Forward Starting Option Pricing under Double Fractional Stochastic Volatilities and Jumps
Abstract
:1. Introduction
2. The Model and Pricing Problem
2.1. The Model
2.2. The Pricing Problem
3. The Forward Characteristic Function
3.1. Model Approximation
3.2. Calculation of the Expectation of the Proportion Characteristic Function
4. The Pricing Algorithm
Algorithm 1. The COS-based algorithm for pricing a forward starting put option |
Step 1: Initialization Step 2: Choose to approximate the pricing model (1) by applying model (10) Step 3: Compute the forward characteristic function by applying Formula (16) Step 4: Compute the cumulant by applying Theorem 2 Step 5: Compute cosine series coefficients by applying Formula (20) Step 6: Compute the truncated domain by applying Formula (21) Step 7: Approximate the value of a forward starting put option by applying Formula (19) |
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubinstein, M. Pay now, choose later. Risk 1991, 4, 44–47. [Google Scholar]
- Kruse, S.; Nögel, U. On the pricing of forward starting options in Heston’s model on stochastic volatility. Financ. Stoch. 2005, 9, 233–250. [Google Scholar] [CrossRef]
- Ahlip, R.; Rutkowski, M. Forward start options under stochastic volatility and stochastic interest rates. Int. J. Theor. Appl. Financ. 2011, 12, 209–225. [Google Scholar] [CrossRef]
- Lin, S.; He, X.J. A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model. Chaos Solitons Fractals 2021, 144, 110644. [Google Scholar] [CrossRef]
- Guo, J.H.; Hung, M.W. A generalization of Rubinstein’s “Pay now, choose later”. J. Futures Mark. 2008, 28, 488–515. [Google Scholar] [CrossRef]
- Ahlip, R.; Park, L.A.F.; Prodan, A.; Weissenhofer, S. Forward start options under Heston affine jump-diffusions and stochastic interest rate. Int. J. Financ. Eng. 2021, 8, 2150005. [Google Scholar] [CrossRef]
- Lucié, V. Forward-start options in stochastic volatility models. Wilmott Mag. 2003, 5, 72–75. [Google Scholar] [CrossRef]
- Haastrecht, A.V.; Pelsser, A.A.J. Accounting for stochastic interest rates, stochastic volatility and a general dependency structure in the valuation of forward starting options. J. Futures Markets. 2011, 31, 103–125. [Google Scholar] [CrossRef]
- Zhang, S.M.; Geng, J.H. Fourier-cosine method for pricing forward starting options with stochastic volatility and jumps. Commun. Stat.–Theory Methods. 2017, 46, 9995–10004. [Google Scholar] [CrossRef]
- Zhang, S.M.; Sun, Y.D. Forward starting options pricing with double stochastic volatility, stochastic interest rates and double jumps. J. Comput. Appl. Math. 2017, 325, 34–41. [Google Scholar] [CrossRef]
- Hata, H.; Liu, N.L.; Yasuda, K. Expressions of forward starting option price in Hull–White stochastic volatility model. Decis. Econ. Financ. 2021, 45, 101–135. [Google Scholar] [CrossRef]
- Comte, F.; Renault, E. Long memory in continuous-time stochastic volatility models. Math. Financ. 1998, 8, 291–323. [Google Scholar] [CrossRef]
- Hassani, H.; Yarmohammadi, M.; Mashhad, L.M. Uncovering hidden insights with long-memory process detection: An in-depth overview. Risks 2023, 11, 113. [Google Scholar] [CrossRef]
