A Pseudo-Exponential-Based Artificial Potential Field Method for UAV Cluster Control under Static and Dynamical Obstacles
Abstract
:1. Introduction
1.1. Related Works
1.2. Main Contributions
2. System Modeling and Problem Formulation
- (1)
- Distance
- (2)
- Velocity
- (3)
- Acceleration
3. Modeling of Cluster Intelligent Evasion Based on Artificial Potential Field
3.1. Traditional Artificial Potential Field
3.2. Improved Artificial Potential Field
- (1)
- Vibration optimization
- (2)
- State constraints of the system
- (3)
- Parameters adjusting
3.3. Stability Analysis
4. Obstacle Avoidance Simulation Experiment and Result Analysis
Algorithm 1: Pseudo-exponential based Artificial Potential Field Method |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Zhao, H.; Wu, W.; Xiong, J.; Ma, D.; Wei, J. Deployment Algorithms of Flying Base Stations: 5G and Beyond With UAVs. IEEE Internet Things J. 2019, 6, 10009–10027. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless Communications with Unmanned Aerial Vehicles: Opportunities and Challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Fu, M.; Zhou, Y.; Shi, Y.; Jiang, C.; Zhang, W. UAV-Assisted Multi-Cluster Over-the-Air Computation. IEEE Trans. Wireless Commun. 2023, 22, 4668–4682. [Google Scholar] [CrossRef]
- Alam, M.M.; Arafat, M.Y.; Moh, S.; Shen, J. Topology Control Algorithms in Multi-Unmanned Aerial Vehicle Networks: An Extensive Survey. J. Netw. Comput. Appl. 2022, 207, 103495. [Google Scholar] [CrossRef]
- Venturini, F.; Mason, F.; Pase, F.; Chiariotti, F.; Testolin, A.; Zanella, A.; Zorzi, M. Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm Control. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 955–969. [Google Scholar] [CrossRef]
- Alfeo, A.L.; Cimino, M.G.C.A.; Vaglini, G. Enhancing Biologically Inspired Swarm Behavior: Metaheuristics to Foster the Optimization of UAVs Coordination in Target Search. Comput. Oper. Res. 2019, 110, 34–47. [Google Scholar] [CrossRef]
- Song, J.; Zhao, K.; Liu, Y. Survey on Mission Planning of Multiple Unmanned Aerial Vehicles. Aerospace 2023, 10, 208. [Google Scholar] [CrossRef]
- Jafari, M.; Xu, H. Biologically-Inspired Intelligent Flocking Control for Networked Multi-UAS with Uncertain Network Imperfections. Drones 2018, 2, 33. [Google Scholar] [CrossRef]
- Liao, Z.; Ma, Y.; Huang, J.; Wang, J.; Wang, J. HOTSPOT: A UAV-Assisted Dynamic Mobility-Aware Offloading for Mobile-Edge Computing in 3D Space. IEEE Internet Things J. 2021, 8, 10940–10952. [Google Scholar] [CrossRef]
- Sheng, H.; Zhang, J.; Yan, Z.; Yin, B.; Liu, S.; Bai, T.; Wang, D. New Multi-UAV Formation Keeping Method Based on Improved Artificial Potential Field. Chin. J. Aeronaut. 2023, 36, 249–270. [Google Scholar] [CrossRef]
- LaValle, S.M.; Kuffner, J.J.; Donald, B. Rapidly-Exploring Random Trees: Progress and Prospects. Algorithmic Comput. Robot. New Dir. 2001, 5, 293–308. [Google Scholar]
- Li, Y.; Wei, W.; Gao, Y.; Wang, D.; Fan, Z. PQ-RRT*: An Improved Path Planning Algorithm for Mobile Robots. Expert Syst. Appl. 2020, 152, 113425. [Google Scholar] [CrossRef]
- Gu, D.; Wang, Z. Leader–Follower Flocking: Algorithms and Experiments. IEEE Trans. Control Syst. Technol. 2009, 17, 1211–1219. [Google Scholar] [CrossRef]
- Liang, Y.; Dong, Q.; Zhao, Y. Adaptive Leader–Follower Formation Control for Swarms of Unmanned Aerial Vehicles with Motion Constraints and Unknown Disturbances. Chin. J. Aeronaut. 2020, 33, 2972–2988. [Google Scholar] [CrossRef]
- Do, K.D. Bounded Controllers for Formation Stabilization of Mobile Agents With Limited Sensing Ranges. IEEE Trans. Automat. Control 2007, 52, 569–576. [Google Scholar] [CrossRef]
