Exploring Meteorological Conditions and Microscale Temperature Inversions above the Great Barrier Reef through Drone-Based Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Methodology
2.2. Analysis of Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus clouds. Mon. Weather Rev. 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.-E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Bureau of Meteorology & CSIRO. State of the Climate 2022; Bureau of Meteorology & CSIRO: Canberra, Australia, 2022. [Google Scholar]
- Australian Government, The Treasury. 2023 Intergenerational Report; Australian Government, The Treasury: Sydney, Australia, 2023. [Google Scholar]
- Guo, S.; Li, J.; Yao, W.; Zhan, Y.; Li, Y.; Shi, Y. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. PLoS ONE 2019, 14, e0220024. [Google Scholar] [CrossRef] [PubMed]
- Deloitte. The Turning Point a Global Summary; Deloitte Development LLC: London, UK, 2022. [Google Scholar]
- World Meteorological Organization. The Gaps in the Global Basic Observing Network (GBON); WMO: Geneva, Switzerland, 2020. [Google Scholar]
- Wang, B.; Zou, X.; Zhu, J. Data assimilation and its applications. Proc. Natl. Acad. Sci. USA 2000, 97, 11143–11144. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, A.J.; Cimini, D.; Haefele, A.; Haeffelin, M.; Hervo, M.; Kotthaus, S.; Löhnert, U.; Martinet, P.; Mattis, I.; O’Connor, E.J.; et al. How Can Existing Ground-Based Profiling Instruments Improve European Weather Forecasts? Bull. Am. Meteorol. Soc. 2019, 100, 605–619. [Google Scholar] [CrossRef]
- Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A. ALADINA—An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmos. Meas. Tech. 2015, 8, 1627–1639. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: New York, NY, USA, 1988; Volume 13. [Google Scholar]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-turbine and wind-farm flows: A review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef]
- Li, L.; Gao, L.; Liu, Y.; Cui, Y.; Wang, B. Field measurements of atmospheric boundary layer and the impact of its daily variation on wind turbine wakes. In Proceedings of the 5th IET International Conference on Renewable Power Generation (RPG 2016), London, UK, 21–23 September 2016. [Google Scholar]
- Kumar, A.; Ambika, R. Drone Integrated Weather Sensors for Agriculture Purpose. Int. J. Electr. Eng. Technol. 2020, 11, 83–90. [Google Scholar]
- Kotthaus, S.; Bravo-Aranda, J.A.; Collaud Coen, M.; Guerrero-Rascado, J.L.; Costa, M.J.; Cimini, D.; O’Connor, E.J.; Hervo, M.; Alados-Arboledas, L.; Jiménez-Portaz, M.; et al. Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations. Atmos. Meas. Tech. 2023, 16, 433–479. [Google Scholar] [CrossRef]
- Bouttier, F.; Kelly, G. Observing-system experiments in the ECMWF 4D-Var data assimilation system. Q. J. R. Meteorol. Soc. 2001, 127, 1469–1488. [Google Scholar]
- Eyre, J.R.; English, S.J.; Forsythe, M. Assimilation of satellite data in numerical weather prediction. Part I: The early years. Q. J. R. Meteorol. Soc. 2020, 146, 49–68. [Google Scholar] [CrossRef]
- Eyre, J.; Bell, W.; Cotton, J.; English, S.; Forsythe, M.; Healy, S.; Pavelin, E. Assimilation of satellite data in numerical weather prediction. Part II: Recent years. Q. J. R. Meteorol. Soc. 2022, 148, 521–556. [Google Scholar] [CrossRef]
