HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path Planner for Quadcopters
Abstract
:1. Introduction
2. Problem Statement
2.1. Scenario Representation
2.1.1. Terrain
2.1.2. Threats
2.2. Optimization Model
2.2.1. Variables
2.2.2. Objectives
- (1)
- Length CostTraditionally, the goal of a planner is to find the shortest path conforming to constraints, and the normalized approximate length of a path is defined as (8).
- (2)
- Flight AltitudeA lower altitude is desired for the sake of using ground effect to avoid radars and saving fuel. The mean flight altitude of a path is denoted by (9).
- (3)
- Radar DetectionThe probability of the quadcopters being detected by radars can be calculated as follows:
- (4)
- Missile AttackThe probability of the quadcopters being attacked by missiles is expressed as follows:
- (5)
- SmoothnessThis is designed to evaluate the smoothness of the planned path. Values closer to 0 indicate smoother paths, and 0 means a straight path [31].
2.2.3. Constraints
- (1)
- Climbing/Gliding AngleSince the maneuverability of quadcopters, the slope should be restricted in the range of maximum climbing angle and minimum gliding angle [20]. This forms the constraint functions and :For i in where
- (2)
- Turning angle constraintThe turning angle at waypoint can be calculated according to (12). Due to the maneuverability constraints of the quadcopters, the turning angle should not be greater than its upper bound, which can be written as
- (3)
- Minimum flight altitudeFor safety reasons, quadcopters should be at a certain level with the ground, as described in (19).
- (4)
- Forbidden flying areaAccording to mission requirements, the quadcopters have to keep away from NFZs. We describe this as a hard constraint as follows:
3. Approach
3.1. Standard Particle Swarm Optimization
3.2. Heuristic Rules
3.2.1. Rotated Coordinate System
3.2.2. Physical Plausibility
3.2.3. Initialization
- coordinate
- coordinate
- z coordinate
3.3. Hybrid Operators
3.3.1. Penalty Function
3.3.2. Cauchy Mutation
3.3.3. Injection
3.4. Algorithm Presentation
Algorithm 1: HHPSO | |||||
1 | Initialize: N particles with velocity 0 following the heuristic rules in Section 3.2; | ||||
2 | Assign the best historical position of each particle to its position ; | ||||
3 | for to do | ||||
4 | , for to N; | ||||
5 | for to N do ▹ standard PSO | ||||
6 | Update and using Equations (21) and (22); | ||||
7 | end | ||||
8 | for to do ▹ Mutation | ||||
9 | Generate trail vector according to Equation (32); | ||||
10 | Replace with and reset its velocity to 0 if ; | ||||
11 | end | ||||
12 | Generate particles and inject them into the swarm; ▹ Injection | ||||
13 | Delete inferior particles according to their fitness; | ||||
14 | Calculate and according to the Equations (31) and (33); | ||||
15 | end | ||||
16 | return |
4. Experimental Results
4.1. Numerical Simulation
4.2. Physical-Based Simulation
4.3. Real-Drone Experiment
5. Conclusions and Discussions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, H.; Savkin, A.V.; Ni, W. Decentralized Navigation of a UAV Team for Collaborative Covert Eavesdropping on a Group of Mobile Ground Nodes. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3932–3941. [Google Scholar] [CrossRef]
- Brunner, G.; Szebedy, B.; Tanner, S.; Wattenhofer, R. The Urban Last Mile Problem: Autonomous Drone Delivery to Your Balcony. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 1005–1012. [Google Scholar]
- Dissanayaka, D.; Wanasinghe, T.R.; Silva, O.D.; Jayasiri, A.; Mann, G.K.I. Review of Navigation Methods for UAV-Based Parcel Delivery. IEEE Trans. Autom. Sci. Eng. 2022, 21, 1068–1082. [Google Scholar] [CrossRef]
- He, W.; Qi, X.; Liu, L. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning. Appl. Intell. 2021, 51, 7350–7364. [Google Scholar] [CrossRef]
- Julius Fusic, S.; Ramkumar, P.; Hariharan, K. Path planning of robot using modified dijkstra Algorithm. In Proceedings of the 2018 National Power Engineering Conference (NPEC), Madurai, India, 9–10 March 2018; pp. 1–5. [Google Scholar]
