Efficacy of Mapping Grassland Vegetation for Land Managers and Wildlife Researchers Using sUAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Collecting Remotely Sensed Imagery
2.1.2. Collecting Ground Survey Data
2.1.3. Topographic Models
2.2. Image Preprocessing
2.2.1. Preprocessing sUAS and NAIP Imagery
2.2.2. Creating Topographic Derivatives
2.3. Image Classification and Assessment
2.3.1. Classified Datasets
2.3.2. Classification Parameters
2.3.3. Accuracy Assessment
3. Results
4. Discussion
4.1. sUAS vs. NAIP Imagery
4.2. Random Forest Classification vs. Manual Classification
4.3. Impacts of Resolution and the Use of a Canopy Height Model (CHM)
4.4. Recommendations for Similar Uses
4.5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duro, D.C.; Coops, N.C.; Wulder, M.A.; Han, T. Development of a large area biodiversity monitoring system driven by remote sensing. Prog. Phys. Geogr. 2007, 31, 235–260. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Foody, G.M.; Rocchini, D.; Giorgi, A.P.; Saatchi, S. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 2008, 32, 203–221. [Google Scholar] [CrossRef]
- Horning, N.; Robinson, J.A.; Sterling, E.J.; Turner, W.; Spector, S. Remote Sensing for Ecology and Conservation; Oxford University Press: New York, NY, USA, 2010; 467p. [Google Scholar]
- Roughgarden, J.; Running, S.W.; Matson, P.A. What does remote sensing do for ecology? Ecology 1991, 72, 1918–1922. [Google Scholar] [CrossRef]
- Chabot, D.; Bird, D.M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Zimmerman, R.C.; Drake, L.A.; Burdige, D. Benthic ecology from space: Optics and net primary production in seagrass and benthic algae across the Great Bahama Bank. Mar. Ecol. Prog. Ser. 2010, 411, 1–15. [Google Scholar] [CrossRef]
- Kachelriess, D.; Wegmann, M.; Gollock, M.; Pettorelli, N. The application of remote sensing for marine protected area management. Ecol. Indic. 2013, 36, 169–177. [Google Scholar] [CrossRef]
- Duarte, A.; Jensen, J.L.R.; Hatfield, J.S.; Weckerly, F.W. Spatiotemporal variation in range-wide Golden-cheeked Warbler breeding habitat. Ecosphere 2013, 4, 152. [Google Scholar] [CrossRef] [Green Version]
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1193–1200. [Google Scholar]
- Horning, N.; Fleishman, E.; Ersts, P.J.; Fogarty, F.A.; Zillig, M.W. Mapping of land cover with open-source software and ultra-high resolution imagery acquired with unmanned aerial vehicles. Remote Sens. Ecol. Conserv. 2020, 6, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; He, Y. Optimal spatial resolution of unmanned aerial vehicle (UAV)-acquired imagery for species classification in a heterogeneous grassland ecosystem. GIScience Remote Sens. 2018, 55, 205–220. [Google Scholar] [CrossRef]
- Lu, B.; He, Y.; Liu, H. Investigating species composition in a temperate grassland using Unmanned Aerial Vehicle-acquired imagery. In Proceedings of the 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA 2016), Piscataway, NJ, USA, 4–6 July 2016; pp. 107–111. [Google Scholar]
- United States Geological Survey (USGS). FSA-APFO Aerial Photography Field Office. NAIP Georectified Images m_3708907_se_16_060_20190912_20191220, m_3708907_sw_16_060_20190912, m_3708915_ne_16_060_20190912, m_3708915_nw_16_060_20190802 TIFFs from Earth Explorer & EROS Data Center. 2020. [Google Scholar]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Federal Aviation Administration (FAA). Advisory Circular 107-2 Small Unmanned Aircraft Systems (sUAS); US DOT: Washington, DC, USA, 2016.
- Banu, T.P.; Borlea, G.F.; Banu, C. The use of drones in forestry. J. Environ. Sci. Eng. B 2016, 5, 557–562. [Google Scholar]
- Sun, Y.; Yi, S.; Hou, F. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecol. Indic. 2018, 95, 825–830. [Google Scholar] [CrossRef]
- Rango, A.; Laliberte, A.; Herrick, J.E.; Winters, C.; Havstad, K.; Steele, C.; Browning, D. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J. Appl. Remote Sens. 2009, 3, 033542. [Google Scholar]
- Hunt, E.R., Jr.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef] [Green Version]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef] [Green Version]
- Cruzan, M.B.; Weinstein, B.G.; Grasty, M.R.; Kohrn, B.F.; Hendrickson, E.C.; Arredondo, T.M.; Thompson, P.G. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology. Appl. Plant Sci. 2016, 4, 1600041. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Hayes, M.M.; Miller, S.N.; Murphy, M.A. High-resolution landcover classification using Random Forest. Remote Sens. Lett. 2014, 5, 112–121. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Wiser, S.; Burrows, L.; Fassnacht, F.E.; Schmidtlein, S. Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery. Remote Sens. Ecol. Conserv. 2020, 6, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yi, S.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of grassland canopy height and aboveground biomass at the quadrat scale using unmanned aerial vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef] [Green Version]
- Marcinkowska-Ochtyra, A.; Jarocinska, A.; Bzdega, K.; Tokarska-Guzik, B. Classification of expansive grassland species in different growth stages based on hyperspectral and LiDAR data. Remote Sens. 2018, 10, 570. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Illinois Geospatial Data Clearinghouse (IGDC). Illinois Height Modernization: Digital Elevation Data. 2015. Available online: https://clearinghouse.isgs.illinois.edu/data/elevation/illinois-height-modernization-ilhmp (accessed on 4 March 2015).
