Performance Analysis and Conceptual Design of Lightweight UAV for Urban Air Mobility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Modeling
2.2. Configuration Design
- a maximum take-off mass of 760 kg;
- two passenger payload (175 kg);
- the maximum size of the rotorcraft not exceeding 7.6 m;
- battery discharge limit of ;
- max. hovering throttle at 500 m: 65%;
- objective endurance: 50 min;
- the same structure and fuselage;
2.3. Battery Design
2.4. Battery Discharge Model
2.5. Mission Design
3. Results
4. Discussion
5. Conclusions
- three conceptual designs with a fixed maximum take-off mass were produced, and a specific battery pack plus electric motor configuration was provided for each of them;
- the helicopter was revealed to be the lowest-power-demanding configuration at low speed and the most efficient in both the full and empty payload layouts. On the other hand, the multirotor with a variable RPM system turned out to be highly inefficient as soon as its design was not optimized for a specific flight phase, indeed the power jump between fully loaded and unloaded layouts was the highest;
- from a maximum endurance and range perspective, the helicopter and side-by-side achieved the best performance, with the former standing out for its best specific endurance;
- in the reference mission profile, the helicopter achieved 46 min of flight, including initial and final vertical flight and hovering phases, against the 41 min of the side-by-side and the 26 min of the multirotor.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hill, B.P.; DeCarme, D.; Metcalfe, M.; Griffin, C.; Wiggins, S.; Metts, C.; Bastedo, B.; Patterson, M.D.; Mendonca, N.L. UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4; NASA Technical Management, Document ID: 20205011091; NASA: Washington, DC, USA, 2020.
- Thipphavong, D.P.; Apaza, R.; Barmore, B.; Battiste, V.; Burian, B.; Dao, Q.; Feary, M.; Go, S.; Goodrich, K.H.; Homola, J.; et al. Urban Air Mobility airspace integration concepts and considerations. In Proceedings of the Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- Svorcan, J.; Kovačević, A.; Popović, L.; Simonović, A. Comparative study of piston vs. electric single-seat tandem helicopter. Int. J. Sustain. Aviat. 2022, 8, 1–14. [Google Scholar] [CrossRef]
- Johnson, W.; Silva, C.; Solis, E. Concept vehicles for VTOL air taxi operations. In Proceedings of the AHS Specialists Conference on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, USA, 16–19 January 2018. [Google Scholar]
- Gillis, D.; Petri, M.; Pratelli, A.; Semanjski, I.; Semanjski, S. Urban Air Mobility: A State of Art Analysis. In Proceedings of the Computational Science and Its Applications—ICCSA, Online, 11 September 2021. [Google Scholar]
- Mathur, A.; Panesar, K.; Kim, J.; Atkins, E.; Sarter, N. Paths to Autonomous Vehicle Operations for Urban Air Mobility. In Proceedings of the AIAA Aviation Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Zong, J.; Zhu, B.; Hou, Z.; Yang, X.; Zhai, J. Evaluation and comparison of hybrid wing VTOL UAV with four different electric propulsion systems. Aerospace 2021, 8, 256. [Google Scholar] [CrossRef]
- Bacchini, A.; Cestino, E. Electric VTOL configurations comparison. Aerospace 2019, 6, 26. [Google Scholar] [CrossRef]
- Lilium Jet. Available online: https://jet.lilium.com/ (accessed on 31 May 2024).
- EHang|UAM Passenger Autonomous Aerial Vehicle (AAV). Available online: https://www.ehang.com/ehangaav (accessed on 31 May 2024).
- Avanzini, G.; de Angelis, E.L.; Giulietti, F. Optimal cruise performance of a conventional helicopter. J. Aerosp. Eng. 2022, 36, 865–878. [Google Scholar] [CrossRef]
- Leishman, G.J. Principles of Helicopter Aerodynamics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Nabawy, M.R.A.; Crowther, W.J. On the quasi-steady aerodynamics of normal hovering flight part I: The induced power factor. J. R. Soc. Interface 2014, 11, 20131196. [Google Scholar] [CrossRef] [PubMed]
- Nabawy, M.R.A.; Crowther, W.J. On the quasi-steady aerodynamics of normal hovering flight part II: Model implementation and evaluation. J. R. Soc. Interface 2014, 11, 20131197. [Google Scholar] [CrossRef] [PubMed]
- UAV VTOL Herlea 200 kg Thrust Motor. Available online: https://www.austars-model.com/ (accessed on 3 June 2024).
