The Impact of Binary Salt Blends’ Composition on Their Thermophysical Properties for Innovative Heat Storage Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase Change Materials
2.2. DSC–TGA Measurements
2.3. Heat Storage Unit Measurements
3. Results and Discussion
3.1. DSC–TGA Results
- -
- TM1: solid–liquid phase transition temperature (S–L);
- -
- TONSET1: onset temperature of the solid–liquid phase transition;
- -
- TEND1: end temperature of the solid–liquid phase transition;
- -
- TM2: liquid–solid phase transition temperature (L–S);
- -
- TONSET2: onset temperature of the liquid–solid phase transition;
- -
- TEND2: end temperature of the liquid–solid phase transition;
- -
- ΔHM: latent heat of the phase transition.
3.2. Laboratory Heat Storage Unit Results
4. Conclusions
- For the NaNO3–KNO3 salt mixture, the difference in phase transition temperatures was almost independent of the NaNO3 content in the range from 30% to 70%.
- The highest latent heat of phase transition was observed for a NaNO3 content of 70%. Therefore, when this salt is used for heat storage, the most favorable choice is the 70:30 ratio, which provides the highest heat storage density and the lowest phase transition temperature.
- In the case of the NaNO3–NaNO2 mixture, the highest value of the latent heat of the phase transition occurred for a ratio of 80:20, resulting in phase transition temperatures of 267.0 °C for S–L and 253.5 °C for L–S.
- A similar phase transition temperature value was observed for pure NaNO2 salt (283.1 °C for S–L and 269.4 °C for L–S), but the latent heat value of the phase transition was higher and equal to 216.9 kJ/kg.
- For heat storage applications, it is recommended to use pure NaNO2 salt rather than the NaNO3–NaNO2 mixture. For the pure NaNO2 and NaNO2–NaNO3 80:20 mixtures, the phase change temperatures were at a similar level. However, there was a significant difference in latent heat of about 50 kJ/kg. Similarly, the pure NaNO2 performed better than the pure NaNO3, with latent heat being higher by ca. 40 kJ/kg.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vo, D.H.; Vo, A.T. Renewable Energy and Population Growth for Sustainable Development in the Southeast Asian Countries. Energy Sustain. Soc. 2021, 11, 30. [Google Scholar] [CrossRef]
- Clean Energy Can Fuel the Future—And Make the World Healthier. Nature 2023, 620, 245. [CrossRef] [PubMed]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Pompei, L.; Nardecchia, F.; Miliozzi, A. Current, Projected Performance and Costs of Thermal Energy Storage. Processes 2023, 11, 729. [Google Scholar] [CrossRef]
- Pagkalos, C.; Dogkas, G.; Koukou, M.K.; Konstantaras, J.; Lymperis, K.; Vrachopoulos, M.G. Evaluation of Water and Paraffin PCM as Storage Media for Use in Thermal Energy Storage Applications: A Numerical Approach. Int. J. Thermofluids 2020, 1–2, 100006. [Google Scholar] [CrossRef]
- Tietze, T.; Szulc, P.; Smykowski, D.; Sitka, A.; Redzicki, R. Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations. Energies 2021, 14, 3531. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase Change Materials for Thermal Energy Storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Wei, G.; Wang, G.; Xu, C.; Ju, X.; Xing, L.; Du, X.; Yang, Y. Selection Principles and Thermophysical Properties of High Temperature Phase Change Materials for Thermal Energy Storage: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1771–1786. [Google Scholar] [CrossRef]