- Fu, X.; Pan, J.; Wang, H.; Gao, X. A Formation Maintenance and Reconstruction Method of UAV Swarm Based on Distributed Control. Aerosp. Sci. Technol. 2020, 104, 105981. [Google Scholar] [CrossRef]
- Balch, T.; Arkin, R.C. Behavior-Based Formation Control for Multirobot Teams. IEEE Trans. Robot. Automat. 1998, 14, 926–939. [Google Scholar] [CrossRef]
- Jiang, C.; Fang, Y.; Zhao, P.; Panneerselvam, J. Intelligent UAV Identity Authentication and Safety Supervision Based on Behavior Modeling and Prediction. IEEE Trans. Ind. Inf. 2020, 16, 6652–6662. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Qin, H.; Shao, S.; Wang, T.; Yu, X.; Jiang, Y.; Cao, Z. Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones 2023, 7, 211. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Xia, Y.; Xiong, H.; Shao, X. An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi-UAV Systems. IEEE Trans. Circuits Syst. II 2022, 69, 1129–1133. [Google Scholar] [CrossRef]
- Duhé, J.-F.; Victor, S.; Melchior, P. ContribUtions on Artificial Potential Field Method for Effective Obstacle Avoidance. Fract. Calc. Appl. Anal. 2021, 24, 421–446. [Google Scholar] [CrossRef]
- Li, D.; Pan, Z.; Deng, H. Two-Dimensional Obstacle Avoidance Control Algorithm for Snake-like Robot in Water Based on Immersed Boundary-Lattice Boltzmann Method and Improved Artificial Potential Field Method. Trans. Inst. Meas. Control 2020, 42, 1840–1857. [Google Scholar] [CrossRef]
- Tan, G.; Zhuang, J.; Zou, J.; Wan, L.; Sun, Z. Artificial Potential Field-Based Swarm Finding of the Unmanned Surface Vehicles in the Dynamic Ocean Environment. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420925309. [Google Scholar] [CrossRef]
- Lin, Z.; Yue, M.; Chen, G.; Sun, J. Path Planning of Mobile Robot with PSO-Based APF and Fuzzy-Based DWA Subject to Moving Obstacles. Trans. Inst. Meas. Control 2022, 44, 121–132. [Google Scholar] [CrossRef]
- Kitamura, Y.; Tanaka, T.; Kishino, F.; Yachida, M. 3D Path Planning in a Dynamic Environment Using an Octree and an Artificial Potential Field. In Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, 5–9 August 1995; Volume 2, pp. 474–481. [Google Scholar]
- Liu, J.Y.; Guo, Z.Q.; Liu, S.Y. The Simulation of the UAV Collision Avoidance Based on the Artificial Potential Field Method. Adv. Mater. Res. 2012, 591–593, 1400–1404. [Google Scholar] [CrossRef]
- Caballero-Martin, D.; Lopez-Guede, J.M.; Estevez, J.; Graña, M. Artificial Intelligence Applied to Drone Control: A State of the Art. Drones 2024, 8, 296. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, J.; Xue, Y.; Liao, Y. Total Travel Costs Minimization Strategy of a Dual-Stack Fuel Cell Logistics Truck Enhanced with Artificial Potential Field and Deep Reinforcement Learning. Energy 2022, 239, 121866. [Google Scholar] [CrossRef]
- Li, H.; Liu, W.; Yang, C.; Wang, W.; Qie, T.; Xiang, C. An Optimization-Based Path Planning Approach for Autonomous Vehicles Using the DynEFWA-Artificial Potential Field. IEEE Trans. Intell. Veh. 2022, 7, 263–272. [Google Scholar] [CrossRef]
- Zhang, P.; He, Y.; Wang, Z.; Li, S.; Liang, Q. Research on Multi-UAV Obstacle Avoidance with Optimal Consensus Control and Improved APF. Drones 2024, 8, 248. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Wang, Y.; Zhang, Y.; Zhuang, X.; Li, H. Research on a Distributed Cooperative Guidance Law for Obstacle Avoidance and Synchronized Arrival in UAV Swarms. Drones 2024, 8, 352. [Google Scholar] [CrossRef]
- Wu, E.; Sun, Y.; Huang, J.; Zhang, C.; Li, Z. Multi UAV Cluster Control Method Based on Virtual Core in Improved Artificial Potential Field. IEEE Access 2020, 8, 131647–131661. [Google Scholar] [CrossRef]