- Greene, B.R.; Segales, A.R.; Waugh, S.; Duthoit, S.; Chilson, P.B. Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems. Atmos. Meas. Tech. 2018, 11, 5519–5530. [Google Scholar] [CrossRef]
- Lee, T.R.; Buban, M.; Dumas, E.; Baker, C.B. On the Use of Rotary-Wing Aircraft to Sample Near-Surface Thermodynamic Fields: Results from Recent Field Campaigns. Sensors 2019, 19, 10. [Google Scholar] [CrossRef]
- DuBois, J.L. Invention and Development of the Radiosonde with a Catalog of Upper-Atmospheric Telemetering Probes in the National Museum of American History, Smithsonian Institution. Smithson. Stud. Hist. Technol. 2002, 53, 1–78. [Google Scholar] [CrossRef]
- Jones, N. High-altitude balloons: What’s up there and why. Nature 2023, 614, 606. [Google Scholar] [CrossRef]
- Ingleby, B.; Edwards, D. Changes to radiosonde reports and their processing for numerical weather prediction. Atmos. Sci. Lett. 2015, 16, 44–49. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Balloon-Based Weather Observations; Australian Government, Bureau of Meteorology: Canberra, Australia, 2018. [Google Scholar]
- Douglas, M. Adaptive sounding arrays for tropical regions. In Proceedings of the Extended Abstracts, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, USA, 10–14 May 2010; pp. 12B–17B. [Google Scholar]
- Villa, T.F.; Gonzalez, F.; Miljievic, B.; Ristovski, Z.D.; Morawska, L. An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors 2016, 16, 1072. [Google Scholar] [CrossRef]
- Hock, T.F.; Franklin, J.L. The NCAR GPS Dropwindsonde. Bull. Am. Meteorol. Soc. 1999, 80, 407–420. [Google Scholar] [CrossRef]
- O’Shea, O.R.; Hamann, M.; Smith, W.; Taylor, H. Predictable pollution: An assessment of weather balloons and associated impacts on the marine environment—An example for the Great Barrier Reef, Australia. Mar. Pollut. Bull. 2014, 79, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.T.; Costidis, A.M.; Barco, S.G. Fatal entanglements of sea turtles caused by widely deployed weather instruments. Mar. Pollut. Bull. 2023, 193, 115108. [Google Scholar] [CrossRef] [PubMed]
- Valencia, M.A.C.; Cruz, F.R.G.; Balakit, R.B. LoRa Transmission System for Weather Balloons. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–5. [Google Scholar]
- Greatwood, C.; Richardson, T.S.; Freer, J.; Thomas, R.M.; MacKenzie, A.R.; Brownlow, R.; Lowry, D.; Fisher, R.E.; Nisbet, E.G. Atmospheric Sampling on Ascension Island Using Multirotor UAVs. Sensors 2017, 17, 1189. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.R.; Segales, A.R.; Bell, T.M.; Pillar-Little, E.A.; Chilson, P.B. Environmental and sensor integration influences on temperature measurements by rotary-wing unmanned aircraft systems. Sensors 2019, 19, 1470. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Houston, A.L.; Shankar, A.; Detweiler, C. Design and evaluation of sensor housing for boundary layer profiling using multirotors. Sensors 2019, 19, 2481. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization. Global Demonstration Campaign for Evaluating the Use of Uncrewed Aircraft Systems in Operational Meteorology: White Paper (WMO-No. 1318); WMO: Geneva, Switzerland, 2023. [Google Scholar]