- Pehlivanoglu, Y.V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV. Aerosp. Sci. Technol. 2012, 16, 47–55. [Google Scholar] [CrossRef]
- Meng, B. UAV Path Planning Based on Bidirectional Sparse A* Search Algorithm. In Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010; Volume 3, pp. 1106–1109. [Google Scholar]
- Li, J.; Deng, G.; Luo, C.; Lin, Q.; Yan, Q.; Ming, Z. A Hybrid Path Planning Method in Unmanned Air/Ground Vehicle (UAV/UGV) Cooperative Systems. IEEE Trans. Veh. Technol. 2016, 65, 9585–9596. [Google Scholar] [CrossRef]
- Hangxuan, H.; Haibin, D. A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control parameters tuning for vertical take-off and landing fixed-wing UAV. Chin. J. Aeronaut. 2022, 35, 19–30. [Google Scholar]
- Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems. Appl. Soft Comput. 2021, 112, 107796. [Google Scholar] [CrossRef]
- Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comput. 2021, 107, 107376. [Google Scholar] [CrossRef]
- Yang, P.; Tang, K.; Lozano, J.A.; Cao, X. Path Planning for Single Unmanned Aerial Vehicle by Separately Evolving Waypoints. IEEE Trans. Robot. 2015, 31, 1130–1146. [Google Scholar] [CrossRef]
- Pan, J.S.; Liu, N.; Chu, S.C. A Hybrid Differential Evolution Algorithm and Its Application in Unmanned Combat Aerial Vehicle Path Planning. IEEE Access 2020, 8, 17691–17712. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Zhou, J.F. A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowl.-Based Syst. 2020, 204, 106209. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Cai, J.; Ma, K.; Tan, T. Research on Terminal Distance Index-Based Multi-Step Ant Colony Optimization for Mobile Robot Path Planning. IEEE Trans. Autom. Sci. Eng. 2022, 20, 2321–2337. [Google Scholar] [CrossRef]
- Yu, X.; Chen, W.N.; Gu, T.; Yuan, H.; Zhang, H.; Zhang, J. ACO-A*: Ant Colony Optimization Plus A* for 3-D Traveling in Environments With Dense Obstacles. IEEE Trans. Evol. Comput. 2019, 23, 617–631. [Google Scholar] [CrossRef]
- YongBo, C.; YueSong, M.; JianQiao, Y.; XiaoLong, S.; Nuo, X. Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm. Neurocomputing 2017, 266, 445–457. [Google Scholar] [CrossRef]
- Shao, S.; Peng, Y.; He, C.; Du, Y. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans. 2020, 97, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xia, S.; Li, X.; Zhang, T. Multi-objective particle swarm optimization with multi-mode collaboration based on reinforcement learning for path planning of unmanned air vehicles. Knowl.-Based Syst. 2022, 250, 109075. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Xiao, G.; Liu, C.; Hu, P.; Li, H. A method of path planning for unmanned aerial vehicle based on the hybrid of selfish herd optimizer and particle swarm optimizer. Appl. Intell. 2022, 52, 16775–16798. [Google Scholar] [CrossRef]
- Shin, J.J.; Bang, H. UAV path planning under dynamic threats using an improved PSO algorithm. Int. J. Aerosp. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Sanders, A. An Introduction to Unreal Engine 4; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Perlin, K. An Image Synthesizer. SIGGRAPH Comput. Graph. 1985, 19, 287–296. [Google Scholar] [CrossRef]
- Besada-Portas, E.; de la Torre, L.; Jesus, M.; de Andrés-Toro, B. Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Trans. Robot. 2010, 26, 619–634. [Google Scholar] [CrossRef]
- Patel, J.S.; Fioranelli, F.; Anderson, D. Review of radar classification and RCS characterisation techniques for small UAVs or drones. IET Radar Sonar Navig. 2018, 2, 911–919. [Google Scholar] [CrossRef]
- Anderson, E.; Beard, R.; McLain, T. Real-time dynamic trajectory smoothing for unmanned air vehicles. IEEE Trans. Control. Syst. Technol. 2005, 13, 471–477. [Google Scholar] [CrossRef]
- Wu, X.; Bai, W.; Xie, Y.; Sun, X.; Deng, C.; Cui, H. A hybrid algorithm of particle swarm optimization, metropolis criterion and RTS smoother for path planning of UAVs. Appl. Soft Comput. 2018, 73, 735–747. [Google Scholar] [CrossRef]
