Drone-Assisted Multimodal Logistics: Trends and Research Issues
Abstract
:1. Introduction
2. Drone-Assisted Multimodal Logistics
2.1. Drone-Assisted Truck Logistics
2.2. Drone-Assisted Maritime Logistics
2.3. Drone-Assisted Robot Logistics
3. Methodology
3.1. TF-IDF
3.2. LDA
3.3. Collapsed Gibbs Sampling
- Randomly assign an initial topic to each word.
- Starting from the first word () of the first document (), perform the following steps:
- Calculate by varying the topic and select one of the topics based on the calculated probability.
- Repeat the above step for each word until the last word () of the last document () is reached.
- Continue steps 2–4 until the topic assignments for each word stabilize.
3.4. Hyperparameter Tuning in LDA Model
3.5. Analysis of the Topic Proportion Changes
3.5.1. Hot and Cold Topics
3.5.2. Dominant Topic of Each Document
4. Experimental Design
4.1. Data Description
4.2. Data Preprocessing
4.3. LDA Model Hyperparameter Tuning
5. Results and Analysis
5.1. Identification of Prominent Keywords for Each Subject Based on TF-IDF Analysis
5.2. Discovering Topics
5.3. Classification of 20 Topics
5.4. Identifying Hot and Cold Topics
5.4.1. Hot Topics
5.4.2. Cold Topics
5.5. Dominant Topic over the Years
5.5.1. Dominant Topics in the Drone–Truck/Vehicle Subject over the Years
5.5.2. Dominant Topics in the Drone–Ship Subject over the Years
5.5.3. Dominant Topics in the Drone–Robot Subject over the Years
6. Conclusions
- Drone-assisted truck logistics
- Drone-assisted maritime logistics
- Drone-assisted robot logistics
Author Contributions
Funding
Conflicts of Interest
References
- Cornell, A.S.M.; Reidel, R. Commercial Drone Deliveries Are Demonstrating Continued Momentum in 2023. 6 October 2023. Available online: https://www.mckinsey.com/industries/aerospace-and-defense/our-insights/future-air-mobility-blog/commercial-drone-deliveries-are-demonstrating-continued-momentum-in-2023 (accessed on 2 August 2024).
- Federal Aviation Administration. Package Delivery by Drone (Part 135). 17 March 2023. Available online: https://www.faa.gov/uas/advanced_operations/package_delivery_drone (accessed on 2 August 2024).
- Kim, J.; Moon, H.; Jung, H. Drone-Based Parcel Delivery Using the Rooftops of City Buildings: Model and Solution. Appl. Sci. 2020, 10, 4362. [Google Scholar] [CrossRef]
- Amazon. Amazon Drone Delivery Is Coming to Arizona. 22 April 2024. Available online: https://www.aboutamazon.com/news/transportation/amazon-drone-delivery-arizona (accessed on 2 August 2024).
- Jung, H.; Kim, J. Drone Scheduling Model for Delivering Small Parcels to Remote Islands Considering Wind Direction and Speed. Comput. Ind. Eng. 2022, 163, 107784. [Google Scholar] [CrossRef]
- Lu, F.; Jiang, R.; Bi, H.; Gao, Z. Order Distribution and Routing Optimization for Takeout Delivery under Drone–Rider Joint Delivery Mode. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 774–796. [Google Scholar] [CrossRef]
- Sun, X.; Fang, M.; Guo, S.; Hu, Y. UAV-Rider Coordinated Dispatching for the On-Demand Delivery Service Provider. Transp. Res. Part E Logist. Transp. Rev. 2024, 186, 103571. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Jiang, D. Application of Unmanned Aerial Vehicles in Logistics: A Literature Review. Sustainability 2022, 14, 14473. [Google Scholar] [CrossRef]
- Eskandaripour, H.; Boldsaikhan, E. Last-Mile Drone Delivery: Past, Present, and Future. Drones 2023, 7, 77. [Google Scholar] [CrossRef]