- Leuenberger, D.; Haefele, A.; Omanovic, N.; Fengler, M.; Martucci, G.; Calpini, B.; Fuhrer, O.; Rossa, A. Improving high-impact numerical weather prediction with lidar and drone observations. Bull. Am. Meteorol. Soc. 2020, 101, E1036–E1051. [Google Scholar] [CrossRef]
- Chilson, P.B.; Bell, T.M.; Brewster, K.A.; Britto Hupsel de Azevedo, G.; Carr, F.H.; Carson, K.; Doyle, W.; Fiebrich, C.A.; Greene, B.R.; Grimsley, J.L. Moving towards a network of autonomous UAS atmospheric profiling stations for observations in the Earth’s lower atmosphere: The 3D mesonet concept. Sensors 2019, 19, 2720. [Google Scholar] [CrossRef]
- Kimball, S.K.; Montalvo, C.J.; Mulekar, M.S. Assessing iMet-XQ performance and optimal placement on a small off-the-shelf, rotary-wing UAV, as a function of atmospheric conditions. Atmosphere 2020, 11, 660. [Google Scholar] [CrossRef]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteorol. Climatol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- Kimball, S.K.; Montalvo, C.J.; Mulekar, M.S. Evaluating temperature measurements of the iMET-XQ, in the field, under varying atmospheric conditions. Atmosphere 2020, 11, 335. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Luo, B.; Zeng, M.; Meng, Q.-H. A Wind Estimation Method with an Unmanned Rotorcraft for Environmental Monitoring Tasks. Sensors 2018, 18, 4504. [Google Scholar] [CrossRef] [PubMed]
- Varentsov, M.; Stepanenko, V.; Repina, I.; Artamonov, A.; Bogomolov, V.; Kuksova, N.; Marchuk, E.; Pashkin, A.; Varentsov, A. Balloons and quadcopters: Intercomparison of two low-cost wind profiling methods. Atmosphere 2021, 12, 380. [Google Scholar] [CrossRef]
- Yang, Y.; Ni, C.; Jiang, M.; Chen, Q. Effects of aerosols on the atmospheric boundary layer temperature inversion over the Sichuan Basin, China. Atmos. Environ. 2021, 262, 118647. [Google Scholar] [CrossRef]
- Fochesatto, G.J. Methodology for determining multilayered temperature inversions. Atmos. Meas. Tech. 2015, 8, 2051–2060. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–15. [Google Scholar]
- Seidel, D.J.; Zhang, Y.; Beljaars, A.; Golaz, J.C.; Jacobson, A.R.; Medeiros, B. Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res. Atmos. 2012, 117, D17106. [Google Scholar] [CrossRef]
- Hoffmann, F.; Feingold, G. Cloud Microphysical Implications for Marine Cloud Brightening: The Importance of the Seeded Particle Size Distribution. J. Atmos. Sci. 2021, 78, 3247–3262. [Google Scholar] [CrossRef]
- Sullivan, P.P.; McWilliams, J.C.; Moeng, C.-H. A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteorol. 1994, 71, 247–276. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Lewis, E.R.; Schwartz, S.E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models; American Geophysical Union: Washington, DC, USA, 2004; Volume 152. [Google Scholar]
- Bilello, M.A. Survey of Arctic and Subarctic Temperature Inversions; Cold Regions Research and Engineering Laboratory: Handover, NH, USA, 1966. [Google Scholar]
- Inoue, J.; Sato, K. Challenges in Detecting Clouds in Polar Regions Using a Drone with Onboard Low-Cost Particle Counter. Atmos. Environ. 2023, 314, 120085. [Google Scholar] [CrossRef]
- Liu, Z.; Osborne, M.; Anderson, K.; Shutler, J.D.; Wilson, A.; Langridge, J.; Yim, S.H.L.; Coe, H.; Babu, S.; Satheesh, S.K.; et al. Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone. Atmos. Meas. Tech. 2021, 14, 6101–6118. [Google Scholar] [CrossRef]
- Islam, A.; Shankar, A.; Houston, A.; Detweiler, C. University of Nebraska unmanned aerial system (UAS) profiling during the LAPSE-RATE field campaign. Earth Syst. Sci. Data 2021, 13, 2457–2470. [Google Scholar] [CrossRef]
- Pinto, J.O.; Jensen, A.A.; Steiner, M.; O’Sullivan, D.; Taylor, S.; Elston, J.; Baker, C.B.; Hotz, D.; Marshall, C.; Jacob, J. The status and future of small uncrewed aircraft systems (UAS) in operational meteorology. Bull. Am. Meteorol. Soc. 2021, 102, E2121–E2136. [Google Scholar]
- Inoue, J.; Sato, K. Toward sustainable meteorological profiling in polar regions: Case studies using an inexpensive UAS on measuring lower boundary layers with quality of radiosondes. Environ. Res. 2022, 205, 112468. [Google Scholar] [CrossRef] [PubMed]
- Walther, J.; PytlikZillig, L.; Detweiler, C.; Houston, A. How people make sense of drones used for atmospheric science (and other purposes): Hopes, concerns, and recommendations. J. Unmanned Veh. Syst. 2019, 7, 219–234. [Google Scholar] [CrossRef]
- Garratt, J.R. The internal boundary layer—A review. Bound.-Layer Meteorol. 1990, 50, 171–203. [Google Scholar] [CrossRef]
- McGowan, H.; Lensky, N.G.; Abir, S.; Saunders, M. Coral Reef Coupling to the Atmospheric Boundary Layer Through Exchanges of Heat, Moisture, and Momentum: Case Studies From Tropical and Desert Fringing Coral Reefs. Front. Mar. Sci. 2022, 9, 900679. [Google Scholar] [CrossRef]
- MacKellar, M.C.; McGowan, H.A.; Phinn, S.R. An observational heat budget analysis of a coral reef, Heron Reef, Great Barrier Reef, Australia. J. Geophys. Res. Atmos. 2013, 118, 2547–2559. [Google Scholar] [CrossRef]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; He, J.; Lou, M.; Yan, Y.; Bian, L.; et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys. 2016, 16, 13309–13319. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K. Homogenized variability of radiosonde-derived atmospheric boundary layer height over the global land surface from 1973 to 2014. J. Clim. 2016, 29, 6893–6908. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Li, Q.; Cai, X.; Fan, S.; Song, Y.; Hu, F.; Che, H.; Quan, J.; Kang, L. Research progress on estimation of the atmospheric boundary layer height. J. Meteorol. Res. 2020, 34, 482–498. [Google Scholar] [CrossRef]
- Johansson, C.; Bergström, H. An Auxiliary Tool to Determine the Height of the Boundary Layer. Bound.-Layer Meteorol. 2005, 115, 423–432. [Google Scholar] [CrossRef]
- Hennemuth, B.; Lammert, A. Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter. Bound. -Layer Meteorol. 2006, 120, 181–200. [Google Scholar] [CrossRef]
- Lammert, A.; Bösenberg, J. Determination of the convective boundary-layer height with laser remote sensing. Bound.-Layer Meteorol. 2006, 119, 159–170. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wang, S.-H.; Lewis, J.R.; Chang, S.-C.; Griffith, S.M. Determining planetary boundary layer height by micro-pulse lidar with validation by UAV measurements. Aerosol Air Qual. Res. 2021, 21, 200336. [Google Scholar] [CrossRef]
- Galimov, M.; Fedorenko, R.; Klimchik, A. UAV Positioning Mechanisms in Landing Stations: Classification and Engineering Design Review. Sensors 2020, 20, 3648. [Google Scholar] [CrossRef]