- Elhoseny, M.; Tharwat, A.; Hassanien, A.E. Bezier curve based path planning in a dynamic field using modified genetic algorithm. J. Comput. Sci. 2018, 25, 339–350. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, J.; Zhou, H.; Xu, C.; Gao, F. EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in Cluttered Environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian, China, 30 May–5 June 2021; pp. 4101–4107. [Google Scholar]
- Qu, C.; Gai, W.; Zhang, J.; Zhong, M. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowl.-Based Syst. 2020, 194, 105530. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, J.Q. Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm. Appl. Sci. 2018, 8, 1425. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. EGO-Planner: An ESDF-Free Gradient-Based Local Planner for Quadrotors. IEEE Robot. Autom. Lett. 2021, 6, 478–485. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, H. An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning. Appl. Soft Comput. J. 2015, 26, 270–284. [Google Scholar] [CrossRef]
- Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.H. Neural RRT*: Learning-Based Optimal Path Planning. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1748–1758. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, P.; Tan, J.; Chen, M. The UAV Path Planning Method Based on Lidar. In Intelligent Robotics and Applications; Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 303–314. [Google Scholar]
- Tao, X.; Guo, W.; Li, Q.; Ren, C.; Liu, R. Multiple scale self-adaptive cooperation mutation strategy-based particle swarm optimization. Appl. Soft Comput. 2020, 89, 106124. [Google Scholar] [CrossRef]
- Salhi, S.; Petch, R.J. A GA Based Heuristic for the Vehicle Routing Problem with Multiple Trips. J. Math. Model. Algorithms 2007, 6, 591–613. [Google Scholar] [CrossRef]
- Giernacki, W.; Skwierczyński, M.; Witwicki, W.; Wroński, P.; Kozierski, P. Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. In Proceedings of the 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 28–31 August 2017; pp. 37–42. [Google Scholar]
- Guay, R.; Drolet, G.; Bray, J.R. Measurement and modelling of the dynamic radar cross-section of an unmanned aerial vehicle. IET Radar Sonar Navig. 2017, 11, 1155–1160. [Google Scholar] [CrossRef]
- Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field and Service Robotics; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 621–635. [Google Scholar]
Algorithm | GA | CIPSO | JADE | |||||||
---|---|---|---|---|---|---|---|---|---|---|
parameter | w | c | a | |||||||
value | 0.5 | 0.5 | 10 | [0.4, 0.9] | [0.5, 3.5] | 4 | 2 | 0.5 | 0.5 | |
Algorithm | CIPDE | mWPS | HHPSO | |||||||
parameter | c | Eliminated-Qty | Safari-Wolves-Qty | w | ||||||
value | 0.7 | 0.5 | 0.1 | 5 | 5 | 1 | 1.5 | 1.5 | 2 | 0.9 |
GA | CIPSO | JADE | CIPDE | mWPS | HHPSO | Heuristic-PSO | Hybrid-PSO | ||
---|---|---|---|---|---|---|---|---|---|
Scenario 1 | SR(%) | ||||||||
AF | |||||||||
AC | |||||||||
AT(s) | |||||||||
Scenario 2 | SR (%) | ||||||||
AF | |||||||||
AC | |||||||||
AT(s) | |||||||||
Scenario 3 | SR(%) | ||||||||
AF | |||||||||
AC | |||||||||
AT(s) | |||||||||
Scenario 4 | SR(%) | ||||||||
AF | |||||||||
AC | |||||||||
AT(s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, J.; Ding, R.; Wu, W. HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path Planner for Quadcopters. Drones 2024, 8, 221. https://doi.org/10.3390/drones8060221
Lou J, Ding R, Wu W. HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path Planner for Quadcopters. Drones. 2024; 8(6):221. https://doi.org/10.3390/drones8060221
Chicago/Turabian StyleLou, Jiabin, Rong Ding, and Wenjun Wu. 2024. "HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path Planner for Quadcopters" Drones 8, no. 6: 221. https://doi.org/10.3390/drones8060221
APA StyleLou, J., Ding, R., & Wu, W. (2024). HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path Planner for Quadcopters. Drones, 8(6), 221. https://doi.org/10.3390/drones8060221