- Li, X.; Tupayachi, J.; Sharmin, A.; Ferguson, M.M. Drone-Aided Delivery Methods, Challenge, and the Future: A Methodological Review. Drones 2023, 7, 191. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Treiblmaier, H. Drones for Supply Chain Management and Logistics: A Review and Research Agenda. Int. J. Logist. Res. Appl. 2023, 26, 708–731. [Google Scholar] [CrossRef]
- Udo, E.; Huaccho Huatuco, L.; Ball, P.D. Multimodal Freight Transportation: Sustainability Challenges. In Proceedings of the International Conference on Sustainable Design and Manufacturing; Springer: Singapore, 2019; pp. 409–420. [Google Scholar] [CrossRef]
- Agatz, N.; Bouman, P.; Schmidt, M. Optimization Approaches for the Traveling Salesman Problem with Drone. Transp. Sci. 2018, 52, 965–981. [Google Scholar] [CrossRef]
- Chung, S.H.; Sah, B.; Lee, J. Optimization for Drone and Drone-Truck Combined Operations: A Review of the State of the Art and Future Directions. Comput. Oper. Res. 2020, 123, 105004. [Google Scholar] [CrossRef]
- AlMuhaideb, S.; Alhussan, T.; Alamri, S.; Altwaijry, Y.; Aijarbou, L.; Alrayes, H. Optimization of Truck-Drone Parcel Delivery Using Metaheuristics. Appl. Sci. 2021, 11, 6443. [Google Scholar] [CrossRef]
- Bi, Z.; Guo, X.; Wang, J.; Qin, S.; Liu, G. Deep Reinforcement Learning for Truck-Drone Delivery Problem. Drones 2023, 7, 445. [Google Scholar] [CrossRef]
- Weng, Y.-Y.; Wu, R.-Y.; Zheng, Y.-J. Cooperative Truck–Drone Delivery Path Optimization under Urban Traffic Restriction. Drones 2023, 7, 59. [Google Scholar] [CrossRef]
- Fikar, C.; Gronalt, M.; Hirsch, P. A Decision Support System for Coordinated Disaster Relief Distribution. Expert Syst. Appl. 2016, 57, 104–116. [Google Scholar] [CrossRef]
- Murray, C.C.; Chu, A.G. The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-Assisted Parcel Delivery. Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [Google Scholar] [CrossRef]
- Zhang, B. UPS Wants to Turn Its Delivery Trucks into Motherships for Autonomous Drones. 2017. Available online: https://www.businessinsider.com/ups-test-delivery-truck-autonomous-drones-2017-2 (accessed on 17 July 2024).
- Antunes, J. Amazon’s New Patent Wants to Combine Drones with Trucks for Deliveries. 2021, Commercial UAV News. Available online: https://www.commercialuavnews.com/drone-delivery/amazon-s-new-patent-wants-to-combine-drones-with-trucks-for-deliveries (accessed on 4 August 2024).
- Wang, J.; Zhou, K.; Xing, W.; Li, H.; Yang, Z. Applications, Evolutions, and Challenges of Drones in Maritime Transport. J. Mar. Sci. Eng. 2023, 11, 2056. [Google Scholar] [CrossRef]
- Jofré-Briceño, C.; Muñoz-La Rivera, F.; Atencio, E.; Herrera, R.F. Implementation of Facility Management for Port Infrastructure through the Use of UAVs, Photogrammetry and BIM. Sensors 2021, 21, 6686. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.S.; Smrcka, D.; Pairet, É.; Nascimento, T.; Saska, M. Side-Pull Maneuver: A Novel Control Strategy for Dragging a Cable-Tethered Load of Unknown Weight Using a UAV. IEEE Robot. Autom. Lett. 2022, 7, 9159–9166. [Google Scholar] [CrossRef]
- Soegaard, K. Flown Out by Drone. Maersk Tankers. 8 February 2016. Available online: https://maersktankers.com/newsroom/flown-out-by-drone (accessed on 22 July 2024).
- Schuler, M. Maersk Tankers Claims First Drone Delivery to Ship at Sea. gCaptain. 8 March 2016. Available online: https://gcaptain.com/maersk-tankers-claims-first-drone-delivery-to-ship-at-sea/ (accessed on 22 July 2024).
- Satam, P.U.S. Navy Tests VTOL Drones For Ship-to-Ship Small Cargo Delivery During RIMPAC. The Aviationist. 11 July 2024. Available online: https://theaviationist.com/2024/07/11/usn-tests-vtol-drones-for-ship-to-ship-small-cargo-delivery/ (accessed on 22 July 2024).
