Drone Swarm Robust Cooperative Formation Pursuit through Relative Positioning in a Location Denial Environment
Abstract
:1. Introduction
- Unlike most existing results such as [54,55,58,59,64,66,67,69,70,71], the innovation of the robust cooperative control protocol proposed in this paper is that by taking the advantages of robust output regulation theory, it allows for parameter uncertainty in the drone model, which enhances the robustness to system parameter uncertainty and prevents performance degradation or instability.
- Unlike the studies [11,12,23] that require knowledge of the agents’ absolute positions, the innovation of the robust cooperative control protocol proposed in this paper is its use of relative position measurements between neighboring drones, thereby eliminating the need for global positioning, which can be costly or even infeasible in practical applications, to achieve effective target pursuit.
- Unlike [11,14,17,19,21], the innovation of the robust cooperative control protocol proposed in this paper is that even in scenarios where there is no communication between the target and the drones, an effective target pursuit can be achieved by relying only on some drones to obtain their position information relative to the target.
- Unlike [10,15,18,20,21,22,23,24,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72], which involve only numerical simulations, this study considered a more practical scenario, i.e., demonstrating the effectiveness of the proposed control protocol by conducting experiments on the Links-RT UAV flight control hardware-in-the-loop (HIL) simulation platform that adopts real control implementations.
2. Problem Formulation
3. Main Results
3.1. Pseudo Drone Position Estimator
3.2. Pseudo Target Position Estimator
3.3. Local IMC Law
3.4. Stability Analysis
4. Simulations
4.1. Numerical Simulation
4.2. UAV Flight Control HIL Simulation
4.2.1. Discretization of the Control Law
4.2.2. UAV Flight Control HIL Simulation Setup
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, H.; Wen, J.T. Cooperative load transport: A formation-control perspective. IEEE Trans. Robot. 2010, 26, 742–750. [Google Scholar] [CrossRef]
- Moshtagh, N.; Jadbabaie, A. Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Trans. Autom. Control 2007, 52, 681–686. [Google Scholar] [CrossRef]
- Wen, G.; Chen, C.P.; Feng, J.; Zhou, N. Optimized multi-agent formation control based on an identifier–actor–critic reinforcement learning algorithm. IEEE Trans. Fuzzy Syst. 2017, 26, 2719–2731. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, Y.; Sun, D. Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica 2015, 53, 400–407. [Google Scholar] [CrossRef]
- Benda, M.; Jagannathan, V.; Dodhiawala, R. On optimal cooperation of knowledge sources: An empirical investigation. In Technical Report BCS-G2010-28; Boeing Advanced Technology Center, Boeing Computing Services: Seattle, WA, USA, 1986. [Google Scholar]
- Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization; Courier Corporation: Chelmsford, MA, USA, 1999. [Google Scholar]
- Vidal, R.; Shakernia, O.; Kim, H.J.; Shim, D.H.; Sastry, S. Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 2002, 18, 662–669. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, H.; Jiang, B.; Polycarpou, M.M. Multiplayer pursuit-evasion differential games with malicious pursuers. IEEE Trans. Autom. Control 2022, 67, 4939–4946. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Otsubo, K.; Hosoe, S. Design of decentralized capturing behavior by multiple mobile robots. In Proceedings of the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), Prague, Czech Republic, 15–16 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 13–18. [Google Scholar] [CrossRef]
- Kim, T.H.; Sugie, T. Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica 2007, 43, 1426–1431. [Google Scholar] [CrossRef]