- Johnson, W. Helicopter Theory; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- de Angelis, E.L.; Giulietti, F.; Rossetti, G.; Turci, M.; Albertazzi, C. Toward Smart Air Mobility: Control System Design and Experimental Validation for an Unmanned Light Helicopter. Drones 2023, 7, 288. [Google Scholar] [CrossRef]
- Avanzini, G.; de Angelis, E.L.; Fattizzo, D.; Giulietti, F. Autorotation design and simulation for a small-scale helicopter. In Proceedings of the 48th European Rotorcraft Forum, Winterthur, Switzerland, 5–9 September 2022. [Google Scholar]
- Fomaro, E.; Cardone, M.; D’Agostino, V.; Dannier, A. An Aircraft Hybrid Electric Propulsion Model Experimentally Validated. In Proceedings of the 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, Italy, 19–21 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1197–1203. [Google Scholar]
- Ivanov, N.S.; Zhuravlev, S.V.; Kharkina, O.A.; Zdorova, M.V.; Shirokov, A.A.; Akhunov, M.T.; Sosova, D.D. Electric Machines with High Specific Power. Russ. Electr. Eng. 2023, 93, 621–630. [Google Scholar] [CrossRef]
- EMRAX|Axial Flux e-Motors|Lightweight|Powerful-EMRAX. Available online: https://emrax.com/ (accessed on 31 May 2024).
- Amprius Technologies Silicon Anode Batteries. Available online: https://amprius.com/ (accessed on 31 May 2024).
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small 2018, 14, 1702737. [Google Scholar] [CrossRef] [PubMed]
- Tang, J. Progress in the application of silicon-based anode nanotechnology in lithium batteries. E3S Web Conf. 2024, 553, 01007. [Google Scholar] [CrossRef]
- Avanzini, G.; de Angelis, E.L.; Giulietti, F. Optimal performance and sizing of a battery-powered aircraft. Aerosp. Sci. Technol. 2016, 59, 132–144. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, H.; Liu, Y. An evaluative review of the VTOL technologies for unmanned and manned aerial vehicles. Comput. Commun. 2020, 149, 356–369. [Google Scholar] [CrossRef]
- Full Report—Study on the Societal Acceptance of Urban Air Mobility in Europe. Available online: https://www.easa.europa.eu/en/full-report-study-societal-acceptance-urban-air-mobility-europe (accessed on 13 June 2024).
- Çetin, E.; Cano, A.; Deransy, R.; Tres, S.; Barrado, C. Implementing Mitigations for Improving Societal Acceptance of Urban Air Mobility. Drones 2022, 6, 28. [Google Scholar] [CrossRef]
- Mazzeo, F.; Pavel, M.D.; Fattizzo, D.; Bertolani, G.; de Angelis, E.L.; Giulietti, F. Flight dynamic modeling and stability of a small-scale side-by-side helicopter for Urban Air Mobility. Aerosp. Sci. Technol. 2024, 148, 109117. [Google Scholar] [CrossRef]
- Fast-Forwarding to a Future of On-Demand Urban Air Transportation. Available online: https://uberpubpolicy.medium.com/fast-forwarding-to-a-future-of-on-demand-urban-air-transportation-f6ad36950ffa (accessed on 8 August 2024).
- Sagaga, J.; Lee, S. Acoustic predictions for the side-by-side air taxi rotor in hover. In Proceedings of the AIAA Aviation Forum, San Diego, CA, USA, 12–16 June 2023. [Google Scholar]
- Abalakin, I.A.; Bobkov, V.G.; Kozubskaya, T.K. Numerical Study of Fuselage Impact on Acoustic Characteristics of a Helicopter Rotor. J. Supercomput. 2022, 9, 100–113. [Google Scholar]
- Yin, J. Investigation of rotor noise shielding effects by the helicopter fuselage in forward flight. J. Aircr. 2019, 56, 1677–1688. [Google Scholar] [CrossRef]
- Brentner, K.S.; Farassat, F. Helicopter Noise Prediction: The Current Status and Future Direction. J. Sound Vib. 1994, 170, 79–96. [Google Scholar] [CrossRef]
- Yunus, F.; Casalino, D.; Avallone, F.; Ragni, D. Efficient prediction of urban air mobility noise in a vertiport environment. Aerosp. Sci. Technol. 2023, 139, 108410. [Google Scholar] [CrossRef]
- Kopiev, V.F.; Zaytsev, M.Y.; Vorontsov, V.I.; Karabasov, S.A. Helicopter noise in hover: Computational modelling and experimental validation. Acoust. Phys. 2017, 63, 686–698. [Google Scholar] [CrossRef]
- Smith, B.; Gandhi, F.; Niemiec, R. A comparison of multicopter noise characteristics with increasing number of rotors. In Proceedings of the 76th Annual Forum of the Vertical Flight Society, Virtual, 5–8 October 2020. [Google Scholar]