- Ayyagari, V.; Cajamarca, A.P.S.; Shooshtari, A.; Ohadi, M. Experimental Study of Cyclically Stable Glauber’s Salt-Based PCM for Cold Thermal Energy Storage. In Proceedings of the 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2023; pp. 1–8. [Google Scholar]
- Purohit, B.K.; Sistla, V.S. Inorganic Salt Hydrate for Thermal Energy Storage Application: A Review. Energy Storage 2021, 3, e12. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Liu, M.; Bruno, F.; Li, S. Eutectic Na2CO3–NaCl Salt: A New Phase Change Material for High Temperature Thermal Storage. Sol. Energy Mater. Sol. Cells 2016, 152, 155–160. [Google Scholar] [CrossRef]
- Drissi, S.; Ling, T.-C.; Mo, K.H. Thermal Efficiency and Durability Performances of Paraffinic Phase Change Materials with Enhanced Thermal Conductivity—A Review. Thermochim. Acta 2019, 673, 198–210. [Google Scholar] [CrossRef]
- Paroutoglou, E.; Fojan, P.; Gurevich, L.; Hultmark, G.; Afshari, A. Thermal Analysis of Organic and Nanoencapsulated Electrospun Phase Change Materials. Energies 2021, 14, 995. [Google Scholar] [CrossRef]
- Caraballo, A.; Galán-Casado, S.; Caballero, Á.; Serena, S. Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis. Energies 2021, 14, 1197. [Google Scholar] [CrossRef]
- Xie, N.; Huang, Z.; Luo, Z.; Gao, X.; Fang, Y.; Zhang, Z. Inorganic Salt Hydrate for Thermal Energy Storage. Appl. Sci. 2017, 7, 1317. [Google Scholar] [CrossRef]
- Delise, T.; Tizzoni, A.C.; Votyakov, E.V.; Turchetti, L.; Corsaro, N.; Sau, S.; Licoccia, S. Modeling the Total Ternary Phase Diagram of NaNO3–KNO3–NaNO2 Using the Binary Subsystems Data. Int. J. Thermophys. 2020, 41, 1. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.K.; Saidur, R.; Tyagi, S.K.; Mishra, Y.K. Experimental Evaluation of Binary and Ternary Eutectic Phase Change Material for Sustainable Thermal Energy Storage. J. Energy Storage 2023, 68, 107707. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Ji, J.; Yan, H. Review of Research Progress on Corrosion and Anti-Corrosion of Phase Change Materials in Thermal Energy Storage Systems. J. Energy Storage 2023, 63, 107005. [Google Scholar] [CrossRef]
- Reza Vakhshouri, A. Paraffin as Phase Change Material. In Paraffin—An Overview; IntechOpen: London, UK, 2020. [Google Scholar]
- Bernagozzi, M.; Panesar, A.S.; Morgan, R. Molten Salt Selection Methodology for Medium Temperature Liquid Air Energy Storage Application. Appl. Energy 2019, 248, 500–511. [Google Scholar] [CrossRef]
- Liu, M.; Gomez, J.C.; Turchi, C.S.; Tay, N.H.S.; Saman, W.; Bruno, F. Determination of Thermo-Physical Properties and Stability Testing of High-Temperature Phase-Change Materials for CSP Applications. Sol. Energy Mater. Sol. Cells 2015, 139, 81–87. [Google Scholar] [CrossRef]
- Li, X.; Wu, S.; Wang, Y.; Xie, L. Experimental Investigation and Thermodynamic Modeling of an Innovative Molten Salt for Thermal Energy Storage (TES). Appl. Energy 2018, 212, 516–526. [Google Scholar] [CrossRef]
- Patange, S.R.; Sutar, P.R.; Yadav, G.D. New Frontiers in Thermal Energy Storage: An Experimental Analysis of Thermophysical Properties and Thermal Stability of a Novel Ternary Chloride Molten Salt. Sol. Energy Mater. Sol. Cells 2024, 271, 112866. [Google Scholar] [CrossRef]
- Hassan, N.; Minakshi, M.; Liew, W.Y.H.; Amri, A.; Jiang, Z.-T. Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature. Energies 2023, 16, 4715. [Google Scholar] [CrossRef]
- Hassan, N.; Minakshi, M.; Ruprecht, J.; Liew, W.Y.H.; Jiang, Z.-T. A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage. Materials 2023, 16, 1434. [Google Scholar] [CrossRef]
