TiO2@lipophilic Porphyrin Composites: New Insights into Tuning the Photoreduction of Cr(VI) to Cr(III) in Aqueous Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Photocatalytic Activity
2.3. Experimental Design
2.4. Raman Spectroscopy Characterization
3. Results and Discussion
3.1. Full Factorial Design
3.1.1. Distribution of Experimental Data
3.1.2. Significance of Factors (Coefficients)
3.1.3. Plots of Residual
3.1.4. Summary of Fit
3.1.5. Design of Experiments (DOE) through the Time of Irradiation
3.2. Raman Spectroscopy
3.3. Stability of TiO2@Cu(II)Pp Nanocomposite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moretto, A. Hexavalent and trivalent chromium in leather: What should be done? Regul. Toxicol. Pharmacol. 2015, 73, 681–686. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250–251, 272–291. [Google Scholar] [CrossRef]
- Zhao, Y.; Chang, W.; Huang, Z.; Feng, X.; Ma, L.; Qi, X.; Li, Z. Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres. Appl. Surf. Sci. 2017, 405, 102–110. [Google Scholar] [CrossRef]
- Thatoi, H.; Das, S.; Mishra, J.; Rath, B.P.; Das, N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. J. Environ. Manag. 2014, 146, 383–399. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, L.; Li, J.; Li, J.; Yan, T.; Sun, M.; Pei, Z. Synergistic adsorption and photocatalytic reduction of Cr(VI) using Zn-Al-layered double hydroxide and TiO2 composites. Appl. Surf. Sci. 2019, 492, 487–496. [Google Scholar] [CrossRef]
- Prabavathi, S.L.; Kumar, P.S.; Saravanakumar, K.; Muthuraj, V.; Karuthapandian, S. A novel sulphur decorated 1-D MoO3 nanorods: Facile synthesis and high performance for photocatalytic reduction of hexavalent chromium. J. Photochem. Photobiol. A Chem. 2018, 356, 642–651. [Google Scholar] [CrossRef]
- Vellaichamy, B.; Periakaruppan, P.; Nagulan, B. A novel sulphur decorated 1-D MoO3 nanorods: Facile synthesis and high performance for photocatalytic reduction of hexavalent chromium. ACS Sustain. Chem. Eng. 2017, 5, 9313–9324. [Google Scholar] [CrossRef]
- Barrera-Díaz, C.E.; Lugo-Lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 2012, 223–224, 1–12. [Google Scholar] [CrossRef]
- Athanasekou, C.; Romanos, G.E.; Papageorgiou, S.K.; Manolis, G.K.; Katsaros, F.; Falaras, P. Photocatalytic degradation of hexavalent chromium emerging contaminant via advanced titanium dioxide nanostructures. Chem. Eng. J. 2017, 318, 171–180. [Google Scholar] [CrossRef]
- Sanad, M.M.S.; Abdel-Aal, E.A.; Osman, H.M.; Kandil, A.T. Photocatalytic reduction of hexavalent chromium with commercial Fe/Ti oxide catalyst under UV and visible light irradiation. Int. J. Environ. Sci. Technol. 2018, 15, 2459–2472. [Google Scholar] [CrossRef]
- Li, Y.; Bian, Y.; Qin, H.; Zhang, Y.; Bian, Z. Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide. Appl. Catal. B Environ. 2017, 206, 293–299. [Google Scholar] [CrossRef]
- Mele, G.; Del Sole, R.; Vasapollo, G.; Garcìa-Lòpez, E.; Palmisano, L.; Mazzetto, S.E.; Attanasi, O.A.; Filippone, P. Polycrystalline TiO2 impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol. Green Chem. 2004, 6, 604–608. [Google Scholar] [CrossRef]
- Mohapatra, P.; Samantaray, S.K.; Parida, K. Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. J. Photochem. Photobiol. A Chem. 2005, 170, 189–194. [Google Scholar] [CrossRef]
- Chen, D.; Ray, A.K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 2001, 56, 1561–1570. [Google Scholar] [CrossRef]
- Mele, G.; Del Sole, R.; Vasapollo, G.; García-López, E.; Palmisano, L.; Schiavello, M. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)-porphyrin or Cu(II)-phthalocyanine. J. Catal. 2003, 217, 334–342. [Google Scholar] [CrossRef]
