Predicting the Remaining Useful Life of Turbofan Engines Using Fractional Lévy Stable Motion with Long-Range Dependence
Abstract
:1. Introduction
2. Fractional Lévy Stable Motion
2.1. Probability Density Function of the Lévy Stable Distribution
2.2. Fractional Lévy Stable Motion
2.3. Simulation Algorithm
3. The Property of the fLsm
3.1. LRD Property
3.2. Self-Similarity Property
4. Degradation Modeling of Fractional Lévy Stable Motion
4.1. Model Derivation
4.2. Parameters Estimation
5. Case Study
5.1. Feature Selection of Health Indicators
5.2. Prediction of Remaining Useful Life
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
fLsm | fractional Lévy stable Motion |
fBm | Fractional Brownian Motion |
fGC | Fractional Generalized Cauchy |
HI | Health Indicator |
LSTM | Long Short-Term Memory Neural Networks |
LRD | Long-Range Dependence |
SRD | Short-Range Dependence |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
Probability Density Function | |
RMSE | Root Mean Square Error |
RUL | Remaining Useful Life |
HD | Health Degree |
PCA | Principal Components Analysis |
References
- Lu, F.; Huang, J.; Xing, Y. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model. Sensors 2012, 12, 11061–11076. [Google Scholar] [CrossRef]
- Lee, C.; Cao, Y.; Ng, K.H. Big data analytics for predictive maintenance strategies. In Supply Chain Management in the Big Data Era; IGI Global: Hershey, PA, USA, 2017; pp. 50–74. [Google Scholar] [CrossRef]
- Chen, J.; Pan, J.; Li, Z.; Zi, Y.; Chen, X. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renew. Energy 2016, 89, 80–92. [Google Scholar] [CrossRef]
- Hu, L.; He, X.; Yin, L. Remaining useful life prediction method combining the life variation laws of aero-turbofan engine and auto-expandable cascaded LSTM model. Appl. Soft Comput. 2023, 147, 110836. [Google Scholar] [CrossRef]
- Tian, H.X.; Yang, L.Z.; Ju, B.T. Spatial correlation and temporal attention-based LSTM for remaining useful life prediction of turbofan engine. Measurement 2023, 214, 112816. [Google Scholar] [CrossRef]
- Li, R.Z.; Zhan, H.F.; Han, K. A lightweight transformer and depthwise separable convolution model for remaining useful life prediction of turbofan engines. Meas. Sci. Technol. 2024, 35, 025020. [Google Scholar] [CrossRef]
- Thakkar, U.; Chaoui, H. Remaining Useful Life Prediction of an Aircraft Turbofan Engine Using Deep Layer Recurrent Neural Networks. Actuators 2022, 11, 67. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, Y. Adenoising semi-supervised deep learning model for remaining useful life prediction of turbofan engine degradation. Appl. Intell. 2023, 53, 22682–22699. [Google Scholar] [CrossRef]
- Li, J.; Jia, Y.; Niu, M.; Zhu, W.; Meng, F. Remaining Useful Life Prediction of Turbofan Engines Using CNN-LSTM-SAM Approach. IEEE Sens. J. 2023, 23, 10241–10251. [Google Scholar] [CrossRef]
- Zheng, Y.; Bao, X.Y.; Wang, H.T. Prediction of Remaining Useful Life Using Fused Deep Learning Models: A Case Study of Turbofan Engines. J. Comput. Inf. Sci. Eng. 2022, 22, 054501. [Google Scholar] [CrossRef]
- Mitici, M.; de Pater, I.; Zeng, Z.G. Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines. Reliab. Eng. Syst. Saf. 2023, 234, 109199. [Google Scholar] [CrossRef]
- Esfahani, Z.; Salahshoor, K.; Mazinan, A.H. Remaining useful life prognostics based on stochastic degradation modeling: Turbofan engine as case study. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 262. [Google Scholar] [CrossRef]
- Wang, H.R.; Li, D.W.; Zhu, G.F. Remaining Useful Life Prediction of Aircraft Turbofan Engine Based on Random Forest Feature Selection and Multi-Layer Perceptron. Appl. Sci. 2023, 13, 7186. [Google Scholar] [CrossRef]