- Langåker, H.-A.; Kjerkreit, H.; Syversen, C.L.; Moore, R.J.; Holhjem, Ø.H.; Jensen, I.; Morrison, A.; Transeth, A.A.; Kvien, O.; Berg, G.; et al. An autonomous drone-based system for inspection of electrical substations. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211002973. [Google Scholar] [CrossRef]
- Hervo, M.; Romanens, G.; Martucci, G.; Weusthoff, T.; Haefele, A. Evaluation of an Automatic Meteorological Drone Based on a 6-Month Measurement Campaign. Atmosphere 2023, 14, 1382. [Google Scholar] [CrossRef]
. | Air Temperature | Dewpoint Temperature | Air Pressure | Wind Speed | |||||
---|---|---|---|---|---|---|---|---|---|
df | P-F | P | P-F | P | P-F | P | P-F | P | |
Time | 2 | 6.73 | <0.01 | 1.79 | 0.10 | 58.86 | <0.01 | 0.35 | 0.90 |
Day | 23 | 17.13 | <0.01 | 20.24 | <0.01 | 46.78 | <0.01 | 12.28 | <0.01 |
Post hoc tests | 9 ≠ 12 = 3 | 9 = 12 ≠ 3 | 9 = 12 = 3 | 9 ≠ 12 ≠ 3 |
Difference Temperature (TDrone—TWS800) | |||||||
Morning | Noon | Afternoon | |||||
Position | Status | Mean (°C) | SD (°C) | Mean (°C) | SD (°C) | Mean (°C) | SD (°C) |
Top | Pre | 1.10 | 0.69 | 1.61 | 0.88 | 1.19 | 0.69 |
Body | Pre | 1.22 | 0.74 | 1.72 | 1.10 | 1.03 | 0.78 |
Top | Start | 0.41 | 0.40 | 0.44 | 0.42 | 0.36 | 0.39 |
Body | Start | 0.33 | 0.49 | 0.61 | 0.61 | 0.69 | 0.42 |
Top | End | 0.34 | 0.50 | 0.19 | 0.82 | 0.22 | 0.35 |
Body | End | 0.26 | 0.68 | 0.32 | 0.99 | 0.47 | 0.38 |
Top | Post | 0.48 | 0.41 | 0.53 | 0.66 | 0.38 | 0.46 |
Body | Post | 0.70 | 0.59 | 0.65 | 0.98 | 0.47 | 0.71 |
Difference Relative Humidity (RHDrone—RHWS800) | |||||||
Morning | Noon | Afternoon | |||||
Position | Status | Mean (%) | SD (%) | Mean (%) | SD (%) | Mean (%) | SD (%) |
Top | Pre | 5.48 | 15.37 | 16.75 | 14.73 | 11.15 | 15.81 |
Body | Pre | 8.28 | 15.95 | 18.74 | 14.42 | 8.74 | 14.12 |
Top | Start | −9.68 | 13.54 | −6.59 | 13.30 | −10.07 | 11.88 |
Body | Start | −7.15 | 12.3 | −2.98 | 13.17 | −6.63 | 12.86 |
Top | End | −13.72 | 13.8 | −13.07 | 14.07 | −17.14 | 11.87 |
Body | End | −12.71 | 12.93 | −10.06 | 15.47 | −13.76 | 15.60 |
Top | Post | −13.42 | 13.60 | −12.85 | 13.32 | −16.97 | 12.10 |
Body | Post | −10.42 | 14.4 | −9.79 | 13.16 | −14.91 | 13.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckert, C.; Monteforte, K.I.; Harrison, D.P.; Kelaher, B.P. Exploring Meteorological Conditions and Microscale Temperature Inversions above the Great Barrier Reef through Drone-Based Measurements. Drones 2023, 7, 695. https://doi.org/10.3390/drones7120695
Eckert C, Monteforte KI, Harrison DP, Kelaher BP. Exploring Meteorological Conditions and Microscale Temperature Inversions above the Great Barrier Reef through Drone-Based Measurements. Drones. 2023; 7(12):695. https://doi.org/10.3390/drones7120695
Chicago/Turabian StyleEckert, Christian, Kim I. Monteforte, Daniel P. Harrison, and Brendan P. Kelaher. 2023. "Exploring Meteorological Conditions and Microscale Temperature Inversions above the Great Barrier Reef through Drone-Based Measurements" Drones 7, no. 12: 695. https://doi.org/10.3390/drones7120695
APA StyleEckert, C., Monteforte, K. I., Harrison, D. P., & Kelaher, B. P. (2023). Exploring Meteorological Conditions and Microscale Temperature Inversions above the Great Barrier Reef through Drone-Based Measurements. Drones, 7(12), 695. https://doi.org/10.3390/drones7120695