- Mas, I.; Li, S.; Acain, J.; Kitts, C. Entrapment/escorting and patrolling missions in multi-robot cluster space control. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 5855–5861. [Google Scholar] [CrossRef]
- Deghat, M.; Davis, E.; See, T.; Shames, I.; Anderson, B.D.; Yu, C. Target localization and circumnavigation by a non-holonomic robot. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1227–1232. [Google Scholar] [CrossRef]
- Hafez, A.T.; Marasco, A.J.; Givigi, S.N.; Iskandarani, M.; Yousefi, S.; Rabbath, C.A. Solving multi-UAV dynamic encirclement via model predictive control. IEEE Trans. Control Syst. Technol. 2015, 23, 2251–2265. [Google Scholar] [CrossRef]
- Franchi, A.; Stegagno, P.; Oriolo, G. Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance. Auton. Robot. 2016, 40, 245–265. [Google Scholar] [CrossRef]
- Chen, Z. A cooperative target-fencing protocol of multiple vehicles. Automatica 2019, 107, 591–594. [Google Scholar] [CrossRef]
- Hu, B.B.; Zhang, H.T.; Wang, J. Multiple-target surrounding and collision avoidance with second-order nonlinear multiagent systems. IEEE Trans. Ind. Electron. 2020, 68, 7454–7463. [Google Scholar] [CrossRef]
- Ringbäck, R.; Wei, J.; Erstorp, E.S.; Kuttenkeuler, J.; Johansen, T.A.; Johansson, K.H. Multi-agent formation tracking for autonomous surface vehicles. IEEE Trans. Control Syst. Technol. 2020, 29, 2287–2298. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, S.; Chen, C.; Feng, G.; Guan, X. Entrapping a target in an arbitrarily shaped orbit by a single robot using bearing measurements. Automatica 2020, 113, 108805. [Google Scholar] [CrossRef]
- Shao, X.; Yue, X.; Zhang, W. Coordinated moving-target encircling control for networked quadrotors with event-triggered extended state observers. IEEE Syst. J. 2023, 17, 6576–6587. [Google Scholar] [CrossRef]
- Zheng, B.; Song, C.; Liu, L. Cyclic-pursuit-based circular formation control of mobile agents with limited communication ranges and communication delays. IEEE/CAA J. Autom. Sin. 2023, 10, 1860–1870. [Google Scholar] [CrossRef]
- Lu, K.; Dai, S.L.; Jin, X. Cooperative Constrained Enclosing Control of Multirobot Systems in Obstacle Environments. IEEE Trans. Control Netw. Syst. 2024, 11, 718–730. [Google Scholar] [CrossRef]
- Pei, H.; Chen, S.; Lai, Q. Multi-target consensus circle pursuit for multi-agent systems via a distributed multi-flocking method. Int. J. Syst. Sci. 2016, 47, 3741–3748. [Google Scholar] [CrossRef]
- Deghat, M.; Xia, L.; Anderson, B.D.; Hong, Y. Multi-target localization and circumnavigation by a single agent using bearing measurements. Int. J. Robust Nonlinear Control 2015, 25, 2362–2374. [Google Scholar] [CrossRef]
- Shao, J.; Tian, Y.P. Multi-target localisation and circumnavigation by a multi-agent system with bearing measurements in 2D space. Int. J. Syst. Sci. 2018, 49, 15–26. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; He, W.; Hui, Q. Modeling and observer-based vibration control of a flexible spacecraft with external disturbances. IEEE Trans. Ind. Electron. 2018, 66, 8648–8658. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Mei, Y.; Wu, Y. Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator. Sci. China. Inf. Sci. 2022, 65, 139203. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Zhao, W. Distributed neural-based fault-tolerant control of multiple flexible manipulators with input saturations. Automatica 2023, 156, 111202. [Google Scholar] [CrossRef]
- Pounds, P.E.; Bersak, D.R.; Dollar, A.M. Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton. Robot. 2012, 33, 129–142. [Google Scholar] [CrossRef]
- Rahardian, A.R.; Nazaruddin, Y.Y.; Nadhira, V.; Bandong, S. Implementation of Parallel Navigation and PID Controller for Drone Swarm Pursuit. IFAC-PapersOnLine 2023, 56, 2513–2518. [Google Scholar] [CrossRef]