- He, J.J.; Zhao, Y.P. An improved prognostics model with its application to the remaining useful life of turbofan engine. Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 2022, 236, 2108–2130. [Google Scholar] [CrossRef]
- Xue, B.; Xu, Z.B.; Huang, X.; Nie, P.C. Data-driven prognostics method for turbofan engine degradation using hybrid deep neural network. J. Mech. Sci. Technol. 2021, 35, 5371–5387. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Chen, Z.Q.; Borgonovo, E. Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance. Reliab. Eng. Syst. Saf. 2021, 216, 107951. [Google Scholar] [CrossRef]
- Ren, L.; Wang, H.T.; Zhang, L. Time-Varying Gaussian Encoder-Based Adaptive Sensor-Weighted Method for Turbofan Engine Remaining Useful Life Prediction. IEEE Trans. Instrum. Meas. 2023, 72, 3522411. [Google Scholar] [CrossRef]
- Sharanya, S.; Venkataraman, R.; Murali, G. Predicting remaining useful life of turbofan engines using degradation signal based echo state network. Int. J. Turbo Jet Engines 2022, 3. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, M. Convolution-Graph Attention Network With Sensor Embeddings for Remaining Useful Life Prediction of Turbofan Engines. IEEE Sens. J. 2023, 23, 15786–15794. [Google Scholar] [CrossRef]
- Zhang, Z.; Si, X.; Hu, C.; Lei, Y. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. Eur. J. Oper. Res. 2018, 271, 775–796. [Google Scholar] [CrossRef]
- Lei, Y.Y.; Li, N.; Jia, F.; Lin, J.; Xing, S. A nonlinear degradation model based method for remaining useful life prediction of rolling element bearings. In Proceedings of the 2015 Prognostics and System Health Management Conference (PHM), Beijing, China, 21–23 October 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Song, W.; Cattani, C.; Chi, C.H. Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach. Energy 2020, 194, 116847. [Google Scholar] [CrossRef]
- Song, W.; Li, M.; Li, Y.; Cattani, C.; Chi, C.H. Fractional Brownian motion: Difference iterative forecasting models. Chaos Solitons Fractals 2019, 123, 347–355. [Google Scholar] [CrossRef]
- Song, W.; Liu, H.; Zio, E. Long-range dependence and heavy tail characteristics for remaining useful life prediction in rolling bearing degradation. Appl. Math. Model. 2022, 102, 268–284. [Google Scholar] [CrossRef]
- El Hassouni, M.; Tafraouti, A.; Toumi, H.; Lespessailles, E.; Jennane, R. Fractional Brownian Motion and Geodesic Rao Distance for Bone X-ray Image Characterization. IEEE J. Biomed. Health Inform. 2016, 21, 1347–1359. [Google Scholar] [CrossRef]
- Karasaridis, A.; Hatzinakos, D. Network heavy traffic modeling using α-stable self-similar processes. IEEE Trans. Commun. 2001, 49, 1203–1214. [Google Scholar] [CrossRef]
- Duan, S.; Song, W.Q.; Zio, E.; Cattani, C.; Li, M. Product technical life prediction based on multi-modes and fractional Lévy stable motion. Mech. Syst. Signal Process. 2021, 161, 107974. [Google Scholar] [CrossRef]
- Zou, H.-L.; Yu, Z.; Anh, V.; Ma, Y.-L. From standard alpha-stable Lévy motions to horizontal visibility networks: Dependence of multifractal and Laplacian spectrum. J. Stat. Mech. Theory Exp. 2018, 2018, 053403. [Google Scholar] [CrossRef]
- Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008; pp. 1–9. [Google Scholar]
- Zhang, S.T.; Kang, R.; Liu, Y.H. Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process. Reliab. Eng. Syst. Saf. 2021, 208, 107440. [Google Scholar] [CrossRef]
- Samorodnitsky, G.; Taqqu, M.S. Stable non-gaussian random processes: Stochastic models with infinite variance. J. Am. Stat. Assoc. 1996, 90, 805–806. [Google Scholar] [CrossRef]