- Srinivas, S.; Ramachandiran, S.; Rajendran, S. Autonomous Robot-Driven Deliveries: A Review of Recent Developments and Future Directions. Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102834. [Google Scholar] [CrossRef]
- Bogue, R. The Role of Robots in Logistics. Ind. Robot. 2024, 51, 381–386. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H. Robot Routing Problem of Last-Mile Delivery in Indoor Environments. Appl. Sci. 2022, 12, 9111. [Google Scholar] [CrossRef]
- Simoni, M.D.; Kutanoglu, E.; Claudel, C.G. Optimization and Analysis of a Robot-Assisted Last Mile Delivery System. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102049. [Google Scholar] [CrossRef]
- Jennings, D.; Figliozzi, M. Study of Road Autonomous Delivery Robots and Their Potential Effects on Freight Efficiency and Travel. Transp. Res. Rec. 2020, 2674, 1019–1029. [Google Scholar] [CrossRef]
- Sah, B.; Gupta, R.; Bani-Hani, D. Analysis of Barriers to Implement Drone Logistics. Int. J. Logist. Res. Appl. 2021, 24, 531–550. [Google Scholar] [CrossRef]
- Arbanas, B.; Ivanovic, A.; Car, M.; Haus, H.; Orsag, M.; Petrovic, T.; Bogdan, S. Aerial-ground robotic system for autonomous delivery tasks. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5463–5468. [Google Scholar] [CrossRef]
- Arbanas, B.; Ivanovic, A.; Car, M.; Orsag, M.; Petrovic, T.; Bogdan, S. Decentralized planning and control for UAV–UGV cooperative teams. Auton. Robot. 2018, 42, 1601–1618. [Google Scholar] [CrossRef]
- Salton, G.; Buckley, C. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Process. Manag. 1988, 24, 513–523. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Jung, H.; Kim, B. Identifying Research Topics and Trends in Asset Management for Sustainable Use: A Topic Modeling Approach. Sustainability 2021, 13, 4792. [Google Scholar] [CrossRef]
- Blei, D.M. Probabilistic Topic Models. Commun. ACM 2012, 55, 77–84. [Google Scholar] [CrossRef]
- Mimno, D.; Wallach, H.M.; Talley, E.; Leenders, M.; McCallum, A. Optimizing Semantic Coherence in Topic Models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, Scotland, UK, 27–31 July 2011; pp. 262–272. [Google Scholar]
- Newman, D.; Lau, J.H.; Grieser, K.; Baldwin, T. Automatic Evaluation of Topic Coherence. In Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, CA, USA, 1–6 June 2010; pp. 100–108. [Google Scholar]
- Griffiths, T.L.; Steyvers, M. Finding Scientific Topics. Proc. Natl. Acad. Sci. USA 2004, 101, 5228–5235. [Google Scholar] [CrossRef]
- Lee, H.; Kang, P. Identifying Core Topics in Technology and Innovation Management Studies: A Topic Model Approach. J. Technol. Transf. 2018, 43, 1291–1317. [Google Scholar] [CrossRef]
- Mohammed, S.H.; Al-Augby, S. LSA & LDA Topic Modeling Classification: Comparison Study on E-Books. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 353–362. [Google Scholar] [CrossRef]
- Sievert, C.; Shirley, K. LDAvis: A Method for Visualizing and Interpreting Topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, Baltimore, MD, USA, 27 June 2014. [Google Scholar]
- NLTK Documentation. 2023. Available online: www.nltk.org/api/nltk.stem.WordNetLemmatizer.html?highlight=wordnet (accessed on 24 August 2024).
- Poikonen, S.; Golden, B. The Mothership and Drone Routing Problem. INFORMS J. Comput. 2020, 32, 249–262. [Google Scholar] [CrossRef]
- Agrawal, R.; Gupta, H.; Chaurasia, B.K. Classification and Comparison of Ad Hoc Networks: A Review. Egypt. Inform. J. 2023, 24, 1–25. [Google Scholar] [CrossRef]
- Anwer, M.S.; Guy, C. A Survey of VANET Technologies. J. Emerg. Trends Comput. Inf. Sci. 2014, 5, 661–671. [Google Scholar]
- Hasrouny, H.; Samhat, A.E.; Bassil, C.; Laouiti, A. VANet Security Challenges and Solutions: A Survey. Veh. Commun. 2017, 7, 7–20. [Google Scholar] [CrossRef]
- Lin, N.; Fu, L.; Zhao, L.; Min, G.; Al-Dubai, A.; Gacanin, H. A Novel Multimodal Collaborative Drone-Assisted VANET Networking Model. IEEE Trans. Wirel. Commun. 2020, 19, 4919–4933. [Google Scholar] [CrossRef]
- Rosser, J.C., Jr.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS 2018, 22, e2018.00018. [Google Scholar] [CrossRef]
- Awad, A.; Trenfield, S.J.; Pollard, T.D.; Ong, J.J.; Elbadawi, M.; McCoubrey, L.E.; Gayanes, A.; Gaisford, S.; Basit, A.W. Connected Healthcare: Improving Patient Care Using Digital Health Technologies. Adv. Drug Deliv. Rev. 2021, 178, 113958. [Google Scholar] [CrossRef]
- sUAS News. TU Delft’s Ambulance Drone Drastically Increases Chances of Survival of Cardiac Arrest Patients. 2014. Available online: https://www.suasnews.com/2014/10/tu-delfts-ambulance-drone-drastically-increases-chances-of-survival-of-cardiac-arrest-patients/ (accessed on 12 July 2024).
- Wang, Y.; Wallace, S.W.; Shen, B.; Choi, T.M. Service Supply Chain Management: A Review of Operational Models. Eur. J. Oper. Res. 2015, 247, 685–698. [Google Scholar] [CrossRef]
- Li, C.; Tanghe, E.; Suanet, P.; Plets, D.; Hoebeke, J.; Poorter, E.D.; Joseph, W. ReLoc 2.0: UHF-RFID Relative Localization for Drone-Based Inventory Management. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Cristiani, D.; Bottonelli, F.; Trotta, A.; Di Felice, M. Inventory Management through Mini-Drones: Architecture and Proof-of-Concept Implementation. In Proceedings of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork, Ireland, 31 August–3 September 2020; pp. 186–193. [Google Scholar] [CrossRef]
- Farahnakian, F.; Koivunen, L.; Mäkilä, T.; Heikkonen, J. Towards Autonomous Industrial Warehouse Inspection. In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wawrla, L.; Maghazei, O.; Netland, T. Applications of Drones in Warehouse Operations. In Whitepaper; ETH Zurich, D-MTEC: Zürich, Switzerland, 2019; pp. 1–12. [Google Scholar]
- Martínez-Cruz, A.; Martínez-Cruz, A.; Ramírez-Gutiérrez, K.A.; Feregrino-Uribe, C.; Morales-Reyes, A. Security on In-Vehicle Communication Protocols: Issues, Challenges, and Future Research Directions. Comput. Commun. 2021, 180, 1–20. [Google Scholar] [CrossRef]
- Prapulla, N.; Veena, S.; Srinivasalu, G. Development of Algorithms for MAV Security. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; pp. 421–425. [Google Scholar] [CrossRef]
- Dua, A.; Duan, L.; Kumar, N.; Yang, L.T. Secure Message Communication Protocol among Vehicles in Smart City. IEEE Trans. Veh. Technol. 2017, 67, 4359–4373. [Google Scholar] [CrossRef]
- Khan, N.A.; Kumar, M.; Das, A.K.; Susilo, W. Emerging Use of UAVs: Secure Communication Protocol Issues and Challenges. In Drones in Smart-Cities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 37–55. [Google Scholar] [CrossRef]
- Atoev, S.; Kwon, K.-R.; Lee, S.-H.; Moon, K.-S. Data Analysis of the MAVLink Communication Protocol. In Proceedings of the 2017 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2–4 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ko, Y.; Kim, J.; Duguma, D.G.; Astillo, P.V.; You, I.; Pau, G. Drone Secure Communication Protocol for Future Sensitive Applications in Military Zone. Sensors 2021, 21, 2057. [Google Scholar] [CrossRef]
- Elsayed, M.; Mohamed, M. The Impact of Airspace Regulations on Unmanned Aerial Vehicles in Last-Mile Operation. Transp. Res. Part D Transp. Environ. 2020, 87, 102480. [Google Scholar] [CrossRef]
- Tang, C.S.; Veelenturf, L.P. The Strategic Role of Logistics in the Industry 4.0 Era. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 1–11. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Suzuki, S. Recent Researches on Innovative Drone Technologies in Robotics Field. Adv. Robot. 2018, 32, 1008–1022. [Google Scholar] [CrossRef]
- Macrina, G.; Pugliese, L.D.P.; Guerriero, F.; Laporte, G. Drone-Aided Routing: A Literature Review. Transp. Res. Part C Emerg. Technol. 2020, 120, 102762. [Google Scholar] [CrossRef]
- Daud, S.M.S.M.; Yusof, M.Y.P.M.; Heo, C.C.; Khoo, L.S.; Singh, M.K.C.; Mahmood, M.S.; Nawawi, H. Applications of Drone in Disaster Management: A Scoping Review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef]
- Hong, I.; Kuby, M.; Murray, A.T. A Range-Restricted Recharging Station Coverage Model for Drone Delivery Service Planning. Transp. Res. Part C Emerg. Technol. 2018, 90, 198–212. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V. A Method of Optimized Deployment of Charging Stations for Drone Delivery. IEEE Trans. Transp. Electrification 2020, 6, 510–518. [Google Scholar] [CrossRef]
- Hassija, V.; Saxena, V.; Chamola, V. Scheduling Drone Charging for Multi-Drone Network Based on Consensus Time-Stamp and Game Theory. Comput. Commun. 2020, 149, 51–61. [Google Scholar] [CrossRef]
- Alyassi, R.; Khonji, M.; Karapetyan, A.; Chau, S.C.K.; Elbassioni, K.; Tseng, C.M. Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones. IEEE Trans. Autom. Sci. Eng. 2022, 20, 1034–1046. [Google Scholar] [CrossRef]
- Çetin, E.; Barrado, C.; Muñoz, G.; Macias, M.; Pastor, E. Drone Navigation and Avoidance of Obstacles through Deep Reinforcement Learning. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Yousefi, P.; Fekriazgomi, H.; Demir, M.A.; Prevost, J.J.; Jamshidi, M. Data-Driven Fault Detection of Unmanned Aerial Vehicles Using Supervised Learning over Cloud Networks. In Proceedings of the 2018 World Automation Congress (WAC), Stevenson, WA, USA, 3–7 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Musa, S.A.; Abdullah, R.S.A.R.; Sali, A.; Ismail, A.; Rashid, N.E.A.; Ibrahim, I.P.; Salah, A.A. A Review of Copter Drone Detection Using Radar Systems. Def. S&T Tech. Bull. 2019, 12, 16–38. [Google Scholar]
- Dogru, S.; Marques, L. Drone Detection Using Sparse Lidar Measurements. IEEE Robot. Autom. Lett. 2022, 7, 3062–3069. [Google Scholar] [CrossRef]
- Rohan, A.; Rabah, M.; Kim, S.-H. Convolutional Neural Network-Based Real-Time Object Detection and Tracking for Parrot AR Drone 2. IEEE Access 2019, 7, 69575–69584. [Google Scholar] [CrossRef]
- Safadinho, D.; Ramos, J.; Ribeiro, R.; Filipe, V.; Barroso, J.; Pereira, A. UAV Landing Using Computer Vision Techniques for Human Detection. Sensors 2020, 20, 613. [Google Scholar] [CrossRef]
- Aydin, Y.; Kurt, G.K.; Ozdemir, E.; Yanikomeroglu, H. Authentication and Handover Challenges and Methods for Drone Swarms. IEEE J. Radio Freq. Identif. 2022, 6, 220–228. [Google Scholar] [CrossRef]
- Kurt, G.K.; Yanikomeroglu, H. Communication, Computing, Caching, and Sensing for Next-Generation Aerial Delivery Networks: Using a High-Altitude Platform Station as an Enabling Technology. IEEE Veh. Technol. Mag. 2021, 16, 108–117. [Google Scholar] [CrossRef]
- Kallenborn, Z.; Bleek, P.C. Swarming Destruction: Drone Swarms and Chemical, Biological, Radiological, and Nuclear Weapons. Nonprolif. Rev. 2018, 25, 523–543. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Guo, H.; Kato, N. Toward Robust and Intelligent Drone Swarm: Challenges and Future Directions. IEEE Netw. 2020, 34, 278–283. [Google Scholar] [CrossRef]
- Myjak, M.V.K.; Ranganathan, P. Unmanned Aerial System (UAS) Swarm Design, Flight Patterns, Communication Type, Applications, and Recommendations. In Proceedings of the 2022 IEEE International Conference on Electro Information Technology (eIT), Mt Pleasant, MI, USA, 19–21 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Dewangan, R.K.; Saxena, P. Three-Dimensional Route Planning for Multiple Unmanned Aerial Vehicles Using Salp Swarm Algorithm. J. Exp. Theor. Artif. Intell. 2023, 35, 1059–1078. [Google Scholar] [CrossRef]
- Lieb, J.; Volkert, A. Unmanned Aircraft Systems Traffic Management: A Comparison on the FAA UTM and the European CORUS ConOps Based on U-Space. In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Mekdad, Y.; Aris, A.; Bahun, L.; Fergougui, A.E.; Conti, M.; Lazzeretti, R.; Uluagac, A.S. A Survey on Security and Privacy Issues of UAVs. Comput. Netw. 2023, 224, 109626. [Google Scholar] [CrossRef]
- Yahuza, M.; Idris, M.Y.I.; Ahmedy, I.B.; Wahab, A.W.A.; Nandy, T.; Noor, N.M.; Bala, A. Internet of Drones Security and Privacy Issues: Taxonomy and Open Challenges. IEEE Access 2021, 9, 57243–57270. [Google Scholar] [CrossRef]
- Wazid, M.; Bera, B.; Mitra, A.; Das, A.K.; Ali, R. Private Blockchain-Envisioned Security Framework for AI-Enabled IoT-Based Drone-Aided Healthcare Services. In Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond (DroneCom’20), London, UK, 25 September 2020; pp. 9–14. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Aledhari, M. Enabling Drones in the Internet of Things with Decentralized Blockchain-Based Security. IEEE Internet Things J. 2020, 8, 6406–6415. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V.; Huang, C. When Drones Take Public Transport: Towards Low Cost and Large Range Parcel Delivery. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; pp. 583–588. [Google Scholar] [CrossRef]
- Doole, M.; Ellerbroek, J.; Hoekstra, J.M. Drone Delivery: Urban Airspace Traffic Density Estimation. In Proceedings of the SIDs2018: 8th SESAR Innovation Days, Salzburg, Austria, 3–7 December 2018; pp. 1–8. [Google Scholar]