- Raud, R.; Bell, S.; Ong, T.; Will, G.; Steinberg, T.A. Optimized Salt Selection for Solar Thermal Latent Heat Energy Storage. Adv. Sustain. Syst. 2018, 2, 1800074. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, N.; Hirschey, J.; Akamo, D.O.; Li, K.; Tugba, T.; Goswami, M.; Orlando, R.; LaClair, T.J.; Graham, S.; et al. Stable Salt Hydrate-Based Thermal Energy Storage Materials. Compos. B Eng. 2022, 233, 109621. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.G.; Liu, G.Y.; Zhu, Q.Z.; Qiu, Z.Z. Thermal Property Characterization of a Low Supercooling Degree Binary Mixed Molten Salt for Thermal Energy Storage System. Int. J. Thermophys. 2019, 40, 41. [Google Scholar] [CrossRef]
- Raja Jeyaseelan, T.; Azhagesan, N.; Pethurajan, V. Thermal Characterization of NaNO3/KNO3 with Different Concentrations of Al2O3 and TiO2 Nanoparticles. J. Therm. Anal. Calorim. 2019, 136, 235–242. [Google Scholar] [CrossRef]
- Zhu, C.; Gong, L.; Tie, S. Influence of Preparation Processes on Thermophysical Properties of Molten Salt. AIP Adv. 2020, 10, 025214. [Google Scholar] [CrossRef]
- Kearney, D.; Herrmann, U.; Nava, P.; Kelly, B.; Mahoney, R.; Pacheco, J.; Cable, R.; Potrovitza, N.; Blake, D.; Price, H. Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field. J. Sol. Energy Eng. 2003, 125, 170–176. [Google Scholar] [CrossRef]
- Yin, H.B.; Ding, J.; Yang, X.X. Heat Accumulation Technologies and Systems for Use in Concentration Type Solar Energy Thermal Power Generation. J. Eng. Therm. Energy Power 2013, 1, 105. [Google Scholar]
- Herrmann, U.; Kearney, D.W. Survey of Thermal Energy Storage for Parabolic Trough Power Plants. J. Sol. Energy Eng. 2002, 124, 145–152. [Google Scholar] [CrossRef]
- Dunn, R.I.; Hearps, P.J.; Wright, M.N. Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage. Proc. IEEE 2012, 100, 504–515. [Google Scholar] [CrossRef]
- Relloso, S.; Delgado, E. Experience with Molten Salt Thermal Storage in a Commercial Parabolic Trough Plant. Andasol-1 Commissioning and Operation. In Proceedings of the 15th International Solarpaces Symposium, Berlin, Germany, 15–18 September 2009; International Energy Agency: Berlin, Germany, 2009; Volume 14. [Google Scholar]
- Falchetta, M.; Mazzei, D.; Russo, V.; Campanella, V.A.; Floridia, V.; Schiavo, B.; Venezia, L.; Brunatto, C.; Orlando, R. The Partanna Project: A First of a Kind Plant Based on Molten Salts in LFR Collectors. In Proceedings of the SolarPACES2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, Daegu, Republic of Korea, 1–4 October 2019; Volume 2303, p. 040001. [Google Scholar] [CrossRef]
- Zarza Moya, E. Innovative Working Fluids for Parabolic Trough Collectors. In Advances in Concentrating Solar Thermal Research and Technology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 75–106. [Google Scholar]
- Erregueragui, Z.; Tizliouine, A.; Omari, L.E.H.; Chafi, M. Cost Performance of Encapsulated Phase Change Material-Based Thermal Energy Storage Systems. Int. J. Low-Carbon Technol. 2022, 17, 1353–1365. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Miliozzi, A.; Crescenzi, T.; Torre, L.; Kenny, J.M. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage. Nanoscale Res. Lett. 2015, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Gabisa, E.W.; Aman, A. Characterization and Experimental Investigation of NaNO3: KNO3 as Solar Thermal Energy Storage for Potential Cooking Application. J. Sol. Energy 2016, 2016, 1–6. [Google Scholar] [CrossRef]
