, including univalency, rate of growth, and distortion. The Fekete–Szegö problem, Hankel determinants, and many other formulations of efficient problems include an estimate of general or  l t h  coefficient bounds. The coefficient concerns discussed above were addressed by several researchers using various approaches. Here, the functional of Fekete–Szegö for a function  f ( ξ ) S  is quite significant, and is denoted by  L β ( f ) = | s 3 β s 2 2 | . By giving this functional, Fekete and Szegö [14] invalidated the Littlewood and Parley’s claim that the modulus of coefficients of odd functions  f S  are less than or equal to 1. Much attention has been paid to the functional, especially in several subfamilies of univalent functions (see [15,16]).
Pommerenke [17] investigated and defined below the  l t h -Hankel determinant, denoted by  H s ( l ) ( s , l N = { 1 , 2 , 3 , } ) , for any function  f S  in geometric function theory:
H s ( l ) = j l j l + 1 j l + s 1 j l + 1 j l + 2 j l + s j l + 2 j l + 3 j l + s + 1 j l + s 1 j l + s j l + 2 ( s 1 )
For certain s and l values,
H 2 ( 1 ) = j 1 j 2 j 2 j 3 = | j 3 j 2 2 | and H 2 ( 2 ) = j 2 j 3 j 3 j 4 = | j 2 j 4 j 3 2 | .
We see that the determinant  | H 2 ( 1 ) |  corresponds with the  L 1 ( f ) , implying that  L β ( f )  is a generalization of  | H 2 ( 1 ) | . Following that, many additional subclasses of univalent functions paid close attention to the problem of determining bounds on coefficients. Recent research in this area includes the papers in [18,19].
In this study, we define the new subclass introduced and studied in the present paper, denoted by  G Σ ( v , σ ) , consisting of bi-univalent functions satisfying a certain subordination involving Eulers polynomials. We solve the Fekete–Szegö problem for functions in the class  G Σ ( v , σ )  and in the special instances, as well as provide bound estimates for the coefficients.
Definition 1.
For  f G Σ ( v , σ ) , suppose the following subordination is true:
( 1 σ ) ξ f ( ξ ) f ( ξ ) + σ f ( ξ ) + ξ f ( ξ ) f ( ξ ) L ( v , ξ ) = m = 0 E m ( v ) ξ m m !
and
( 1 σ ) w F ( w ) F ( w ) + σ F ( w ) + w F ( w ) F ( w ) L ( v , w ) = m = 0 E m ( v ) w m m ! ,
where  σ 0 v ( 1 2 , 1 ] ξ , w U L ( v , w )  is given by (3), and  F = f 1  is given by (2). It could be seen that both the functions f and and its inverse  F = f 1  are univalent in  U , so we can conclude that the function f is bi-univalent belonging to the function class  G Σ ( v , σ ) .
Remark 2.
Setting  σ = 0  in Definition 1, we have bi-starlike function class  f S Σ * ( v ) , which fulfilled the following conditions:
ξ f ( ξ ) f ( ξ ) L ( v , ξ ) = m = 0 E m ( v ) ξ m m !
and
w F ( w ) F ( w ) L ( v , w ) = m = 0 E m ( v ) w m m ! ,
where  ξ , w U L ( v , w )  is given by (3), and  F = f 1  is given by (2).
Remark 3.
Setting  σ = 1  in Definition 1, we have bi-convex function class  f C Σ ( v ) , which fulfilled the following conditions:
f ( ξ ) + ξ f ( ξ ) f ( ξ ) L ( v , ξ ) = m = 0 E m ( v ) ξ m m !
and
F ( w ) + w F ( w ) F ( w ) L ( v , w ) = m = 0 E m ( v ) w m m ! ,
where  L ( v , w )  is given by (3), and  F = f 1  is given by (2).
Next, let  P  represent the class including those functions, analytic in  U , and having series form given below as:
α ξ = 1 + l = 1 α l ξ l ,
such that
α ξ > 0 ξ U .
Lemma 1.
[1] Let  α P  be given by
α ( ξ ) = 1 + α 1 ξ + α 2 ξ 2 + ( ξ U )
then
| α l | 2 ( l { 1 , 2 , 3 , } ) .
Lemma 2.
[20] Let  α P  be given by (14), then
2 α 2 = α 1 2 + x ( 4 α 1 2 )
and
4 α 3 = α 1 3 + 2 α 1 ( 4 α 1 2 ) x α 1 ( 4 α 1 2 ) x 2 + 2 ( 4 α 1 2 ) ( 1 | x | 2 ) ξ
for some x, ξ,  | x | 1 , and  | ξ | 1 .

2. Coefficients Bounds for the Functions of Class  G Σ ( v , σ )

Theorem 1.
Let  f G Σ ( v , σ ) . Then:
| s 2 | Ω 1 ( σ , v ) ,
| s 3 | ( 2 v 1 ) 2 4 ( 1 + σ ) 2 + 2 v 1 4 ( 1 + 2 σ )
and
| s 4 | ( 1 + 4 σ ) ( 2 v 1 ) 3 12 ( 1 + 2 σ ) ( 1 + σ ) 3 + ( 15 + 45 σ ) ( 2 v 1 ) 2 48 ( 1 + σ ) ( 1 + 2 σ ) 2 + 4 v 3 6 v 2 + 1 72 ( 1 + 2 σ )
where
Ω 1 ( σ , v ) = ( 2 v 1 ) 3 | 2 ( σ + 1 ) ( 2 σ + 2 ( σ 1 ) v 2 2 ( 3 σ + 1 ) v + 1 ) | .
Proof. 
Let  f Σ  given by (1) be in the class  G Σ ( v , σ ) . Then
( 1 σ ) ξ f ( ξ ) f ( ξ ) + σ f ( ξ ) + ξ f ( ξ ) f ( ξ ) = L ( v , a ( ξ ) )
and
( 1 σ ) w F ( w ) F ( w ) + σ F ( ξ ) + w F ( w ) F ( w ) = L ( v , b ( w ) )
We define  α , δ P  as follows:
α ( ξ ) = 1 + a ( ξ ) 1 a ( ξ ) = 1 + α 1 ξ + α 2 ξ 2 + α 3 ξ 3 +
a ( ξ ) = α ( ξ ) 1 α ( ξ ) + 1 ( ξ U )
and
δ ( w ) = 1 + b ( w ) 1 b ( w ) = 1 + δ 1 w + δ 2 w 2 + δ 3 w 3 +
b ( w ) = δ ( w ) 1 δ ( w ) + 1 ( w U ) .
From (21) and (22), we obtain
a ( ξ ) = α 1 2 ξ + α 2 2 α 1 2 4 ξ 2 + α 3 2 α 1 α 2 2 + α 1 3 8 ξ 3 +
and
b ( w ) = δ 1 2 w + δ 2 2 δ 1 2 4 w 2 + δ 3 2 δ 1 δ 2 2 + δ 1 3 8 w 3 + .
Taking it from (23) and (24), we have:
L ( v , a ( ξ ) ) = E 0 ( v ) + E 1 ( v ) 2 α 1 ξ + E 1 ( v ) 2 α 2 α 1 2 2 + E 2 ( v ) 8 α 1 2 ξ 2 + E 1 ( v ) 2 α 3 α 1 α 2 + α 1 3 4 + E 2 ( v ) 4 α 1 α 2 α 1 2 2 + E 3 ( v ) 48 α 1 3 ξ 3 +
and
L ( v , b ( w ) ) = E 0 ( v ) + E 1 ( v ) 2 δ 1 w + E 1 ( v ) 2 δ 2 δ 1 2 2 + E 2 ( v ) 8 δ 1 2 w 2 + E 1 ( v ) 2 δ 3 δ 1 δ 2 + δ 1 3 4 + E 2 ( v ) 4 δ 1 δ 2 δ 1 2 2 + E 3 ( v ) 48 δ 1 3 w 3 + .
It follows from (19), (20), (25) and (26) that we have:
( 1 + σ ) s 2 = E 1 ( v ) 2 α 1
( 1 + 3 σ ) s 2 2 + 2 ( 1 + 2 σ ) s 3 = E 1 ( v ) 2 α 2 α 1 2 2 + E 2 ( v ) 8 α 1 2 ( 1 + 7 σ ) s 2 3 3 ( 1 + 5 σ ) s 2 s 3 + 3 ( 1 + 3 σ ) s 4 = E 1 ( v ) 2 α 3 α 1 α 2 + α 1 3 4
+ E 2 ( v ) 4 α 1 α 2 α 1 2 2 + E 3 ( v ) 48 α 1 3
( 1 + σ ) s 2 = E 1 ( v ) 2 δ 1
( 3 + 5 σ ) s 2 2 2 ( 1 + 2 σ ) s 3 = E 1 ( v ) 2 δ 2 δ 1 2 2 + E 2 ( v ) 8 δ 1 2 3 ( 1 + 3 σ ) s 4 + ( 12 + 30 σ ) s 2 s 3 ( 10 + 22 σ ) s 2 3 = E 1 ( v ) 2 δ 3 δ 1 δ 2 + δ 1 3 4
+ E 2 ( v ) 4 δ 1 δ 2 δ 1 2 2 + E 3 ( v ) 48 δ 1 3 .
Adding (27) and (30) and further simplification, we have
α 1 = δ 1 , α 1 2 = δ 1 2 and α 1 3 = δ 1 3 .
When (27) and (30) are squared and added, the following result is obtained:
2 ( 1 + σ ) 2 s 2 2 = E 1 2 ( v ) ( α 1 2 + δ 1 2 ) 4
s 2 2 = E 1 2 ( v ) ( α 1 2 + δ 1 2 ) 8 ( 1 + σ ) 2 .
Additionally, adding (28) and (31) gives
2 ( 1 + σ ) s 2 2 = 2 E 1 ( v ) ( α 2 + δ 2 ) + α 1 2 ( E 2 ( v ) 2 E 1 ( v ) ) 4
8 ( 1 + σ ) s 2 2 = 2 E 1 ( v ) ( α 2 + δ 2 ) + α 1 2 ( E 2 ( v ) 2 E 1 ( v ) ) .
Applying (33) in (34)
α 1 2 = 4 ( 1 + σ ) 2 E 1 2 ( v ) s 2 2 .
In (36), replacing  α 1 2  with the following results:
| s 2 | 2 2 E 1 3 ( v ) ( | α 2 | + | δ 2 | ) 2 | 2 ( 1 + σ ) E 1 2 ( v ) ( 1 + σ ) 2 [ E 2 ( v ) 2 E 1 ( v ) ] | .
Applying Lemma 1 and (5), we obtain:
| s 2 | Ω 1 ( σ , v )
where  Ω 1 ( σ , v )  is given by (18).
Subtracting (31) and (28) and with some computation, we have
s 3 = s 2 2 + E 1 ( v ) ( α 2 δ 2 ) 8 ( 1 + 2 σ )
s 3 = E 1 2 ( v ) α 1 2 4 ( 1 + σ ) 2 + E 1 ( v ) ( α 2 δ 2 ) 8 ( 1 + 2 σ )
Applying Lemma 1 and (5), we obtain:
| s 3 | ( 2 v 1 ) 2 4 ( 1 + σ ) 2 + 2 v 1 4 ( 1 + 2 σ )
By removing (32) from (29), we arrive at:
s 4 = ( 1 + 4 σ ) E 1 3 ( v ) 12 ( 1 + 3 σ ) ( 1 + σ ) 3 α 1 3 + ( 15 + 45 σ ) E 1 2 ( v ) ( α 2 δ 2 ) 96 ( 1 + σ ) ( 1 + 2 σ ) ( 1 + 3 σ ) α 1 + E 1 ( v ) ( α 3 δ 3 ) 12 ( 1 + 3 σ ) + [ E 2 ( v ) 2 E 1 ( v ) ] ( α 2 + δ 2 ) 24 ( 1 + 3 σ ) α 1 + [ 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ] 144 ( 1 + 3 σ ) α 1 3 .
Applying Lemma 1 and (5), we obtain:
| s 4 | ( 1 + 4 σ ) ( 2 v 1 ) 3 12 ( 1 + 3 σ ) ( 1 + σ ) 3 + ( 15 + 45 σ ) ( 2 v 1 ) 2 48 ( 1 + σ ) ( 1 + 2 σ ) ( 1 + 3 σ ) + 4 v 3 6 v 2 + 1 72 ( 1 + 3 σ ) .
If we put  σ = 0  in Theorem 1, then we have the next corollary.
Corollary 1.
Let  f S Σ * ( v ) . Then:
| s 2 | ( 2 v 1 ) 3 | 2 ( 2 v 2 + 2 v 1 ) | ,
| s 3 | v ( 2 v 1 ) 2
and
| s 4 | ( 2 v 1 ) 3 12 + 15 ( 2 v 1 ) 2 48 + 4 v 3 6 v 2 + 1 72
For  σ = 1 , we arrive at the next corollary of Theorem 1.
Corollary 2.
Let  f C Σ ( v ) . Then:
| s 2 | ( 2 v 1 ) 3 | 4 ( 3 8 v ) | ,
| s 3 | ( 2 v 1 ) ( 6 v + 13 ) 192 ,
and
| s 4 | 5 ( 2 v 1 ) 3 384 + 5 ( 2 v 1 ) 2 96 + 4 v 3 6 v 2 + 1 288 .

3. Fekete–Szegö Inequalities for the Functions of Class  G Σ ( v , σ )

Theorem 2.
Let  f G Σ ( v , σ ) . Then, for some  μ R ,
s 3 μ s 2 2 2 | 1 μ | Ω 1 ( σ , v ) | 1 μ | Ω 1 ( σ , v ) 2 v 1 4 ( 1 + 2 σ ) 2 v 1 2 ( 1 + 2 σ ) | 1 μ | Ω 1 ( σ , v ) < 2 v 1 4 ( 1 + 2 σ ) ,
where  Ω 1 ( σ , v )  is given by (18).
Proof. 
From (39), we obtain:
s 3 μ s 2 2 = s 2 2 + E 1 ( v ) ( α 2 δ 2 ) 8 ( 1 + 2 σ ) μ s 2 2
Applying the popular triangular inequality, we obtain:
| s 3 μ s 2 2 | 2 v 1 4 ( 1 + 2 σ ) + | 1 μ | Ω 1 ( σ , v )
If:
| 1 μ | Ω 1 ( σ , v ) 2 v 1 4 ( 1 + 2 σ )
Furthermore, we obtain
| s 3 μ s 2 2 | 2 | 1 μ | Ω 1 ( σ , v )
where
| 1 μ | 2 v 1 4 ( 1 + 2 σ ) Ω 1 ( σ , v )
and if:
| 1 μ | Ω 1 ( σ , v ) 2 v 1 4 ( 1 + 2 σ )
then, we obtain:
| s 3 μ s 2 2 | 2 v 1 2 ( 1 + 2 σ )
where
| 1 μ | 2 v 1 4 ( 1 + 2 σ ) Ω 1 ( σ , v )
and  Ω 1 ( σ , v )  is given in (18). □
By putting  σ = 0  in the above Theorem 2, we obtain the following result.
Corollary 3.
Let  f S Σ * ( v ) . Then, for some  μ R ,
a 3 μ a 2 2 2 | 1 μ | Ω 1 ( σ , v ) | 1 μ | Ω 1 ( σ , v ) 2 v 1 4 2 v 1 2 | 1 μ | Ω 1 ( σ , v ) 2 v 1 4 ,
where
Ω 1 ( v ) = ( 2 v 1 ) 3 | 2 ( 2 v 2 + 2 v 1 ) | .
Letting  σ = 1  in Theorem 2, we can obtain the next result.
Corollary 4.
Let  f C Σ ( v ) . Then, for some  μ R ,
a 3 μ a 2 2 2 | 1 μ | Ω 1 ( v ) | 1 μ | Ω 1 ( v ) 2 v 1 12 2 v 1 6 | 1 μ | Ω 1 ( v ) 2 v 1 12 ,
where
Ω 1 ( v ) = ( 2 v 1 ) 3 | 4 ( 3 8 v ) | .

4. Second Hankel Determinant for the Class  G Σ ( v , σ )

Theorem 3.
Let the function  f ( ξ )  be in the class  G Σ ( v , σ ) . Then:
H 2 ( 2 ) = s 2 s 4 s 3 2 T ( 2 , v ) B 1 0 and B 2 0 max 2 v 1 4 ( 1 + 2 σ ) 2 , T ( 2 , v ) B 1 > 0 and B 2 < 0 2 v 1 4 ( 1 + 2 σ ) 2 B 1 0 and B 2 0 max T ( g 0 , v ) , T ( 2 , v ) B 1 < 0 and B 2 > 0 .
where
T ( 2 , v ) = 2 ( 1 + 4 σ ) E 1 4 ( v ) 3 ( 1 + 3 σ ) ( 1 + σ ) 4 + E 1 ( v ) E 3 ( v ) 18 ( 1 + σ ) ( 1 + 3 σ ) + E 1 4 ( v ) ( 1 + σ ) 4
T ( g 0 , t ) = E 1 2 ( v ) 4 ( 1 + 2 σ ) 2 + 9 B 2 4 ( 1 + σ ) 4 4 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) B 1 3 + 3 B 2 3 ( 1 + σ ) 2 4 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) B 1 2 .
B 1 = E 1 ( v ) [ 24 E 1 3 ( v ) ( 1 + 4 σ ) ( 1 + 2 σ ) 2 + 2 ( 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ) ( 1 + σ ) 3 ( 1 + 2 σ ) 2 + 36 E 1 3 ( v ) ( 1 + 3 σ ) ( 1 + 2 σ ) 2 24 E 1 ( v ) ( 1 + σ ) 3 ( 1 + 2 σ ) 2 + 9 E 1 ( v ) ( 1 + σ ) 4 ( 1 + 3 σ ) 9 E 1 2 ( v ) ( 1 + σ ) 2 ( 1 + 3 σ ) ( 1 + 2 σ ) ] r 4
B 2 = E 1 ( v ) [ 3 ( 1 + 2 σ ) ( 1 + 3 σ ) E 1 2 ( v ) + 4 E 1 ( v ) ( 1 + σ ) ( 1 + 2 σ ) 2 + 4 ( E 2 ( v ) 2 E 1 ( v ) ) ( 1 + σ ) ( 1 + 2 σ ) 2 + 8 E 1 ( v ) ( 1 + σ ) ( 1 + 2 σ ) 2 6 E 1 ( v ) ( 1 + σ ) 2 ( 1 + 3 σ ) ] r 2 .
Proof. 
From (27) and (42), we have
s 2 s 4 = ( 1 + 4 σ ) E 1 4 ( v ) 24 ( 1 + 3 σ ) ( 1 + σ ) 4 α 1 4 + ( 15 + 45 σ ) E 1 3 ( v ) ( α 2 δ 2 ) 192 ( 1 + σ ) 2 ( 1 + 2 σ ) ( 1 + 3 σ ) α 1 2 + E 1 2 ( v ) ( α 3 δ 3 ) 24 ( 1 + σ ) ( 1 + 3 σ ) α 1 + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] ( α 2 + δ 2 ) 48 ( 1 + σ ) ( 1 + 3 σ ) α 1 2 + E 1 ( v ) [ 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ] 288 ( 1 + σ ) ( 1 + 3 σ ) α 1 4
With some calculations, we have
s 2 s 4 s 3 2 = ( 1 + 4 σ ) E 1 4 ( v ) 24 ( 1 + 3 σ ) ( 1 + σ ) 4 α 1 4 + E 1 3 ( v ) ( α 2 δ 2 ) 64 ( 1 + σ ) 2 ( 1 + 2 σ ) α 1 2 + E 1 2 ( v ) ( α 3 δ 3 ) 24 ( 1 + σ ) ( 1 + 3 σ ) α 1 + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] ( α 2 + δ 2 ) 48 ( 1 + σ ) ( 1 + 3 σ ) α 1 2 + E 1 ( v ) [ 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ] 288 ( 1 + σ ) ( 1 + 3 σ ) α 1 4 E 1 4 ( v ) 16 ( 1 + σ ) 4 α 1 4 E 1 2 ( v ) ( α 2 δ 2 ) 2 64 ( 1 + 2 σ ) 2
By using Lemma 2,
α 2 δ 2 = ( 4 α 1 2 ) ( x u ) 2
α 2 + δ 2 = α 1 2 + ( 4 α 1 2 ) ( x + u ) 2
and
α 3 δ 3 = α 1 3 2 + 4 α 1 2 2 α 1 ( x + u ) 4 α 1 2 4 α 1 ( x 2 + u 2 ) + 4 α 1 2 2 ( 1 | x | 2 ξ ) ( 1 | u | 2 ) w
for some  x , u , ξ , w  with  | x | 1 , | u | 1 , | ξ | 1 , | w | 1 ,   | α 1 | [ 0 , 2 ]  and substituting  ( α 2 + δ 2 ) , ( α 2 δ 2 )  and  ( α 3 δ 3 ) , and after some straightforward simplifications, we have
s 2 s 4 s 3 2 = ( 1 + 4 σ ) E 1 4 ( v ) 24 ( 1 + 3 σ ) ( 1 + σ ) 4 α 1 4 + E 1 3 ( v ) ( 4 α 1 2 ) ( x u ) 128 ( 1 + σ ) 2 ( 1 + 2 σ ) α 1 2 + E 1 2 ( v ) 48 ( 1 + σ ) ( 1 + 3 σ ) α 1 4 + E 1 2 ( v ) ( 4 α 1 2 ) ( x + u ) 48 ( 1 + σ ) ( 1 + 3 σ ) α 1 2 E 1 2 ( v ) ( 4 α 1 2 ) ( x 2 + u 2 ) 96 ( 1 + σ ) ( 1 + 3 σ ) α 1 2 + E 1 2 ( v ) ( 4 α 1 2 ) [ ( 1 | x | 2 ξ ) ( 1 | y | 2 ) w ] 48 ( 1 + σ ) ( 1 + 3 σ ) + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] 48 ( 1 + σ ) ( 1 + 3 σ ) α 1 4 + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] ( 4 α 1 2 ) ( x + u ) 96 ( 1 + σ ) ( 1 + 3 σ ) α 1 2 + E 1 ( v ) [ 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ] 288 ( 1 + σ ) ( 1 + 3 σ ) α 1 4 E 1 4 ( v ) 16 ( 1 + σ ) 4 α 1 4 E 1 2 ( v ) ( 4 α 1 2 ) 2 ( x u ) 2 256 ( 1 + 2 σ ) 2