- Alharbi, A.; Petrunin, I.; Panagiotakopoulos, D. Deep Learning Architecture for UAV Traffic-Density Prediction. Drones 2023, 7, 78. [Google Scholar] [CrossRef]
- Cordova, F.; Olivares, V. Design of Drone Fleet Management Model in a Production System of Customized Products. In Proceedings of the 2016 6th International Conference on Computers Communications and Control (ICCCC), Baile Felix, Romania, 10–14 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 206–211. [Google Scholar] [CrossRef]
- Boudergui, K.; Carrel, F.; Domenech, T.; Guénard, N.; Poli, J.-P.; Ravet, A.; Schoepff, V.; Woo, R. Development of a Drone Equipped with Optimized Sensors for Nuclear and Radiological Risk Characterization. In Proceedings of the 2011 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications, Ghent, Belgium, 6–9 June 2011; IEEE: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Brunelli, D.; Pino, F.; Fontana, C.L.; Pancheri, L.; Moretto, S. DRAGoN: Drone for Radiation Detection of Gammas and Neutrons. In Proceedings of the 2020 IEEE Sensors, Rotterdam, The Netherlands, 25–28 October 2020; IEEE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Pobkrut, T.; Eamsa-Ard, T.; Kerdcharoen, T. Sensor Drone for Aerial Odor Mapping for Agriculture and Security Services. In Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016; IEEE: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Noda, R.; Nakata, T.; Ikeda, T.; Chen, D.; Yoshinaga, Y.; Ishibashi, K.; Rao, C.; Liu, H. Development of Bio-Inspired Low-Noise Propeller for a Drone. J. Robot. Mechatron. 2018, 30, 337–343. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Loianno, G.; Ho, V.A. Towards Design of a Deformable Propeller for Drone Safety. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), Yale University, New Haven, CT, USA, 6–9 April 2020; IEEE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Raivi, A.M.; Huda, S.M.A.; Alam, M.M.; Moh, S. Drone Routing for Drone-Based Delivery Systems: A Review of Trajectory Planning, Charging, and Security. Sensors 2023, 23, 1463. [Google Scholar] [CrossRef]
- Conte, C.; de Alteriis, G.; Schiano Lo Moriello, R.; Accardo, D.; Rufino, G. Drone Trajectory Segmentation for Real-Time and Adaptive Time-of-Flight Prediction. Drones 2021, 5, 62. [Google Scholar] [CrossRef]
- Estrada, M.A.R.; Ndoma, A. The Uses of Unmanned Aerial Vehicles–UAV’s-(or Drones) in Social Logistic: Natural Disasters Response and Humanitarian Relief Aid. Procedia Comput. Sci. 2019, 149, 375–383. [Google Scholar] [CrossRef]
- Zhang, J.; Campbell, J.F.; Sweeney II, D.C.; Hupman, A.C. Energy Consumption Models for Delivery Drones: A Comparison and Assessment. Transp. Res. Part D Transp. Environ. 2021, 90, 102668. [Google Scholar] [CrossRef]
- Roach, A. Amazon to Test Prime Air Drone Delivery Service in the UK. 2024. Available online: https://www.cnbc.com/2024/08/15/amazon-to-test-prime-air-drone-delivery-service-in-the-uk.html (accessed on 24 August 2024).
- DHL Launches Its First Regular Fully-Automated and Intelligent Urban Drone Delivery Service. 2019. Available online: https://group.dhl.com/en/media-relations/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html (accessed on 24 August 2024).
- Bracken, C.; Lyon, R.D.; Mansour, M.J.; Molnar, A.; Saulnier, A.; Thompson, S.; Adams, G.; Masoodi, M.; Sharpe, J. Surveillance Drones: Privacy Implications of the Spread of Unmanned Aerial Vehicles (UAVs) in Canada; Surveillance Studies Centre, Queen’s University: Kingston, UK, 2014; Volume 30. [Google Scholar]
- Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle Routing Problems for Drone Delivery. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 70–85. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V. Deployment of Charging Stations for Drone Delivery Assisted by Public Transportation Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 15043–15054. [Google Scholar] [CrossRef]
- Unmanned Aircraft Systems (UAS). 15 February. Available online: https://www.faa.gov/newsroom/unmanned-aircraft-systems-uas (accessed on 2 August 2024).