- Huang, Z.; Xie, N.; Luo, Z.; Gao, X.; Fang, X.; Fang, Y.; Zhang, Z. Characterization of Medium-Temperature Phase Change Materials for Solar Thermal Energy Storage Using Temperature History Method. Sol. Energy Mater. Sol. Cells 2018, 179, 152–160. [Google Scholar] [CrossRef]
- Tizzoni, A.C.; Sau, S.; Corsaro, N.; Giaconia, A.; D’Ottavi, C.; Licoccia, S. Thermal Fluids for CSP Systems: Alkaline Nitrates/Nitrites Thermodynamics Modelling Method. In Proceedings of the SolarPACES Conference 2015, 21st SolarPACES Conference, Cape Town, South Africa, 13–16 October 2015; Volume 1734, p. 040007. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Wang, X.; Sun, S.; Bai, J.; Cui, D.; Pan, S.; Sheng, H. Effect of Al2O3 Nanoparticle Dispersion on the Thermal Properties of a Eutectic Salt for Solar Power Applications: Experimental and Molecular Simulation Studies. Energy 2024, 288, 129785. [Google Scholar] [CrossRef]
- Kwasi-Effah, C.C.; Ighodaro, O.; Egware, H.O.; Obanor, A.I. Characterization and Comparison of the Thermophysical Property of Ternary and Quaternary Salt Mixtures for Solar Thermal Power Plant Applications. Results Eng. 2022, 16, 100721. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.-T.; Wang, C.; Wang, X.; Ma, C.-F. Flow and Mixed Convection Heat Transfer of Hitec Salt in Multi-Sided Heating Pipes. Sustain. Energy Technol. Assess. 2021, 47, 101375. [Google Scholar] [CrossRef]
- Xiao, X.; Jia, H.; Wen, D.; Zhao, X. Thermal Performance Analysis of a Solar Energy Storage Unit Encapsulated with HITEC Salt/Copper Foam/Nanoparticles Composite. Energy 2020, 192, 116593. [Google Scholar] [CrossRef]
- Kwasi-Effah, C.C.; Egware, H.O.; Obanor, A.I.; Ighodaro, O.O. Development and Characterization of a Quaternary Nitrate Based Molten Salt Heat Transfer Fluid for Concentrated Solar Power Plant. Heliyon 2023, 9, e16096. [Google Scholar] [CrossRef] [PubMed]
- Mwesigye, A.; Yılmaz, İ.H. Thermal and Thermodynamic Benchmarking of Liquid Heat Transfer Fluids in a High Concentration Ratio Parabolic Trough Solar Collector System. J. Mol. Liq. 2020, 319, 114151. [Google Scholar] [CrossRef]
- Tietze, T.; Kryteria, A. Phase change material selection criteria for thermal energy storage. Przemysł Chem. 2018, 1, 113–116. [Google Scholar] [CrossRef]
- ASTM E794-06(2018); Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis. ASTM: West Conshohocken, PA, USA, 2018.
- Delise, T.; Tizzoni, A.C.; Ferrara, M.; Corsaro, N.; D’Ottavi, C.; Giaconia, A.; Turchetti, L.; Annesini, M.C.; Telling, M.; Sau, S.; et al. New Solid Phase of KNO3—NaNO3 Salt Mixtures Studied by Neutron Scattering and Differential Scanning Calorimetry Analysis. In Proceedings of the SolarPACES 2017, International Conference on Concentrating Solar Power and Chemical Energy Systems, Santiago, Chile, 26–29 September 2017; Volume 2033, p. 080001. [Google Scholar] [CrossRef]
- Gomez, J.C. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications; Milestone Report NREL/TP-5500-51446, Contract No. DE-AC36-08GO28308; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011. [Google Scholar]
- Gomez, J.; Glatzmaier, G.C.; Starace, A.; Turchi, C.; Ortega, J. High Temperature Phase Change Materials for Thermal Energy Storage Applications; NREL/CP-5500-52390 August 2011, Contract No. DE-AC36-08GO28308; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011. [Google Scholar]
- Zalba, B.; Marın, J.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
PCM | Phase Change Temperature, °C | Latent Heat, kJ/kg |
---|---|---|
NaNO3–KNO3–NaNO2 (7%:53%:40%) | 150 | 122 |