Let  r = α 1 , assume without any restriction that  r [ 0 , 2 ] , η 1 = | x | 1 η 2 = | u | 1  and applying triangular inequality, we have
| s 2 s 4 s 3 2 | { ( 1 + 4 σ ) E 1 4 ( v ) 24 ( 1 + 3 σ ) ( 1 + σ ) 4 r 4 + E 1 2 ( v ) 48 ( 1 + σ ) ( 1 + 3 σ ) r 4 + E 1 2 ( v ) ( 4 r 2 ) 24 ( 1 + σ ) ( 1 + 3 σ ) r + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] 48 ( 1 + σ ) ( 1 + 3 σ ) r 4 + E 1 ( v ) [ 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ] 288 ( 1 + σ ) ( 1 + 3 σ ) r 4 + E 1 4 ( v ) 16 ( 1 + σ ) 4 r 4 } + { E 1 3 ( v ) ( 4 r 2 ) 128 ( 1 + σ ) 2 ( 1 + 2 σ ) r 2 + E 1 2 ( v ) ( 4 r 2 ) 48 ( 1 + σ ) ( 1 + 3 σ ) r 2 + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] ( 4 r 2 ) 96 ( 1 + σ ) ( 1 + 3 σ ) r 2 } ( η 1 + η 2 ) + { E 1 2 ( v ) ( 4 r 2 ) 96 ( 1 + σ ) ( 1 + 3 σ ) r 2 E 1 2 ( v ) ( 4 r 2 ) 48 ( 1 + σ ) ( 1 + 3 σ ) r } ( η 1 2 + η 2 2 ) + E 1 2 ( v ) ( 4 α 1 2 ) 2 256 ( 1 + 2 σ ) 2 ( η 1 + η 2 ) 2
and equivalently, we have
| s 2 s 4 s 3 2 | Y 1 ( v , r ) + Y 2 ( v , r ) ( η 1 + η 2 ) + Y 3 ( v , r ) ( η 1 2 + η 2 2 ) + Y 4 ( v , r ) ( η 1 + η 2 ) 2 = J ( η 1 , η 2 )
where
Y 1 ( v , r ) = { ( 1 + 4 σ ) E 1 4 ( v ) 24 ( 1 + 3 σ ) ( 1 + σ ) 4 r 4 + E 1 2 ( v ) 48 ( 1 + σ ) ( 1 + 3 σ ) r 4 + E 1 2 ( v ) ( 4 r 2 ) 24 ( 1 + σ ) ( 1 + 3 σ ) r + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] 48 ( 1 + σ ) ( 1 + 3 σ ) r 4 + E 1 ( v ) [ 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ] 288 ( 1 + σ ) ( 1 + 3 σ ) r 4 + E 1 4 ( v ) 16 ( 1 + σ ) 4 r 4 } 0
Y 2 ( v , r ) = { E 1 3 ( v ) ( 4 r 2 ) 128 ( 1 + σ ) 2 ( 1 + 2 σ ) r 2 + E 1 2 ( v ) ( 4 r 2 ) 48 ( 1 + σ ) ( 1 + 3 σ ) r 2 + E 1 ( v ) [ E 2 ( v ) 2 E 1 ( v ) ] ( 4 r 2 ) 96 ( 1 + σ ) ( 1 + 3 σ ) r 2 } 0
Y 3 ( v , r ) = E 1 2 ( v ) ( 4 r 2 ) 96 ( 1 + σ ) ( 1 + 3 σ ) r 2 E 1 2 ( v ) ( 4 r 2 ) 48 ( 1 + σ ) ( 1 + 3 σ ) r 0
Y 4 ( v , r ) = E 1 2 ( v ) ( 4 α 1 2 ) 2 256 ( 1 + 2 σ ) 2 0
where  0 r 2 . We now maximize the function  J ( η 1 , η 2 )  in the closed square
Ψ = ( η 1 , η 2 ) : η 1 [ 0 , 1 ] , η 2 [ 0 , 1 ] f o r r [ 0 , 2 ] .
The maximum of  J ( η 1 , η 2 )  with reference to r must be explored, taking into consideration the cases where  r = 0 , r = 2 , and  r ( 0 , 2 ) . Given a fixed value of r, the coefficients of the function  J ( η 1 , η 2 )  in (48) are dependent on m.
The First Case
When  r = 0 ,
J ( η 1 , η 2 ) = Y 4 ( v , 0 ) = E 1 2 ( v ) 16 ( 1 + 2 σ ) 2 ( η 1 + η 2 ) 2 .
Clearly the function  J ( η 1 , η 2 )  attains its maximum at  ( η 1 , η 2 )  and
m a x J ( η 1 , η 2 ) : η 1 , η 2 [ 0 , 1 ] = J ( 1 , 1 ) = E 1 2 ( v ) 4 ( 1 + 2 σ ) 2 .
The Second Case
In the case of  r = 2 J ( η 1 , η 2 )  is represented as a constant function with regard to m, giving us
J ( η 1 , η 2 ) = Y 1 ( v , 2 ) = 2 ( 1 + 4 σ ) E 1 4 ( v ) 3 ( 1 + 2 σ ) ( 1 + σ ) 4 + E 1 ( v ) E 3 ( v ) 18 ( 1 + σ ) ( 1 + 2 σ ) + E 1 4 ( v ) ( 1 + σ ) 4 .
The Third Case
When  r ( 0 , 2 ) , let  η 1 + η 2 = d  and  η 1 · η 2 = Y  in this case, then (48) can be of the form
J ( η 1 , η 2 ) = Y 1 ( v , r ) + Y 2 ( v , r ) d + ( Y 3 ( v , r ) + Y 4 ( v , r ) ) d 2 2 Y 3 ( v , r ) l = Y ( d , q )
where,  d [ 0 , 2 ] a l d q [ 0 , 1 ] . Now, we need to investigate the maximum of