- Hong, G.; Song, W.; Gao, Y.; Zio, E.; Kudreyko, A. An Iterative Model of the Generalized Cauchy Process for Predicting the Remaining Useful Life of Lithium-ion Batteries. Measurement 2022, 187, 110269. [Google Scholar] [CrossRef]
- Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, H.; Hu, K.; Wu, J.; Shao, X.; Wang, Y. Reliability prediction of machinery with multiple degradation characteristics using double-Wiener process and Monte Carlo algorithm. Mech. Syst. Signal Process. 2019, 134, 106333. [Google Scholar] [CrossRef]
- Yang, F.; Habibullah, M.S.; Zhang, T.; Xu, Z.; Lim, P.; Nadarajan, S. Health index-based prognostics for remaining useful life predictions in electrical machines. IEEE Trans. Ind. Electron. 2016, 63, 2633–2644. [Google Scholar] [CrossRef]
- Liu, H.; Song, W.; Zio, E. Metabolism and difference iterative forecasting model based on long-range dependent and grey for gearbox reliability. ISA Trans. 2022, 122, 486–500. [Google Scholar] [CrossRef]
- Liu, H.; Song, W.; Zhang, Y.; Kudreyko, A. Generalized cauchy degradation model with long-range dependence and maximum lyapunov exponent for remaining useful life. IEEE Trans. Instrum. Meas. 2021, 70, 3512812. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Lin, L. Deep residual lstm with domain-invariance for remaining useful life prediction across domains. Reliab. Eng. Syst. Saf. 2021, 216, 108012. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, J.; Zhu, H.; Or, S.W.; Shao, X. Remaining useful life prognosis based on ensemble long short-term memory neural network. IEEE Trans. Instrum. Meas. 2021, 70, 3503912. [Google Scholar] [CrossRef]
- Sathiyaraj, T.; Balasubramaniam, P. Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems. Appl. Math. Optim. 2020, 84, 2527–2554. [Google Scholar] [CrossRef]
- Dhayal, R.; Malik, M.; Abbas, S.; Debbouche, A. Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses. Math. Methods Appl. Sci. 2020, 43, 4107–4124. [Google Scholar] [CrossRef]
Model | H | ||||
---|---|---|---|---|---|
0.8669 | 1.7019 | 0.0686 | 1.3723 | 1.9623 | |
0.8669 | 1.9473 | 0.0700 | 1.2531 | 2.0652 | |
0.8669 | 1.9564 | 0.0715 | 1.3275 | 1.9514 |
Model | MAE | RMSE | MAPE | HD |
---|---|---|---|---|
1.5000 | 1.6432 | 0.0147 | 0.9869 | |
1.3000 | 1.4491 | 0.0153 | 0.9898 | |
1.2000 | 1.3416 | 0.0054 | 0.9913 |
Model | MAE | RMSE | MAPE | HD |
---|---|---|---|---|
fLsm | 1.2000 | 1.3416 | 0.0054 | 0.9913 |
fGC | 1.4000 | 1.5632 | 0.0151 | 0.9893 |
fBm | 1.6000 | 1.8439 | 0.0373 | 0.9815 |
LSTM | 1.9000 | 1.9748 | 0.0476 | 0.9811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, D.; Zhu, Z.; Yao, F.; Song, W.; Kudreyko, A.; Cattani, P.; Villecco, F. Predicting the Remaining Useful Life of Turbofan Engines Using Fractional Lévy Stable Motion with Long-Range Dependence. Fractal Fract. 2024, 8, 55. https://doi.org/10.3390/fractalfract8010055
Qi D, Zhu Z, Yao F, Song W, Kudreyko A, Cattani P, Villecco F. Predicting the Remaining Useful Life of Turbofan Engines Using Fractional Lévy Stable Motion with Long-Range Dependence. Fractal and Fractional. 2024; 8(1):55. https://doi.org/10.3390/fractalfract8010055
Chicago/Turabian StyleQi, Deyu, Zijiang Zhu, Fengmin Yao, Wanqing Song, Aleksey Kudreyko, Piercarlo Cattani, and Francesco Villecco. 2024. "Predicting the Remaining Useful Life of Turbofan Engines Using Fractional Lévy Stable Motion with Long-Range Dependence" Fractal and Fractional 8, no. 1: 55. https://doi.org/10.3390/fractalfract8010055
APA StyleQi, D., Zhu, Z., Yao, F., Song, W., Kudreyko, A., Cattani, P., & Villecco, F. (2024). Predicting the Remaining Useful Life of Turbofan Engines Using Fractional Lévy Stable Motion with Long-Range Dependence. Fractal and Fractional, 8(1), 55. https://doi.org/10.3390/fractalfract8010055