NaNO3 | 310 | 178 |
NaNO2 | 283 | 217 |
KNO3 | 336 | 111 |
PCM | Phase Change Temperature, °C | Latent Heat, kJ/kg | Thermal Conductivity, W/m·K | References |
---|---|---|---|---|
NaNO3–NaNO2–KNO3 | 150 | 122 | 0.66 | [18] |
MgF2 | 1271 | 936 | 0.30 | [18] |
n-Tetradecane (C14) | 6 | 229 | 0.14 | [19] |
RT 125 | 128 | 175 | 0.20 | [19] |
Salt Mixture | Composition, % (m/m) | ||||||
---|---|---|---|---|---|---|---|
NaNO3:KNO3 | 0:100 | 30:70 | 40:60 | 50:50 | 60:40 | 70:30 | 100:0 |
NaNO2:NaNO3 | 100:0 | 80:20 | 60:40 | 50:50 | 40:60 | 20:80 | 0:100 |
Furnace Material | Platinum |
---|---|
Sample carrier | TG–DSC |
Crucible material | Al2O3 |
Sample thermocouple | Type S |
Carrier gas type | Nitrogen (25 mL/min) |
Protective gas type | Nitrogen (25 mL/min) |
Inlet temperature (charging) | 360 °C |
Air volume flow rate (charging) | 150 dm3/min |
Inlet temperature (discharging) | 25 °C |
Air volume flow rate (discharging) | 150 dm3/min |
Composition (m/m), % NaNO3:KNO3 | 100:0 | 30:70 | 40:60 | 50:50 | 60:40 | 70:30 | 0:100 |
---|---|---|---|---|---|---|---|
TM1, °C | 310.0 | 234.2 | 229.7 | 228.3 | 235.1 | 236.9 | 336.5 |
TONSET1, °C | 304.9 | 216.2 | 215.0 | 217.1 | 219.7 | 219.7 | 331.9 |
TEND1, °C | 313.5 | 263.7 | 252.8 | 235.1 | 246.7 | 270.3 | 339.8 |
TM2, °C | 299.7 | 211.2 | 212.8 | 209.3 | 210.3 | 213.4 | 326.2 |
TONSET2, °C | 302.6 | 244.0 | 237.7 | 217.3 | 227.2 | 250.7 | 331.0 |
TEND2, °C | 295.5 | 196.0 | 199.2 | 198.1 | 202.1 | 203.3 | 321.1 |
ΔHM, kJ/kg | 178.4 | 66.2 | 69.4 | 75.5 | 85.4 | 93.8 | 110.8 |
Composition (m/m), % NaNO2:NaNO3 | 100:0 | 80:20 | 60:40 | 50:50 | 40:60 | 20:80 | 0:100 |
---|---|---|---|---|---|---|---|
TM1, °C | 283.1 | 174.9 | 194.8 | 203.5 | 238.1 | 267.0 | 310.0 |
TONSET1, °C | 273.7 | 141.9 | 160.3 | 153.8 | 126.1 | 234.5 | 304.9 |
TEND1, °C | 293.6 | 184.8 | 209.0 | 227.6 | 249.7 | 275.4 | 313.5 |
TM2, °C | 269.4 | 160.4 | 108.6 | 179.3 | 219.0 | 253.5 | 299.7 |
TONSET2, °C | 276.5 | 167.5 | 184.5 | 205.0 | 229.4 | 259.4 | 302.6 |
TEND2, °C | 260.6 | 124.0 | 191.2 | 139.3 | 185.1 | 225.1 | 295.5 |
ΔHM, kJ/kg | 216.9 | 112.1 | 142.9 | 148.0 | 157.0 | 163.7 | 178.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitka, A.; Szulc, P.; Smykowski, D.; Tietze, T.; Anwajler, B.; Pytlik, B.; Jodkowski, W.; Redzicki, R. The Impact of Binary Salt Blends’ Composition on Their Thermophysical Properties for Innovative Heat Storage Materials. J. Manuf. Mater. Process. 2024, 8, 208. https://doi.org/10.3390/jmmp8050208
Sitka A, Szulc P, Smykowski D, Tietze T, Anwajler B, Pytlik B, Jodkowski W, Redzicki R. The Impact of Binary Salt Blends’ Composition on Their Thermophysical Properties for Innovative Heat Storage Materials. Journal of Manufacturing and Materials Processing. 2024; 8(5):208. https://doi.org/10.3390/jmmp8050208
Chicago/Turabian StyleSitka, Andrzej, Piotr Szulc, Daniel Smykowski, Tomasz Tietze, Beata Anwajler, Beata Pytlik, Wiesław Jodkowski, and Romuald Redzicki. 2024. "The Impact of Binary Salt Blends’ Composition on Their Thermophysical Properties for Innovative Heat Storage Materials" Journal of Manufacturing and Materials Processing 8, no. 5: 208. https://doi.org/10.3390/jmmp8050208
APA StyleSitka, A., Szulc, P., Smykowski, D., Tietze, T., Anwajler, B., Pytlik, B., Jodkowski, W., & Redzicki, R. (2024). The Impact of Binary Salt Blends’ Composition on Their Thermophysical Properties for Innovative Heat Storage Materials. Journal of Manufacturing and Materials Processing, 8(5), 208. https://doi.org/10.3390/jmmp8050208