Y ( d , q ) Θ = ( d , q ) : d [ 0 , 2 ] , q [ 0 , 1 ] .
By differentiating  Y ( d , q )  partially, we have
Y c = Y 2 ( v , r ) + 2 ( Y 3 ( v , r ) + Y 4 ( v , r ) ) d = 0 Y l = 2 Y 3 ( v , r ) = 0 .
These findings demonstrate that  Y ( d , r )  has no critical point in the square  Ψ , and, consequently,  J ( η 1 , η 2 )  has no critical point in the same region.
Because of this, the function  J ( η 1 , η 2 )  is unable to reach its maximum value inside of  Ψ . The maximum of  J ( η 1 , η 2 )  on the square’s  Ψ  boundary will then be examined.
For  η 1 = 0 , η 2 [ 0 , 1 ]  (also, for  η 2 = 0 , η 1 [ 0 , 1 ] ) and
J ( 0 , η 2 ) = Y 1 ( v , r ) + Y 2 η 2 + ( Y 3 ( v , r ) + Y 4 ( v , r ) ) η 2 2 = D ( η 2 ) .
Now, since  Y 3 ( v , r ) + Y 4 ( v , r ) 0 , then we have
D ( η 2 ) = Y 2 ( v , r ) + 2 [ Y 3 ( v , r ) + Y 4 ( v , r ) ] η 2 > 0
which implies that  D ( η 2 )  is an increasing function. Therefore, for a fixed  r [ 0 , 2 )  and  v ( 1 / 2 , 1 ] , the maximum occurs at  η 2 = 1 . Thus, from (52),
max r ( 0 , η 2 ) : η 2 [ 0 , 1 ] = J ( 0 , 1 ) = Y 1 ( v , r ) + Y 2 ( v , r ) + Y 3 ( v , r ) + Y 4 ( v , r ) .
For  η 1 = 1 , η 2 [ 0 , 1 ]  (also, for  η 2 = 1  ,  η 1 [ 0 , 1 ] ) and
J ( 1 , η 2 ) = Y 1 ( v , r ) + Y 2 ( v , r ) + Y 3 ( v , r ) + Y 4 ( v , r ) + [ Y 2 ( v , r ) + 2 Y 4 ( v , r ) ] η 2 + [ Y 3 ( v , r ) + Y 4 ( v , r ) ] η 2 2 = N ( η 2 )
N ( η 2 ) = [ Y 2 ( v ) + 2 Y 4 ( v ) ] + 2 [ Y 3 ( v ) + Y 4 ( v ) ] η 2 .
We know that  Y 3 ( v ) + Y 4 ( v ) 0 , then
N ( η 2 ) = [ Y 2 ( v ) + 2 Y 4 ( v ) ] + 2 [ Y 3 ( v ) + Y 4 ( v ) ] η 2 > 0 .
Therefore, the function  N ( η 2 )  is an increasing function and the maximum occurs at  η 2 = 1 . From (54), we have
max J ( 1 , η 2 ) : η 2 [ 0 , 1 ] = J ( 1 , 1 ) = Y 1 ( v , r ) + 2 [ Y 2 ( v , r ) + Y 3 ( v , r ) ] + 4 Y 4 ( v , r ) .
Hence, for every  r ( 0 , 2 ) , taking it from (53) and (56), we have
Y 1 ( v , r ) + 2 [ Y 2 ( v , r ) + Y 3 ( v , r ) ] + 4 Y 4 ( v , r ) > Y 1 ( v , r ) + Y 2 ( v , r ) + Y 3 ( v , r ) + Y 4 ( v , r ) .
Therefore,
max J ( η 1 , η 2 ) : η 1 [ 0 , 1 ] , η 2 [ 0 , 1 ] = Y 1 ( v , r ) + 2 [ Y 2 ( v , r ) + Y 3 ( v , r ) ] + 4 Y 4 ( v , r ) .
Since,
D ( 1 ) N ( 1 ) f o r r [ 0 , 2 ] a n d v [ 1 , 1 ] ,
then
max J ( η 1 , η 2 ) = J ( 1 , 1 )
occurs on the boundary of square  Ψ .
Let  T : ( 0 , 2 ) R  defined by
T ( v , r ) = max J ( η 1 , η 2 ) = J ( 1 , 1 ) = Y 1 ( v , r ) + 2 Y 2 ( v , r ) + 2 Y 3 ( v , r ) + 4 Y 4 ( v , r ) .
Now, inserting the values of  Y 1 ( v , r ) , Y 2 ( v , r ) , Y 3 ( v , r )  and  Y 4 ( v , r )  into (57) and with some calculations, we have
T ( v , r ) = E 1 2 ( v ) 4 ( 1 + 2 σ ) 2 + B 1 576 ( 1 + σ ) 4 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) r 4 + B 2 48 ( 1 + σ ) 2 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) r 2 ,
where
B 1 = E 1 ( v ) [ 24 E 1 3 ( v ) ( 1 + 4 σ ) ( 1 + 2 σ ) 2 + 2 ( 6 E 1 ( v ) 6 E 2 ( v ) + E 3 ( v ) ) ( 1 + σ ) 3 ( 1 + 2 σ ) 2 + 36 E 1 3 ( v ) ( 1 + 3 σ ) ( 1 + 2 σ ) 2 24 E 1 ( v ) ( 1 + σ ) 3 ( 1 + 2 σ ) 2 + 9 E 1 ( v ) ( 1 + σ ) 4 ( 1 + 3 σ ) 9 E 1 2 ( v ) ( 1 + σ ) 2 ( 1 + 3 σ ) ( 1 + 2 σ ) ] r 4
B 2 = E 1 ( v ) [ 3 ( 1 + 2 σ ) ( 1 + 3 σ ) E 1 2 ( v ) + 4 E 1 ( v ) ( 1 + σ ) ( 1 + 2 σ ) 2 + 4 ( E 2 ( v ) 2 E 1 ( v ) ) ( 1 + σ ) ( 1 + 2 σ ) 2 + 8 E 1 ( v ) ( 1 + σ ) ( 1 + 2 σ ) 2 6 E 1 ( v ) ( 1 + σ ) 2 ( 1 + 3 σ ) ] r 2 .