- Howell III, C.T.; Frank, J.; Taylor, T.; Richard, G.; Cecil, M.; Lee, J.; John, C.; Jack, K. The First Government Sanctioned Delivery of Medical Supplies by Remotely Controlled Unmanned Aerial System (UAS). U.S. Patent NF1676L-23651, 2 May 2016. [Google Scholar]
- Tamke, F.; Buscher, U. The Vehicle Routing Problem with Drones and Drone Speed Selection. Comput. Oper. Res. 2023, 152, 106112. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.; Yang, C. A Humanitarian Vehicle Routing Problem Synchronized with Drones in Time-Varying Weather Conditions. Comput. Ind. Eng. 2023, 184, 109563. [Google Scholar] [CrossRef]
- Poikonen, S.; Wang, X.; Golden, B. The Vehicle Routing Problem with Drones: Extended Models and Connections. Networks 2017, 70, 34–43. [Google Scholar] [CrossRef]
- Kitjacharoenchai, P.; Min, B.-C.; Lee, S. Two-Echelon Vehicle Routing Problem with Drones in Last Mile Delivery. Int. J. Prod. Econ. 2020, 225, 107598. [Google Scholar] [CrossRef]
- Marinelli, M.; Caggiani, L.; Ottomanelli, M.; Dell’Orco, M. En Route Truck–Drone Parcel Delivery for Optimal Vehicle Routing Strategies. IET Intell. Transp. Syst. 2018, 12, 253–261. [Google Scholar] [CrossRef]
- Bogyrbayeva, A.; Yoon, T.; Ko, H.; Lim, S.; Yun, H.; Kwon, C. A Deep Reinforcement Learning Approach for Solving the Traveling Salesman Problem with Drone. Transp. Res. Part C Emerg. Technol. 2023, 148, 103981. [Google Scholar] [CrossRef]
- Sookram, N.; Ramsewak, D.; Singh, S. The Conceptualization of an Unmanned Aerial System (UAS) Ship–Shore Delivery Service for the Maritime Industry of Trinidad. Drones 2021, 5, 76. [Google Scholar] [CrossRef]
- Pensado, E.A.; López, F.V.; Jorge, H.G.; Pinto, A.M. UAV Shore-to-Ship Parcel Delivery: Gust-Aware Trajectory Planning. IEEE Trans. Aerosp. Electron. Syst. 2024. [Google Scholar] [CrossRef]
- Krystosik-Gromadzińska, A. The Use of Drones in the Maritime Sector–Areas and Benefits. Zesz. Nauk. Akad. Morsk. Szczec. 2021, 67, 16–25. [Google Scholar] [CrossRef]
- Notteboom, T.; Neyens, K. The Future of Port Logistics: Meeting the Challenges of Supply Chain Integration; ING Bank: Bruselas, Belgium, 2017. [Google Scholar]
- Inkinen, T.; Helminen, R.; Saarikoski, J. Technological Trajectories and Scenarios in Seaport Digitalization. Res. Transp. Bus. Manag. 2021, 41, 100633. [Google Scholar] [CrossRef]
# of Topic | Keywords | Topic | Description |
---|---|---|---|
1 | Problem, algorithm, routing, time, optimization, programming, model, customer, solution, integer, heuristic, cost, salesman, traveling, route | Routing problem | Drone–truck/mothership routing |
2 | Network, communication, system, mobile, application, control, data, wireless, information, time, construction, real, technology, computing, based | Communication network | Communication system between drones and other transportation modes |
3 | Health, medical, emergency, human, time, care, study, wa, covid, blood, hospital, technology, pandemic, response, service | Health care | Pharmaceuticals transportation |
4 | System, technology, service, supply, use, transport, model, time, process, based, chain, solution, ha, autonomous, using | Service supply chain | Last-mile delivery, inventory management with drones |
5 | Network, communication, routing, ad, protocol, hoc, based, energy, packet, learning, wireless, delay, data, performance, reinforcement | Communication protocol | Protocol security of drones |
6 | Technology, last, mile, city, urban, emission, transportation, service, system, autonomous, smart, supply, cost, impact, sustainable | Urban logistics/last-mile delivery | Drone-assisted parcel delivery |
7 | Application, research, technology, review, challenge, literature, military, industry, future, ha, system, operation, development, use, study | Research/application review | Reviews of drone technology, drone-integrated routing, drone-assisted delivery methods |
8 | System, station, battery, location, algorithm, charging, last, mile, model, optimization, area, demand, time, data | Battery charging | Charging station, charging scheduling of drone |
9 | Model, system, decision, based, learning, method, detection, task, agent, multi, making, algorithm, control, used, using | Learning-based decision | Drone navigation, path optimization |
10 | Detection, learning, system, based, noise, autonomous, machine, navigation, using, signal, vision, network, deep, positioning, landing | Drone-based detection | Object detection algorithms, drone surveillance/monitoring |