- Liu, H.; Lu, G.; Zhong, Y. Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Trans. Ind. Electron. 2012, 60, 4627–4636. [Google Scholar] [CrossRef]
- Yit, K.K.; Rajendran, P. Enhanced longitudinal motion control of UAV simulation by using P-LQR method. Int. J. Micro Air Veh. 2015, 7, 203–210. [Google Scholar] [CrossRef]
- Bouffard, P. On-Board Model Predictive Control of a Quadrotor Helicopter: Design, Implementation, and Experiments. Electrical Engineering and Computer Sciences. Ph.D Thesis, University of California, Berkeley, CA, USA, 2012. [Google Scholar]
- Kamel, M.; Stastny, T.; Alexis, K.; Siegwart, R. Model predictive control for trajectory tracking of unmanned aerial vehicles using robot operating system. In Robot Operating System (ROS) the Complete Reference (Volume 2); Springer: Cham, Switzerland, 2017; pp. 3–39. [Google Scholar] [CrossRef]
- Romero, A.; Sun, S.; Foehn, P.; Scaramuzza, D. Model predictive contouring control for time-optimal quadrotor flight. IEEE Trans. Robot. 2022, 38, 3340–3356. [Google Scholar] [CrossRef]
- Dydek, Z.T.; Annaswamy, A.M.; Lavretsky, E. Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 2012, 21, 1400–1406. [Google Scholar] [CrossRef]
- Jaiton, V.; Rothomphiwat, K.; Phetpoon, T.; Manawakul, M.; Manoonpong, P. An Integrated Adaptive Control System for Obstacle Detection and Online Speed Adaptation of Autonomous Drones. In Proceedings of the 2024 IEEE/SICE International Symposium on System Integration (SII), Ha Long, Vietnam, 8–11 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1355–1356. [Google Scholar] [CrossRef]
- Liu, H.; Bai, Y.; Lu, G.; Shi, Z.; Zhong, Y. Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst. 2014, 75, 595–608. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Jia, J.; Xing, S.; Gao, Y.; Xie, M. Distributed robust formation tracking control for multi-UAV systems. Trans. Inst. Meas. Control. 2022, 01423312221124067. [Google Scholar] [CrossRef]
- Bai, A.; Luo, Y.; Zhang, H.; Li, Z. L 2-gain robust trajectory tracking control for quadrotor UAV with unknown disturbance. Asian J. Control 2022, 24, 3043–3055. [Google Scholar] [CrossRef]
- Lee, D.; Jin Kim, H.; Sastry, S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control. Autom. Syst. 2009, 7, 419–428. [Google Scholar] [CrossRef]
- Sadiq, M.; Hayat, R.; Zeb, K.; Al-Durra, A.; Ullah, Z. Robust Feedback Linearization Based Disturbance Observer Control of Quadrotor UAV. IEEE Access 2024. [Google Scholar] [CrossRef]
- Doukhi, O.; Lee, D.J. Neural network-based robust adaptive certainty equivalent controller for quadrotor UAV with unknown disturbances. Int. J. Control. Autom. Syst. 2019, 17, 2365–2374. [Google Scholar] [CrossRef]
- Jiang, F.; Pourpanah, F.; Hao, Q. Design, implementation, and evaluation of a neural-network-based quadcopter UAV system. IEEE Trans. Ind. Electron. 2019, 67, 2076–2085. [Google Scholar] [CrossRef]
- Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. Self-learning in aerial robotics using type-2 fuzzy systems: Case study in hovering quadrotor flight control. IEEE Access 2021, 9, 119520–119532. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Zhang, X.; Sun, Q.; Sun, M. A novel control scheme for quadrotor UAV based upon active disturbance rejection control. Aerosp. Sci. Technol. 2018, 79, 601–609. [Google Scholar] [CrossRef]
- Yuan, Y.; Cheng, L.; Wang, Z.; Sun, C. Position tracking and attitude control for quadrotors via active disturbance rejection control method. Sci. China Inf. Sci. 2019, 62, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Huangfu, S.; Cao, G.; Yu, D. Leader-follower formation of light-weight UAVs with novel active disturbance rejection control. Appl. Math. Model. 2023, 117, 577–591. [Google Scholar] [CrossRef]
- Zheng, E.H.; Xiong, J.J.; Luo, J.L. Second order sliding mode control for a quadrotor UAV. ISA Trans. 2014, 53, 1350–1356. [Google Scholar] [CrossRef]