If  T ( v , r )  achieves a maximum value inside of  r [ 0 , 2 ]  and by using some basic mathematics, we have
T ( v , r ) = B 1 144 ( 1 + σ ) 4 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) r 3 + B 2 24 ( 1 + σ ) 2 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) r .
In virtue of the signs of  B 1  and  B 2 ,  we must now investigate the sign of the function  T ( v , r ) .
1st result:
Suppose  B 1 0  and  B 2 0  then,
T ( v , r ) 0 . This shows that  T ( v , r )  is an increasing function on the boundary of  r [ 0 , 2 ]  that is  r = 2 . Therefore,
max T ( v , r ) : r ( 0 , 2 ) = 2 ( 1 + 4 σ ) E 1 4 ( v ) 3 ( 1 + 3 σ ) ( 1 + σ ) 4 + E 1 ( v ) E 3 ( v ) 18 ( 1 + σ ) ( 1 + 3 σ ) + E 1 4 ( v ) ( 1 + σ ) 4
2nd result:
If  B 1 > 0  and  B 2 < 0  then,
T ( v , r ) = B 1 r 3 + 6 B 2 r ( 1 + σ ) 2 144 ( 1 + σ ) 4 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) = 0
at critical point
r 0 = 6 B 2 ( 1 + σ ) 2 B 1
is a critical point of the function  T ( v , r ) . Now,
T ( r 0 ) = B 2 8 ( 1 + σ ) 2 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) + B 2 24 ( 1 + σ ) 2 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) > 0 .
Therefore,  r 0  is the minimum point of the function  T ( v , r ) .  Hence,  T ( v , r )  can not have a maximum.
3rd result:
If  B 1 0  and  B 2 0  then,
T ( v , r ) 0 .
Therefore,  T ( v , r )  is a decreasing function on the interval  ( 0 , 2 ) .  Consequently,
max T ( v , r ) : r ( 0 , 2 ) = T ( 0 ) = E 1 2 ( v ) 4 ( 1 + 2 σ ) 2 .
4th result:
If  B 1 < 0  and  B 2 > 0
T ( v 0 , r ) = B 2 12 ( 1 + σ ) 2 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) < 0 .
Therefore,  T ( v , r ) < 0 . Hence,  g 0  is the maximum point of the function  T ( v , r )  and  r = g 0  is the maximum value. Likewise
m a x T ( v , r ) : r ( 0 , 2 ) = T ( g 0 , s )
T ( g 0 , t ) = E 1 2 ( v ) 4 ( 1 + 2 σ ) 2 + 9 B 2 4 ( 1 + σ ) 4 4 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) B 1 3 + 3 B 2 3 ( 1 + σ ) 2 4 ( 1 + 2 σ ) 2 ( 1 + 3 σ ) B 1 2 .
Taking  σ = 0  in Theorem 3, we have the next corollary.
Corollary 5.
Let the function  f ( ξ )  given by (1) be in the class  S Σ * ( v ) . Then:
H 2 ( 2 ) = a 2 a 4 a 3 2 T ( 2 , v ) B 1 0 and B 2 0 max ( 2 v 1 ) 2 16 , T ( 2 , v ) B 1 > 0 and B 2 < 0 ( 2 v 1 ) 2 16 B 1 0 and B 2 0 max T ( g 0 , v ) , T ( 2 , v ) B 1 < 0 and B 2 > 0 .
where
T ( 2 , v ) = 5 E 1 4 ( v ) 3 + E 1 ( v ) E 3 ( v ) 18
T ( g 0 , v ) = E 1 2 ( v ) 4 + 3 B 2 4 ( 3 B 2 + B 1 ) 4 B 1 3 .
B 1 = E 1 ( v ) [ 60 E 1 3 ( v ) + 2 ( E 3 ( v ) 6 E 2 ( v ) ) 3 E 1 ( v ) 9 E 1 2 ( v ) ] r 4
B 2 = E 1 ( v ) [ 3 E 1 2 ( v ) 2 ( 2 E 2 ( v ) E 1 ( v ) ) ] r 2 .
Taking  σ = 1  in Theorem 3, we have the next corollary.
Corollary 6.
Let the function  f ( ξ )  given by (1) be in the class  C Σ ( v ) . Then:
H 2 ( 2 ) = a 2 a 4 a 3 2 T ( 2 , v ) B 1 0 and B 2 0 max ( 2 v 1 ) 2 144 , T ( 2 , v ) B 1 > 0 and B 2 < 0 ( 2 v 1 ) 2 144 B 1 0 and B 2 0 max T ( g 0 , v ) , T ( 2 , v ) B 1 < 0 and B 2 > 0 .
where
T ( 2 , v ) = 11 E 1 4 ( v ) 96 + E 1 ( v ) E 3 ( v ) 144
T ( g 0 , v ) = E 1 2 ( v ) 36 + B 2 4 B 1 3 + B 2 2 12 B 1 2 .
B 1 = E 1 ( v ) [ 2376 E 1 3 ( v ) + 144 ( E 3 ( v ) 6 E 2 ( v ) ) 288 E 1 ( v ) 432 E 1 2 ( v ) ] r 4
B 2 = E 1 ( v ) [ 36 E 1 2 ( v ) 24 ( E 1 ( v ) 3 E 2 ( v ) ) ] r 2 .