11 | System, control, autonomous, path, swarm, based, cost, algorithm, collision, planning, time, ha, paper, using, application | Swarm | Drone swarm application |
12 | Aircraft, flight, system, air, urban, airspace, wing, UAS, operation, control, traffic, low, landing, fixed, mobility | Aircraft/airspace | Airspace regulations/policies |
13 | Security, internet, attack, authentication, IoT, data, thing, blockchain, secure, service, application, user, privacy, based, communication | Security | Security issues of drone |
14 | System, traffic, urban, air, network, transportation, control, management, design, operation, public, surveillance, model, planning airspace | Traffic/transportation | Drone delivery, drone traffic density |
15 | Model, image, plant, application, using, used, system, service, design, monitoring, management, ha, wa, product, work | Manufacturing plant | Utilization of drones in logistics within manufacturing plants |
16 | System, sensor, data, control, human, sensing, using, operator, remote, motor, time, mapping, camera, flight, driving | Sensor/sensing | Drone sensor technology/application |
17 | Control, controller, system, risk, analysis, data, method, safety, wa, study, approach, performance, barrier, management, based | Control/controller | Drone control system |
18 | Trajectory, wind, propeller, analysis, system, flight, aerodynamic, condition, numerical, application, efficiency, package, field, generation, time | Trajectory/propeller | Drone trajectory planning/optimization |
19 | Disaster, humanitarian, relief, flight, battery, transportation, time, assessment, mode, system, cost, service, analysis, risk, hybrid | Disaster/humanitarian | Relief supplies, blood, medicine delivery |
20 | Energy, consumption, optimization, service, area, colony, bee, parcel, study, congestion, ground, transportation, cost, system, ant | Energy consumption | Drone battery consumption management |
Classification | Topics | |
---|---|---|
Applicable domain fields | Urban/Supply chain | Topic 4 (Service supply chain), Topic 6 (Urban logistics/last-mile delivery), Topic 14 (Traffic/transportation) |
Medical/Humanitarian | Topic 3 (Health care), Topic 19 (Disaster/humanitarian) | |
Indoor logistics | Topic 15 (Manufacturing plant) | |
Operational/technical elements | Energy/Battery management | Topic 8 (Battery charging), Topic 20 (Energy consumption) |
Communication/Networking | Topic 2 (Communication network), Topic 5 (Communication protocol) | |
Routing/Trajectory optimization | Topic 1 (Routing problem), Topic 18 (Trajectory/propeller) | |
Security | Topic 13 (Security) | |
Regulations | Topic 12 (Aircraft/airspace) | |
Sensing/Detection | Topic 10 (Drone-based detection), Topic 16 (Sensor/sensing) | |
Autonomous decision/Control system | Topic 9 (Learning-based decision), Topic 11 (Swarm), Topic 17 (Control/controller) | |
Research trend analysis | Topic 7 (Research/application review) |
Topic Type | Topics | Slope |
---|---|---|
Hot topics | Topic 1 (Routing problem) | 0.0117 *** |
Topic 4 (Service supply chain) | 0.0044 *** | |
Topic 5 (Communication protocol) | 0.0044 *** | |
Topic 10 (Drone-based detection) | 0.0036 *** | |
Topic 9 (Learning-based decision) | 0.0031 *** | |
Topic 3 (Health care) | 0.0025 ** | |
Topic 6 (Urban logistics/last-mile delivery) | 0.0024 | |
Topic 7 (Research/application review) | 0.0024 | |
Topic 13 (Security) | 0.0023 *** | |
Topic 15 (Manufacturing plant) | 0.0022 ** | |
Topic 20 (Energy consumption) | 0.0017 *** | |
Topic 19 (Disaster/humanitarian) | 0.0014 ** | |
Topic 18 (Trajectory/propeller) | 0.0009 | |
Topic 8 (Battery charging) | 0.0003 | |
Cold topics | Topic 14 (Traffic/transportation) | −0.0165 ** |
Topic 11 (Swarm) | −0.0049 | |
Topic 2 (Communication network) | −0.0033 | |
Topic 16 (Sensor/sensing) | −0.0027 | |
Topic 17 (Control/controller) | −0.0026 | |
Topic 12 (Aircraft/airspace) | −0.0011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, S.; Kim, J.; Jung, H. Drone-Assisted Multimodal Logistics: Trends and Research Issues. Drones 2024, 8, 468. https://doi.org/10.3390/drones8090468
Kim K, Kim S, Kim J, Jung H. Drone-Assisted Multimodal Logistics: Trends and Research Issues. Drones. 2024; 8(9):468. https://doi.org/10.3390/drones8090468
Chicago/Turabian StyleKim, Kyunga, Songi Kim, Junsu Kim, and Hosang Jung. 2024. "Drone-Assisted Multimodal Logistics: Trends and Research Issues" Drones 8, no. 9: 468. https://doi.org/10.3390/drones8090468
APA StyleKim, K., Kim, S., Kim, J., & Jung, H. (2024). Drone-Assisted Multimodal Logistics: Trends and Research Issues. Drones, 8(9), 468. https://doi.org/10.3390/drones8090468