- Mele, G.; Annese, C.; D’Accolti, L.; De Riccardis, A.; Fusco, C.; Palmisano, L.; Scarlino, A.; Vasapollo, G. Photoreduction of carbon dioxide to formic acid in aqueous suspension: A comparison between phthalocyanine/TiO2 and porphyrin/TiO2 catalysed processes. Molecules 2015, 20, 396–415. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.C.S.; Lin, H.M. Photo reduction of CO2 to methanol via TiO2 photocatalyst. Int. J. Photoenergy 2005, 7, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Woolerton, T.W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S.W.; Armstrong, F.A. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 2010, 132, 2132–2133. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, Y.; Feng, W.; Lei, H.; Li, J. Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres. RSC Adv. 2017, 7, 52738–52746. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, J.; Mele, G.; Duan, M.Y.; Fei Lü, X.; Palmisano, L.; Vasapollo, G.; Zhang, F.X. The photocatalytic activity of novel, substituted porphyrin/TiO2-based composites. Dyes Pigments 2010, 84, 183–189. [Google Scholar] [CrossRef]
- Wang, L.; Jin, P.; Huang, J.; She, H.; Wang, Q. Integration of Copper(II)-Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction. ACS Sustain. Chem. Eng. 2019, 7, 15660–15670. [Google Scholar] [CrossRef]
- Gholamrezapor, E.; Eslami, A. Sensitization of magnetic TiO2 with copper(II) tetrahydroxylphenyl porphyrin for photodegradation of methylene blue by visible LED light. J. Mater. Sci. Mater. Electron. 2019, 30, 4705–4715. [Google Scholar] [CrossRef]
- Guo, X.; Li, X.; Qin, L.; Kang, S.Z.; Li, G. A highly active nano-micro hybrid derived from Cu-bridged TiO2/porphyrin for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2019, 243, 1–9. [Google Scholar] [CrossRef]
- Bhati, A.; Anand, S.R.; Saini, D.; Gunture Sonkar, S.K. Sunlight-induced photoreduction of Cr(VI) to Cr(III) in wastewater by nitrogen-phosphorus-doped carbon dot. SNPJ Clean Water 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Attanasi, O.A.; Del Sole, R.; Filippone, P.; Mazzetto, S.E.; Mele, G.; Vasapollo, G. Synthesis of novel lipophilic porphyrin-cardanol derivatives. J. Porphyr. Phthalocyanines 2004, 8, 1276–1284. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Lemos, V.A.; Novaes, C.G.; de Jesus, R.M.; Filho, H.R.S.; Araújo, S.A.; Alves, J.P.S. Application of mixture design in analytical chemistry. Microchem. J. 2020, 152, 104336. [Google Scholar] [CrossRef]
- De Benedetto, G.E.; Di Masi, S.; Pennetta, A.; Malitesta, C. Response surface methodology for the optimisation of electrochemical biosensors for heavy metals detection. Biosensors 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- EPA. Method 7196A (Chromoium Hexavalent, Colorimetric); EPA: Washington, DC, USA, 1992; pp. 5–6.
- Ku, Y.; Jung, I.L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 2001, 35, 135–142. [Google Scholar] [CrossRef]
- Fico, D.; Pennetta, A.; Rella, G.; Savino, A.; Terlizzi, V.; De Benedetto, G.E. A combined analytical approach applied to Medieval wall paintings from Puglia (Italy): The study of painting techniques and its conservation state. J. Raman Spectrosc. 2016, 47, 321–328. [Google Scholar] [CrossRef]
- van der Werf, I.D.; Fico, D.; De Benedetto, G.E.; Sabbatini, L. The molecular composition of Sicilian amber. Microchem. J. 2016, 125, 85–96. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, Y.; Zhou, M.; Li, Z.; Xu, S.; Yao, C. Facile synthesis of novel ZnFe2O4/CdS nanorods composites and its efficient photocatalytic reduction of Cr(VI) under visible-light irradiation. J. Ind. Eng. Chem. 2018, 58, 64–73. [Google Scholar] [CrossRef]
- Kim, W.; Park, J.Y.; