Radiometric Correction of Multispectral Field Images Captured under Changing Ambient Light Conditions and Applications in Crop Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design Overview
2.2. Study Sites and Agronomy Data Acquisition
2.3. Multispectral Image Acquisition
2.3.1. Fixed Ground Object Image Acquisition
- Image of the sky (taken with iPhone11, 12MP wide angle, ƒ/1.8 aperture).
- Images of soybean and cement floor (captured with MicaSense RedEdge over two hours; each set of images was taken over 5 s).
- Correction panel image (captured by RedEdge-MX based on the timepoints and intervals at which soybean and cement images were captured).
- DLS data for soybean and cement (embedded in and read from the captured images).
- Absolute reflectance of concrete floor (measured by an ASD spectrometer, manufactured by Analytical Spectral Devices Inc of Boulder, CO, USA).
2.3.2. UAV Image Capturing of Nitrogen-Regulated Maize Plot
2.4. Data Analysis
2.4.1. Real-Time CRP
2.4.2. DLS
2.4.3. Pre-CRP
3. Results
3.1. Reflectance Comparisons between Real-Time CRP, DLS, and Pre-CRP Correction Methods
3.2. Relationship between VIs and Measured Indicators under Multiple Weather Conditions
4. Discussion
4.1. Removing the Impact of Correction Methods from Irradiance Variation
4.2. Effects of Light Intensity and Scattering on Crop Growth Monitoring
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Jin, X.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.; Li, Z.; Ming, B.; et al. High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms. IEEE Geosci. Remote Sens. Mag. 2021, 9, 200–231. [Google Scholar] [CrossRef]
- Wang, H.; Qian, X.; Zhang, L.; Xu, S.; Li, H.; Xia, X.; Dai, L.; Xu, L.; Yu, J.; Liu, X. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging. Front. Plant Sci. 2018, 9, 407. [Google Scholar] [CrossRef] [Green Version]
- Mamaghani, B.; Salvaggio, C. Multispectral Sensor Calibration and Characterization for sUAS Remote Sensing. Sensors 2019, 19, 4453. [Google Scholar] [CrossRef] [Green Version]
- Deering, D.W. Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Diss. Abstr. Int. B 1979, 39, 3081–3082. [Google Scholar]
- Mamaghani, B.; Saunders, M.G.; Salvaggio, C. Inherent Reflectance Variability of Vegetation. Agriculture 2019, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Tongyu, X.; Fenghua, Y.; Chunling, C. Measurement of nitrogen content in rice by inversion of hyperspectral reflectance data from an unmanned aerial vehicle. Cienc. Rural. 2018, 48. [Google Scholar] [CrossRef]
- Iqbal, F.; Lucieer, A.; Barry, K. Simplified radiometric calibration for UAS-mounted multispectral sensor. Eur. J. Remote Sens. 2018, 51, 301–313. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.W. A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1876–1885. [Google Scholar] [CrossRef]
- Barker, J.B.; Woldt, W.E.; Wardlow, B.D.; Neale, C.M.U.; Maguire, M.S.; Leavitt, B.C.; Heeren, D.M. Calibration of a common shortwave multispectral camera system for quantitative agricultural applications. Precis. Agric. 2020, 21, 922–935. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Waldner, F.; Horan, H.; Brown, J.N.; Hochman, Z. Data fusion using climatology and seasonal climate forecasts improves estimates of Australian national wheat yields. Agric. For. Meteorol. 2022, 320, 108932. [Google Scholar] [CrossRef]
- Nigon, T.; Paiao, G.D.; Mulla, D.J.; Fernández, F.G.; Yang, C. The Influence of Aerial Hyperspectral Image Processing Workflow on Nitrogen Uptake Prediction Accuracy in Maize. Remote Sens. 2022, 14, 132. [Google Scholar] [CrossRef]
- Wang, C. At-Sensor Radiometric Correction of a Multispectral Camera (RedEdge) for sUAS Vegetation Mapping. Sensors 2021, 21, 8224. [Google Scholar] [CrossRef]
- Taddia, Y.; Russo, P.; Lovo, S.; Pellegrinelli, A. Multispectral UAV monitoring of submerged seaweed in shallow water. Appl. Geomat. 2019, 12, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Honkavaara, E.; Khoramshahi, E. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment. Remote Sens. 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Wan, P.; Yu, H.; Xu, B.; Feng, H. Automatic radiation uniformity correction of multispectral imagery acquired with unmanned aerial vehicle. Trans. Chin. Soc. Agric. Eng. 2015, 31, 147–153. [Google Scholar]
- Jiang, J.; Zhang, Q.; Wang, W.; Wu, Y.; Zheng, H.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. MACA: A relative radiometric correction method for multiflight unmanned aerial vehicle images based on concurrent satellite imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Yang, H.; Ming, B.; Nie, C.; Xue, B.; Xin, J.; Lu, X.; Xue, J.; Hou, P.; Xie, R.; Wang, K.; et al. Maize Canopy and Leaf Chlorophyll Content Assessment from Leaf Spectral Reflectance: Estimation and Uncertainty Analysis across Growth Stages and Vertical Distribution. Remote Sens. 2022, 14, 2115. [Google Scholar] [CrossRef]
- Mamaghani, B.G.; Sasaki, G.V.; Connal, R.J.; Kha, K.; Knappen, J.S.; Hartzell, R.A.; Marcellus, E.D.; Bauch, T.D.; Raqueño, N.G.; Salvaggio, C. An initial exploration of vicarious and in-scene calibration techniques for small unmanned aircraft systems. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, Orlando, FL, USA, 21 May 2018; Volume 10664, pp. 49–67. [Google Scholar]
- MicaSense RedEdge and Altum Image Processing Tutorials. Available online: https://github.com/micasense/imageprocessing (accessed on 20 October 2022).
- Suomalainen, J.; Hakala, T.; de Oliveira, R.A.; Markelin, L.; Viljanen, N.; Näsi, R.; Honkavaara, E. A Novel Tilt Correction Technique for Irradiance Sensors and Spectrometers On-Board Unmanned Aerial Vehicles. Remote Sens. 2018, 10, 2068. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Simic, A.; Chen, J.M.; Leblanc, S.G.; Dyk, A.; Croft, H.; Han, T. Testing the Top-Down Model Inversion Method of Estimating Leaf Reflectance Used to Retrieve Vegetation Biochemical Content Within Empirical Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 92–104. [Google Scholar] [CrossRef]
- Gilabert, M.A.; González-Piqueras, J.; García-Haro, F.J.; Meliá, J. A generalized soil-adjusted vegetation index. Remote Sens. Environ. 2002, 82, 303–310. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Zou, G. A Modified Poisson Regression Approach to Prospective Studies with Binary Data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- Guan, L.; Liu, X. Two Kinds of Modified Spectral Indices for Retrieval of Crop Canopy Chlorophyll Content. Adv. Earth Sci. 2009, 24, 548–554. [Google Scholar]
- Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA 2007, 33, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Shi, D.; Gu, X.; Sun, Q.; Hu, X.; Yang, X.; Pan, Y. Monitoring Lodging Extents of Maize Crop Using Multitemporal GF-1 Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3800–3814. [Google Scholar] [CrossRef]
- Böhler, J.E.; Schaepman, M.E.; Kneubühler, M. Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data. Remote Sens. 2018, 10, 1282. [Google Scholar] [CrossRef] [Green Version]
- Kwan, C.; Gribben, D.; Ayhan, B.; Li, J.; Bernabe, S.; Plaza, A. An Accurate Vegetation and Non-Vegetation Differentiation Approach Based on Land Cover Classification. Remote Sens. 2020, 12, 3880. [Google Scholar] [CrossRef]
- Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Prigarin, S.; Bazarov, K.B.; Oppel, U.G. The effect of multiple scattering on polarization and angular distributions for radiation reflected by clouds: Results of Monte Carlo simulation. In Proceedings of the 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, Russia, 23–27 June 2014; Volume 9292, pp. 177–184. [Google Scholar] [CrossRef]
- Definitions of Clouds. Available online: https://cloudatlas.wmo.int/en/clouds-definitions.html (accessed on 20 October 2022).
- Price, B.; Waser, L.T.; Wang, Z.; Marty, M.; Ginzler, C.; Zellweger, F. Predicting biomass dynamics at the national extent from digital aerial photogrammetry. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102116. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef] [Green Version]
- Nasrabadi, S.B.F.; Babadi, M. Study of the dependency of spectral shadow indices on the land cover/use and shadow strength in color aerial imagery. J. Appl. Remote Sens. 2018, 12, 026007. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.M.; Zhang, X.; Yan, Y.; Zhu, J.; Zheng, H.; Zhou, K.; Yao, X.; Tian, Y.; Zhu, Y.; et al. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time. Remote Sens. Environ. 2020, 248, 111985. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, H.; Wu, Y.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times. Field Crops Res. 2022, 283, 108543. [Google Scholar] [CrossRef]
Band | Band Center/nm | Band Width/nm |
---|---|---|
Blue | 475 | 20 |
Green | 560 | 20 |
Red | 668 | 10 |
NIR | 840 | 40 |
Redge | 717 | 10 |
Experiment Type | Subject | Date (2021) | Weather | Start Time | End Time | Sample # | Interval (s) |
---|---|---|---|---|---|---|---|
On-ground | Cement | 8 September | Sunny | 15:00 | 16:00 | 650 | 5 |
13 September | Cloudy | 11:10 | 13:10 | 1300 | |||
23 September | Cloudy | 10:10 | 12:10 | 1300 | |||
Soybean | 12 September | Cloudy | 10:00 | 12:20 | 1300 | ||
14 September | Overcast | 10:10 | 12:10 | 1300 | |||
11 October | Overcast | 10:30 | 12:30 | 1300 | |||
UAV | Maize | 24 July | Cloudy | 12:10 | 12:18 | 500 | 1.5 |
25 July | Sunny | 12:13 | 12:21 | 500 |
Index | Equation | Application | Reference |
---|---|---|---|
Enhanced Vegetation Index (EVI) | Biomass | [22] | |
Normalized Difference Vegetation Index (NDVI) | Intercepted PAR, vegetation cover | [5] | |
Red Edge NDVI (NDRE) | Intercepted PAR, vegetation cover | [23] | |
Triangular Vegetative Index (TVI) | Leaf area | [24] | |
Chlorophyll Absorption Ratio Index (CARI) | Canopy chlorophyll | [24] | |
Difference Vegetation Index (DVI) | LAI | [25] | |
Green NDVI (GNDVI) | Intercepted PAR | [26] | |
Chlorophyll Indices (CI) | LAI, GPP, chlorophyll | [27] | |
Soil Adjusted Vegetation Index (SAVI) | LAI | [28] | |
Optimized Soil Adjusted Vegetation Index (OSAVI) | LAI | [29] | |
Renormalized Difference Vegetation Index (RDVI) | Vegetation Cover | [30] | |
Non-linear Vegetation Index (NLI) | LAI | [31] | |
Modified Simple Ratio (MSR) | Intercepted PAR | [32] | |
Modified Nonlinear Vegetation Index (MNLI) | LAI | [33] | |
Ratio Vegetation Index (RVI) | Vegetation Cover | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, B.; Ming, B.; Xin, J.; Yang, H.; Gao, S.; Guo, H.; Feng, D.; Nie, C.; Wang, K.; Li, S. Radiometric Correction of Multispectral Field Images Captured under Changing Ambient Light Conditions and Applications in Crop Monitoring. Drones 2023, 7, 223. https://doi.org/10.3390/drones7040223
Xue B, Ming B, Xin J, Yang H, Gao S, Guo H, Feng D, Nie C, Wang K, Li S. Radiometric Correction of Multispectral Field Images Captured under Changing Ambient Light Conditions and Applications in Crop Monitoring. Drones. 2023; 7(4):223. https://doi.org/10.3390/drones7040223
Chicago/Turabian StyleXue, Beibei, Bo Ming, Jiangfeng Xin, Hongye Yang, Shang Gao, Huirong Guo, Dayun Feng, Chenwei Nie, Keru Wang, and Shaokun Li. 2023. "Radiometric Correction of Multispectral Field Images Captured under Changing Ambient Light Conditions and Applications in Crop Monitoring" Drones 7, no. 4: 223. https://doi.org/10.3390/drones7040223
APA StyleXue, B., Ming, B., Xin, J., Yang, H., Gao, S., Guo, H., Feng, D., Nie, C., Wang, K., & Li, S. (2023). Radiometric Correction of Multispectral Field Images Captured under Changing Ambient Light Conditions and Applications in Crop Monitoring. Drones, 7(4), 223. https://doi.org/10.3390/drones7040223