- Kattenborn, T.; Eichel, J.; Fassnacht, F.E. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep. 2019, 9, 17656. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; He, Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. ISPRS J. Photogramm. Remote Sens. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Bork, E.W.; Su, J.G. Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sens. Environ. 2007, 111, 11–24. [Google Scholar] [CrossRef]
- Husson, E.; Ecke, F.; Reese, H. Comparison of manual mapping and automated object-based image analysis of non-submerged aquatic vegetation from very-high-resolution UAS images. Remote Sens. 2016, 8, 724. [Google Scholar] [CrossRef] [Green Version]
- Hamylton, S.M.; Morris, R.H.; Carvalho, R.C.; Order, N.; Barlow, P.; Mills, K.; Wang, L. Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102085. [Google Scholar] [CrossRef]
- Guo, Y.; Senthilnath, J.; Wu, W.; Zhang, X.; Zeng, Z.; Huang, H. Radiometric calibration for multispectral camera of different imaging conditions mounted on a UAV platform. Sustainability 2019, 11, 978. [Google Scholar] [CrossRef] [Green Version]
- Holman, F.; Riche, A.B.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. Radiometric calibration of ‘commercial off the shelf’ cameras for UAV-based high-resolution temporal crop phenotyping of reflectance and NDVI. Remote Sens. 2019, 11, 1657. [Google Scholar] [CrossRef] [Green Version]
- Ishida, H.; Oishi, Y.; Morita, K.; Moriwaki, K.; Nakajima, T.Y. Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions. Remote Sens. Environ. 2018, 205, 390–407. [Google Scholar] [CrossRef]
- Liu, M.; Yu, T.; Gu, X.; Sun, Z.; Yang, J.; Zhang, Z.; Mi, X.; Cao, W.; Li, J. The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images. Remote Sens. 2020, 12, 146. [Google Scholar] [CrossRef]
Classification Type | Imagery Source | Resolution (cm) | Canopy Height Data | Minimum Segment Size (Pixels) | Overall Accuracy |
---|---|---|---|---|---|
Manual | sUAS | 1.58 | DroneDeploy | 89.22% | |
Manual | NAIP | 60 | None | 76.25% | |
Random forest | sUAS | 1.58 | ILHMP | 9999 | 69.26% |
Random forest | sUAS | 1.58 | None | 9999 | 60.28% |
Random forest | sUAS | 5 | ILHMP | 992 | 62.87% |
Random forest | sUAS | 5 | None | 992 | 66.27% |
Random forest | sUAS | 20 | ILHMP | 64 | 65.47% |
Random forest | sUAS | 20 | None | 64 | 61.48% |
Random forest | sUAS | 60 | ILHMP | 7 | 56.29% |
Random forest | sUAS | 60 | None | 7 | 58.88% |
Random forest | NAIP RGB | 60 | ILHMP | 7 | 48.50% |
Random forest | NAIP RGB | 60 | None | 7 | 30.74% |
Random forest | NAIP CIR | 60 | ILHMP | 7 | 43.11% |
Random forest | NAIP CIR | 60 | None | 7 | 47.31% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connell, J.R.; Glass, A.; Crawford, C.S.; Eichholz, M.W. Efficacy of Mapping Grassland Vegetation for Land Managers and Wildlife Researchers Using sUAS. Drones 2022, 6, 318. https://doi.org/10.3390/drones6110318
O’Connell JR, Glass A, Crawford CS, Eichholz MW. Efficacy of Mapping Grassland Vegetation for Land Managers and Wildlife Researchers Using sUAS. Drones. 2022; 6(11):318. https://doi.org/10.3390/drones6110318
Chicago/Turabian StyleO’Connell, John R., Alex Glass, Caleb S. Crawford, and Michael W. Eichholz. 2022. "Efficacy of Mapping Grassland Vegetation for Land Managers and Wildlife Researchers Using sUAS" Drones 6, no. 11: 318. https://doi.org/10.3390/drones6110318
APA StyleO’Connell, J. R., Glass, A., Crawford, C. S., & Eichholz, M. W. (2022). Efficacy of Mapping Grassland Vegetation for Land Managers and Wildlife Researchers Using sUAS. Drones, 6(11), 318. https://doi.org/10.3390/drones6110318