- Fu, X.; He, J. Robust adaptive sliding mode control based on iterative learning for quadrotor UAV. IETE J. Res. 2023, 69, 5484–5496. [Google Scholar] [CrossRef]
- Mughees, A.; Ahmad, I. Multi-optimization of novel conditioned adaptive barrier function integral terminal SMC for trajectory tracking of a quadcopter System. IEEE Access 2023. [Google Scholar] [CrossRef]
- Cai, H.; Su, Y.; Huang, J. Cooperative Control of Multi-Agent Systems: Distributed-Observer and Distributed-Internal-Model Approaches; Springer Nature: Berlin, Germany, 2022. [Google Scholar]
- Wang, X. Distributed formation output regulation of switching heterogeneous multi-agent systems. Int. J. Syst. Sci. 2013, 44, 2004–2014. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.; Liu, Z. Output regulation distributed formation control for nonlinear multi-agent systems. Nonlinear Dyn. 2014, 78, 1339–1348. [Google Scholar] [CrossRef]
- Haghshenas, H.; Badamchizadeh, M.A.; Baradarannia, M. Containment control of heterogeneous linear multi-agent systems. Automatica 2015, 54, 210–216. [Google Scholar] [CrossRef]
- Lu, M.; Liu, L. Distributed feedforward approach to cooperative output regulation subject to communication delays and switching networks. IEEE Trans. Autom. Control 2016, 62, 1999–2005. [Google Scholar] [CrossRef]
- Seyboth, G.S.; Ren, W.; Allgöwer, F. Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization. Automatica 2016, 68, 132–139. [Google Scholar] [CrossRef]
- Li, S.; Er, M.J.; Zhang, J. Distributed adaptive fuzzy control for output consensus of heterogeneous stochastic nonlinear multiagent systems. IEEE Trans. Fuzzy Syst. 2017, 26, 1138–1152. [Google Scholar] [CrossRef]
- Cai, H.; Lewis, F.L.; Hu, G.; Huang, J. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica 2017, 75, 299–305. [Google Scholar] [CrossRef]
- Lu, M.; Liu, L. Cooperative Output Regulation of Linear Multi-Agent Systems by a Novel Distributed Dynamic Compensator. IEEE Trans. Autom. Control 2017, 62, 6481–6488. [Google Scholar] [CrossRef]
- Lu, M.; Liu, L. Leader-following consensus of multiple uncertain Euler–Lagrange systems subject to communication delays and switching networks. IEEE Trans. Autom. Control 2017, 63, 2604–2611. [Google Scholar] [CrossRef]
- Lu, M.; Liu, L. Leader–following consensus of multiple uncertain Euler–Lagrange systems with unknown dynamic leader. IEEE Trans. Autom. Control 2019, 64, 4167–4173. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, Y.; Chen, G.; Chen, Y.Y. Distributed adaptive observer-based output formation-containment control for heterogeneous multi-agent systems with unknown inputs. IET Control Theory Appl. 2020, 14, 2205–2212. [Google Scholar] [CrossRef]
- Yan, B.; Shi, P.; Lim, C.C.; Wu, C. Robust formation control for multiagent systems based on adaptive observers. IEEE Syst. J. 2021, 16, 3139–3150. [Google Scholar] [CrossRef]
- Yuan, C.; Yan, H.; Wang, Y.; Chang, Y.; Zhan, X. Formation-containment control of heterogeneous linear multi-agent systems with adaptive event-triggered strategies. Int. J. Syst. Sci. 2022, 53, 1942–1957. [Google Scholar] [CrossRef]
- Huang, W.; Liu, H.; Huang, J. Distributed robust containment control of linear heterogeneous multi-agent systems: An output regulation approach. IEEE/CAA J. Autom. Sin. 2022, 9, 864–877. [Google Scholar] [CrossRef]
- Duan, J.; Duan, G.; Cheng, S.; Cao, S.; Wang, G. Fixed-time time-varying output formation–containment control of heterogeneous general multi-agent systems. ISA Trans. 2023, 137, 210–221. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Liu, L.; Wu, C. Distributed adaptive practical formation tracking for multi-agent systems with actuator faults. Int. J. Robust Nonlinear Control 2023, 33, 1633–1654. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, Z.; Li, L.; Zhang, J.; Chen, W. Formation preview tracking for heterogeneous multi-agent systems: A dynamical feedforward output regulation approach. ISA Trans. 2023, 133, 102–115. [Google Scholar] [CrossRef]