- Han, Y.; Li, Z.; Liu, C. Option pricing under the fractional stochastic volatility model. Anziam J. 2021, 63, 123–142. [Google Scholar]
- Najafi, A.; Mehrdoust, F. Conditional expectation strategy under the long memory Heston stochastic volatility model. Commun. Stat.—Simul. Comput. 2023. [Google Scholar] [CrossRef]
- Alhagyan, M.; Yassen, M.F. Incorporating stochastic volatility and long memory into geometric Brownian motion model to forecast performance of standard and Poor’s 500 index. AIMS Math. 2023, 8, 18581–18595. [Google Scholar] [CrossRef]
- Alhagyan, M. The effects of incorporating memory and stochastic volatility into GBM to forecast exchange rates of Euro. Alex. Eng. J. 2022, 61, 9601–9608. [Google Scholar] [CrossRef]
- Hassler, U.; Pohle, M.O. Forecasting under long memory. J. Financ. Econom. 2023, 21, 742–778. [Google Scholar] [CrossRef]
- Gatheral, J.; Jaisson, T.; Rosenbaum, M. Volatility is rough. Quant. Financ. 2018, 18, 933–949. [Google Scholar] [CrossRef]
- Livieri, G.; Mouti, S.; Pallavicini, A.; Rosenbaum, M. Rough volatility: Evidence from option prices. IISE Trans. 2018, 50, 767–776. [Google Scholar] [CrossRef]
- Fukasawa, M. Volatility has to be rough. Quant. Financ. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Brandi, G.; Di Matteo, T. Multiscaling and rough volatility: An empirical investigation. Int. Rev. Financ. Anal. 2022, 84, 102324. [Google Scholar] [CrossRef]
- Coqueret, G.; Tavin, B. An investigation of model risk in a market with jumps and stochastic volatility. Eur. J. Oper. Res. 2016, 253, 648–658. [Google Scholar] [CrossRef]
- Jin, X.; Hong, Y. Jump-diffusion volatility models for variance swaps: An empirical performance analysis. Int. Rev. Financ. Anal. 2023, 87, 102606. [Google Scholar] [CrossRef]
- Bates, D.S. Empirical option pricing models. Annu. Rev. Financ. Econ. 2022, 14, 369–389. [Google Scholar] [CrossRef]
- Wang, L.; Xia, W.X. Power-type derivatives for rough volatility with jumps. J. Futures Mark. 2022, 42, 1369–1406. [Google Scholar] [CrossRef]
- Cai, N.; Kou, S.G. Option pricing under a mixed-exponential jump diffusion model. Manag. Sci. 2011, 57, 2067–2081. [Google Scholar] [CrossRef]
- Zhang, S.; Yong, H.; Xiao, H. Option pricing with fractional stochastic volatilities and jumps. Fractal Fract. 2023, 7, 680. [Google Scholar] [CrossRef]
- Wang, K.; Guo, X.X. Valuations of variance and volatility swaps under double Heston jump-difusion model with approximative fractional stochastic volatility. Comput. Econ. 2024, 63, 1543–1573. [Google Scholar] [CrossRef]
- Thao, T.H. An approximate approach to fractional analysis for finance. Nonlinear Anal.–Real World Appl. 2006, 7, 124–132. [Google Scholar] [CrossRef]
- Euch, O.E.; Rosenbaum, M. The characteristic function of rough Heston models. Math. Financ. 2019, 29, 3–38. [Google Scholar] [CrossRef]
- Fang, F.; Oosterlee, C.W. A novel pricing method for European options based on Fourier cosine series expansions. SIAM J. Sci. Comput. 2008, 31, 826–848. [Google Scholar] [CrossRef]
L | COS(16) | COS(32) | COS(64) | MC ± Std | ||
---|---|---|---|---|---|---|
5 | 18.5682 | 18.5682 | 18.5682 | |||