- Szczepanski, R. Safe Artificial Potential Field—Novel Local Path Planning Algorithm Maintaining Safe Distance From Obstacles. IEEE Robot. Autom. Lett. 2023, 8, 4823–4830. [Google Scholar] [CrossRef]
- Pan, Z.; Li, J.Q.; Hu, K.M.; Zhu, H. Intelligent Vehicle Path Planning Based on Improved Artificial Potential Field Method. Appl. Mech. Mater. 2015, 742, 349–354. [Google Scholar] [CrossRef]
- Sfeir, J.; Saad, M.; Saliah-Hassane, H. An Improved Artificial Potential Field Approach to Real-Time Mobile Robot Path Planning in an Unknown Environment. In Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Montreal, QC, Canada, 17–18 September 2011; pp. 208–213. [Google Scholar]
- Liu, J.; Xu, C.; Wu, Z.; Chen, Y.F. Intelligent Rebar Layout in RC Building Frames Using Artificial Potential Field. Autom. Constr. 2020, 114, 103172. [Google Scholar] [CrossRef]
- Yao, P.; Wang, H.; Su, Z. Real-Time Path Planning of Unmanned Aerial Vehicle for Target Tracking and Obstacle Avoidance in Complex Dynamic Environment. Aerosp. Sci. Technol. 2015, 47, 269–279. [Google Scholar] [CrossRef]
- Huang, C.; Lan, Y.; Liu, Y.; Zhou, W.; Pei, H.; Yang, L.; Cheng, Y.; Hao, Y.; Peng, Y. A New Dynamic Path Planning Approach for Unmanned Aerial Vehicles. Complexity 2018, 2018, 8420294. [Google Scholar] [CrossRef]
- Lindqvist, B.; Mansouri, S.S.; Agha-mohammadi, A.; Nikolakopoulos, G. Nonlinear MPC for Collision Avoidance and Control of UAVs With Dynamic Obstacles. IEEE Robot. Autom. Lett. 2020, 5, 6001–6008. [Google Scholar] [CrossRef]
- Xu, W.; Xiang, L.; Zhang, T.; Pan, M.; Han, Z. Cooperative Control of Physical Collision and Transmission Power for UAV Swarm: A Dual-Fields Enabled Approach. IEEE Internet Things J. 2022, 9, 2390–2403. [Google Scholar] [CrossRef]
- Wang, J.; Han, L.; Li, X.; Dong, X.; Li, Q.; Ren, Z. Time-Varying Formation of Second-Order Discrete-Time Multi-Agent Systems under Non-Uniform Communication Delays and Switching Topology with Application to UAV Formation Flying. IET Control Theory Appl. 2020, 14, 1947–1956. [Google Scholar] [CrossRef]
- Krogh, B. A Generalized Potential Field Approach to Obstacle Avoidance Control. In Proceedings of the SME Conference on Robotics Research: The Next Five Years and Beyond, Bethlehem, PA, USA, August 1984; pp. 11–22. [Google Scholar]
Explanations | Value |
---|---|
Simulation step size T | 0.02 s |
Safety distance | 2 m |
Maximum flight velocity | 2 m/s |
Maximum acceleration | 9.8 m/s2 |
Initial velocity | 0 m/s |
Gravitational coefficient | 10 |
Repulsive force coefficient | 120 |
Designed parameter of the pseudo-exponential function | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, F.; Li, J.; Chen, Q.; Sheng, H. A Pseudo-Exponential-Based Artificial Potential Field Method for UAV Cluster Control under Static and Dynamical Obstacles. Drones 2024, 8, 506. https://doi.org/10.3390/drones8090506
Zhang J, Li F, Li J, Chen Q, Sheng H. A Pseudo-Exponential-Based Artificial Potential Field Method for UAV Cluster Control under Static and Dynamical Obstacles. Drones. 2024; 8(9):506. https://doi.org/10.3390/drones8090506
Chicago/Turabian StyleZhang, Jie, Fengyun Li, Jiacheng Li, Qian Chen, and Hanlin Sheng. 2024. "A Pseudo-Exponential-Based Artificial Potential Field Method for UAV Cluster Control under Static and Dynamical Obstacles" Drones 8, no. 9: 506. https://doi.org/10.3390/drones8090506
APA StyleZhang, J., Li, F., Li, J., Chen, Q., & Sheng, H. (2024). A Pseudo-Exponential-Based Artificial Potential Field Method for UAV Cluster Control under Static and Dynamical Obstacles. Drones, 8(9), 506. https://doi.org/10.3390/drones8090506