- Han, T.; Zheng, W.X. Bipartite output consensus for heterogeneous multi-agent systems via output regulation approach. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 281–285. [Google Scholar] [CrossRef]
- Jiang, D.; Wen, G.; Peng, Z.; Wang, J.L.; Huang, T. Fully distributed pull-based event-triggered bipartite fixed-time output control of heterogeneous systems with an active leader. IEEE Trans. Cybern. 2022, 53, 3089–3100. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Mu, Y.; Wang, Y. Bipartite Time-Varying Output Formation Tracking for Multiagent Systems with Multiple Heterogeneous Leaders under Signed Digraph. IEEE Trans. Ind. Informatics 2023, 19, 11070–11079. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Wang, J.A.; Li, Z.; Feng, P.; Bai, W. Distributed Bipartite Output Formation Control for Heterogeneous Discrete-Time Linear Multi-Agent Systems. IEEE Access 2024, 12, 18901–18912. [Google Scholar] [CrossRef]
- Dong, X.; Yu, B.; Shi, Z.; Zhong, Y. Time-varying formation control for unmanned aerial vehicles: Theories and applications. IEEE Trans. Control Syst. Technol. 2014, 23, 340–348. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Ren, Z.; Zhong, Y. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. 2016, 64, 5014–5024. [Google Scholar] [CrossRef]
- Dong, X.; Meng, F.; Shi, Z.; Lu, G.; Zhong, Y. Output containment control for swarm systems with general linear dynamics: A dynamic output feedback approach. Syst. Control Lett. 2014, 71, 31–37. [Google Scholar] [CrossRef]
- Cai, H.; Huang, J. Output based adaptive distributed output observer for leader–follower multiagent systems. Automatica 2021, 125, 109413. [Google Scholar] [CrossRef]
- Huang, J. Nonlinear Output Regul; Theory Appl. SIAM: Philadelphia, PA, USA, 2004. [Google Scholar]
Algorithm | Characteristic |
---|---|
PID [28,29] | Simple, widely used, relies on precise tuning |
LQR [30,31] | Optimal control, minimizes a quadratic cost function, suitable for linear systems |
Model predictive control [32,33,34] | Predictive, optimization-based, robust, real-time, handles constraints |
Adaptive control [35,36] | Adjusts parameters in real time, handles system uncertainties |
Robust control [37,38,39] | Ensures stability under uncertainties, strong disturbance rejection |
Feedback linearization [40,41] | Transforms nonlinear system into linear ones, precise control, requires an accurate model |
Intelligent control [42,43,44] | Uses AI techniques, adaptive, handles complex and uncertain environments |
Active disturbance rejection control [45,46,47] | Strong disturbance rejection, model-free, robust to uncertainties |
Sliding-mode control [48,49,50] | High robustness, good disturbance rejection, may cause chattering |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Zhang, A.; Li, W.; Cai, H. Drone Swarm Robust Cooperative Formation Pursuit through Relative Positioning in a Location Denial Environment. Drones 2024, 8, 455. https://doi.org/10.3390/drones8090455
Gao H, Zhang A, Li W, Cai H. Drone Swarm Robust Cooperative Formation Pursuit through Relative Positioning in a Location Denial Environment. Drones. 2024; 8(9):455. https://doi.org/10.3390/drones8090455
Chicago/Turabian StyleGao, Huanli, Aixin Zhang, Wei Li, and He Cai. 2024. "Drone Swarm Robust Cooperative Formation Pursuit through Relative Positioning in a Location Denial Environment" Drones 8, no. 9: 455. https://doi.org/10.3390/drones8090455
APA StyleGao, H., Zhang, A., Li, W., & Cai, H. (2024). Drone Swarm Robust Cooperative Formation Pursuit through Relative Positioning in a Location Denial Environment. Drones, 8(9), 455. https://doi.org/10.3390/drones8090455