0.01 | 0.01 | 10 | 18.6135 | 18.5682 | 18.5682 | 18.5686 ± 0.0159 |
15 | 19.1058 | 18.5700 | 18.5682 | |||
5 | 18.5838 | 18.5838 | 18.5838 | |||
0.001 | 0.001 | 10 | 18.6274 | 18.5838 | 18.5838 | 18.5842 ± 0.0162 |
15 | 19.1109 | 18.5855 | 18.5838 | |||
5 | 18.5918 | 18.5918 | 18.5918 | |||
0.0001 | 0.0001 | 10 | 18.6344 | 18.5918 | 18.5918 | 18.5920 ± 0.0150 |
15 | 19.1133 | 18.5934 | 18.5918 | |||
5 | 18.5960 | 18.5960 | 18.5960 | |||
0.00001 | 0.00001 | 10 | 18.6381 | 18.5960 | 18.5960 | 18.5960 ± 0.0146 |
15 | 19.1145 | 18.5975 | 18.5960 |
T | K | FDHestonMEM | FDHeston | FHestonMEM | Heston | DHestonMEM | DHeston | HestonMEM | FHeston | |
---|---|---|---|---|---|---|---|---|---|---|
80 | 0.3377 | 0.2963 | 0.1152 | 0.2338 | 0.5163 | 0.4806 | 0.2633 | 0.0808 | ||
85 | 0.8357 | 0.7710 | 0.3789 | 0.5292 | 1.0338 | 0.9768 | 0.5838 | 0.3135 | ||
90 | 1.7720 | 1.6860 | 1.0201 | 1.1199 | 1.9213 | 1.8407 | 1.2084 | 0.9212 | ||
95 | 3.2961 | 3.1972 | 2.2817 | 2.2118 | 3.3242 | 3.2239 | 2.3342 | 2.1609 | ||
1/4 | 1/2 | 100 | 5.4970 | 5.3967 | 4.3501 | 4.0521 | 5.3689 | 5.2599 | 4.1908 | 4.2280 |
105 | 8.3794 | 8.2885 | 7.2696 | 6.8269 | 8.1202 | 8.0172 | 6.9499 | 7.1656 | ||
110 | 11.8723 | 11.7976 | 10.9349 | 10.5137 | 11.5519 | 11.4676 | 10.5975 | 10.8588 | ||
115 | 15.8585 | 15.8022 | 15.1550 | 14.8625 | 15.5523 | 15.4920 | 14.9075 | 15.1063 | ||
120 | 20.2087 | 20.1695 | 19.7321 | 19.5711 | 19.9646 | 19.9265 | 19.5916 | 19.7044 | ||
80 | 9.4981 | 9.1760 | 6.2624 | 6.0294 | 9.5588 | 9.2443 | 6.4006 | 5.8740 | ||
85 | 11.5033 | 11.1574 | 7.9640 | 7.6361 | 11.5188 | 11.1782 | 8.0497 | 7.5372 | ||
90 | 13.6941 | 13.3281 | 9.8907 | 9.4638 | 13.6606 | 13.2971 | 9.9150 | 9.4315 | ||
95 | 16.0616 | 15.6788 | 12.0357 | 11.5096 | 15.9769 | 15.5937 | 11.9928 | 11.5507 | ||
1 | 5 | 100 | 18.5960 | 18.1999 | 14.3897 | 13.7678 | 18.4591 | 18.0596 | 14.2768 | 13.8855 |
105 | 21.2872 | 20.8811 | 16.9421 | 16.2303 | 21.0985 | 20.6860 | 16.7588 | 16.4249 | ||
110 | 24.1252 | 23.7121 | 19.6808 | 18.8873 | 23.8861 | 23.4638 | 19.4290 | 19.1565 | ||
115 | 27.1001 | 26.6827 | 22.5932 | 21.7280 | 26.8128 | 26.3836 | 22.2769 | 22.0673 | ||
120 | 30.2023 | 29.7832 | 25.6666 | 24.7405 | 29.8695 | 29.4363 | 25.2909 | 25.1438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Xiao, H.; Yong, H. Forward Starting Option Pricing under Double Fractional Stochastic Volatilities and Jumps. Fractal Fract. 2024, 8, 283. https://doi.org/10.3390/fractalfract8050283
Zhang S, Xiao H, Yong H. Forward Starting Option Pricing under Double Fractional Stochastic Volatilities and Jumps. Fractal and Fractional. 2024; 8(5):283. https://doi.org/10.3390/fractalfract8050283
Chicago/Turabian StyleZhang, Sumei, Haiyang Xiao, and Hongquan Yong. 2024. "Forward Starting Option Pricing under Double Fractional Stochastic Volatilities and Jumps" Fractal and Fractional 8, no. 5: 283. https://doi.org/10.3390/fractalfract8050283
APA StyleZhang, S., Xiao, H., & Yong, H. (2024). Forward Starting Option Pricing under Double Fractional Stochastic Volatilities and Jumps. Fractal and Fractional, 8(5), 283. https://doi.org/10.3390/fractalfract8050283