- Kadhiresan, A.R.; Duffy, M.J. Conceptual design and mission analysis for eVTOL Urban Air Mobility flight vehicle configurations. In Proceedings of the AIAA Aviation Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
Helicopter | Side-by-Side | Hexacopter | |||
---|---|---|---|---|---|
Max. take-off mass | [kg] | 760 | 760 | 760 | |
Empty mass | [kg] | 301.2 | 299.4 | 306.3 | |
Payload mass | [kg] | 175 | 175 | 175 | |
Motor mass | [kg] | 74.4 | 23.1 | 11 | |
Battery mass | [kg] | 209.4 | 239.4 | 212.7 | |
Electric motor | |||||
Type | Scaled | Scaled | Commercial | ||
Number of motors | 1 | 2 | 6 | ||
Maximum motor power | [kw] | 183.5 | 110.8 | 45 | |
Specific load factor | [RPM/Vdc] | 1.22 | 6.08 | 16.4 | |
Main Rotor | |||||
Eq. flat plate area | f | [] | 2.137 | 2.137 | 2.137 |
Number of blades | - | 2 | 2 | 2 | |
Rotor radius | R | [m] | 3.8 | 1.9 | 0.8 |
Chord | c | [m] | 0.195 | 0.098 | 0.08 |
Solidity ratio | - | 0.033 | 0.033 | 0.0637 | |
Angular velocity | [RPM] | 528.5 | 1057 | - | |
Disk loading | [] | 16.8 | 25.8 | 48.5 | |
Blade’s drag coeff. | - | 0.008, 0.008 | 0.008, 0.008 | 0.008, 0.008 | |
Tail Rotor | |||||
Rotor radius | [m] | 0.57 | - | - | |
Chord | [m] | 0.12 | - | - | |
Solidity ratio | - | 0.038 | - | - | |
Angular velocity | [RPM] | 3061 | - | - | |
Blade’s drag coeff. | - | 0.008, 0.008 | - | - |
Battery Type: Silicon Anode (Amprius Technologies [22]) | ||
---|---|---|
Nominal voltage | 3.7 V | |
Nominal capacity | 3.8 Ah | |
Max. discharge rate | 3 C | |
Energy density | 425 Wh/kg | |
Cell mass | 33 g |
Altitude | Speed | Time | |
---|---|---|---|
Climb | m | m/s | 2.08′ |
Hover | 500 m | - | 2.00′ |
Cruise | 500 m | ||
Hover | 500 m | - | 2.00′ |
Descent | m | m/s | 2.08′ |
Helicopter | Side-by-Side | Hexacopter | |||
---|---|---|---|---|---|
Pack design | [-] | ||||
Battery mass | [kg] | 209.4 | 239.4 | 212.7 | |
Nominal voltage | [v] | 632.7 | 418.1 | 377.4 | |
Nominal capacity | [Ah] | 140.6 | 243.2 | 239.4 | |
Ideal energy | E | [kwh] | 89.0 | 101.7 | 90.4 |
Helicopter | Side-by-Side | Multirotor | |||
---|---|---|---|---|---|
Number of rotors | [-] | 1 | 2 | 6 | |
Max. take-off mass | [kg] | 760 | 760 | 760 | |
Max. width | [m] | 7.6 (3.8) | 7.6 (1.9) | 4.8 (0.8) | |
Disk loading | [] | 16.8 | 33.5 | 62.9 | |
Hovering power | [kw] | 117.5 | 140.9 | 180.2 | |
Hovering power ratio | 64 % | 64 % | 67 % | ||
Hovering efficiency | [N/kW] | 6.5 | 5.4 | 4.2 | |
[kw] | 74.1 | 99.4 | 141.7 | ||
Best specific endurance | [min] | 62.1 | 53.5 | 34.5 | |
[km/h] | 72.2 | 83.1 | 94.0 | ||
[kw] | 89.6 | 120.5 | 174.2 | ||
Best specific range | [km] | 92.2 | 91.2 | 66.7 | |
[km/h] | 107.1 | 122.3 | 139.8 |
Helicopter | Side-by-Side | Multirotor | |||
---|---|---|---|---|---|
Discharge rate in hover | [C] | 1.32 | 1.39 | 1.99 | |
Discharge rate in cruise | [C] | 0.83 | 0.98 | 1.57 | |
Discharge rate in climbing | [C] | 1.60 | 1.62 | 2.30 | |
Discharge rate in descending | [C] | 1.11 | 1.21 | 1.85 | |
Total mission duration | [min] | 47 | 41 | 26 | |
Cruising time | [min] | 39 | 33 | 18 | |
Range | [km] | 46.4 | 45.6 | 28.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzeo, F.; de Angelis, E.L.; Giulietti, F.; Talamelli, A.; Leali, F. Performance Analysis and Conceptual Design of Lightweight UAV for Urban Air Mobility. Drones 2024, 8, 507. https://doi.org/10.3390/drones8090507
Mazzeo F, de Angelis EL, Giulietti F, Talamelli A, Leali F. Performance Analysis and Conceptual Design of Lightweight UAV for Urban Air Mobility. Drones. 2024; 8(9):507. https://doi.org/10.3390/drones8090507
Chicago/Turabian StyleMazzeo, Francesco, Emanuele L. de Angelis, Fabrizio Giulietti, Alessandro Talamelli, and Francesco Leali. 2024. "Performance Analysis and Conceptual Design of Lightweight UAV for Urban Air Mobility" Drones 8, no. 9: 507. https://doi.org/10.3390/drones8090507
APA StyleMazzeo, F., de Angelis, E. L., Giulietti, F., Talamelli, A., & Leali, F. (2024). Performance Analysis and Conceptual Design of Lightweight UAV for Urban Air Mobility. Drones, 8(9), 507. https://doi.org/10.3390/drones8090507