5. Conclusions

The many well-known mathematicians have been studied the special functions, as well as polynomials in the recent years, due to the fact that they are used in a wide variety of mathematical and other scientific fields as indicated in the introduction section. The subject of this paper is a novel subclass of analytical and univalent functions which have been defined by using Euler polynomial. We solved the Fekete–Szegö problem, as well as provided bound estimates for the coefficients and an upper bound estimate for the second Hankel determinant for functions in the class  G Σ ( v , σ ) . One can extend the above results for a class of certain q-Starlike functions, as mentioned in [21,22,23,24,25,26,27].

Author Contributions

Conceptualization, Q.X. and B.K.; Methodology, Q.X. and B.K.; Software, T.G.S. and F.T.; Validation, S.R. and S.N.M.; Formal analysis, S.R. and S.N.M.; Investigation, Q.X. and B.K.; Resources, T.G.S. and F.T.; Writing—original draft, B.K.; Writing—review & editing, S.N.M.; Visualization, T.G.S.; Supervision, S.R. and B.K.; Project administration, F.T.; Funding acquisition, F.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No data is used in this work.

Acknowledgments

This research was supported by the researchers Supporting Project Number (RSP2023R401), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften. Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
  2. Srivastava, H.M.; Owa, S. Current Topics in Analytic Function Theory; World Scientific: Singapore, 1992. [Google Scholar]
  3. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
  4. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
  5. Fine, N.J. Basic Hypergeometric Series and Applications, Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1988; Volume 27. [Google Scholar]
  6. Andrews, G.E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. In Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1986; Volume 66. [Google Scholar]
  7. Koornwinder, T.H. Orthogonal polynomials in connection with quantum groups. In Orthogonal Polynomials, Theory and Practice; Nevai, P., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; Volume 294, pp. 257–292. [Google Scholar]
  8. Koornwinder, T.H. Compact quantum groups and q-special functions. In Representations of Lie Groups and Quantum Groups, Pitman Research Notes in Mathematics Series; Baldoni, V., Picardello, M.A., Eds.; Longman Scienti1c & Technical: NewYork, NY, USA, 1994; Volume 311, pp. 46–128. [Google Scholar]
  9. Vilenkin, N.J.; Klimyk, A.U. Representations of Lie Groups and Special Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Volume I–III. [Google Scholar]
  10. Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
  11. Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
  12. Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
  13. Kac, V.; Cheung, P. Quantum Calculus. In Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
  14. Fekete, M.; Szego, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1993, 8, 85–89. [Google Scholar] [CrossRef]
  15. Srivastava, H.M.; Shaba, T.G.; Murugusundaramoorthy, G.; Wanas, A.K.; Oros, G.I. The fekete-Szego functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator. AIMS Math. 2022, 8, 340–360. [Google Scholar] [CrossRef]
  16. Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
  17. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. Pro-Ceedings Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
  18. Zhang, H.-Y.; Srivastava, R.; Tang, H. Third-Order Hankel and Toeplitz Determinants for Starlike Functions Connected with the Sine Function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
  19. Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
  20. Libera, R.J.; Zlotkiewicz, E.J. Coefficient Bounds for the Inverse of a Function with Derivative. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
  21. Hu, Q.; Shaba, T.G.; Younis, J.; Khan, B.; Mashwani, W.K.; Caglar, M. Applications of q-derivative operator to Subclasses of bi-Univalent Functions involving Gegenbauer polynomial. Appl. Math. Sci. Eng. 2022, 30, 501–520. [Google Scholar] [CrossRef]
  22. Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multlivalent q-starlike functions involving higher-order q-derivatives. Mathematics 2020, 8, 1490. [Google Scholar] [CrossRef]
  23. Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Araci, S.; Khan, N.; Ahmad, Z. Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions. Adv. Differ. Equ. 2021, 440. [Google Scholar] [CrossRef]
  24. Taj, Y.; Zainab, S.; Xin, Q.; Tawfiq, F.M.O.; Raza, M.; Malik, S.N. Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
  25. Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function. Fractal Fract. 2022, 6, 645. [Google Scholar] [CrossRef]
  26. Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
  27. Al-shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractal Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Riaz, S.; Shaba, T.G.; Xin, Q.; Tchier, F.; Khan, B.; Malik, S.N. Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials. Fractal Fract. 2023, 7, 295. https://doi.org/10.3390/fractalfract7040295

AMA Style

Riaz S, Shaba TG, Xin Q, Tchier F, Khan B, Malik SN. Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials. Fractal and Fractional. 2023; 7(4):295. https://doi.org/10.3390/fractalfract7040295

Chicago/Turabian Style

Riaz, Sadia, Timilehin Gideon Shaba, Qin Xin, Fairouz Tchier, Bilal Khan, and Sarfraz Nawaz Malik. 2023. "Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials" Fractal and Fractional 7, no. 4: 295. https://doi.org/10.3390/fractalfract7040295

APA Style

Riaz, S., Shaba, T. G., Xin, Q., Tchier, F., Khan, B., & Malik, S. N. (2023). Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials. Fractal and Fractional, 7(4), 295. https://doi.org/10.3390/fractalfract7040295

Article Metrics

Back to TopTop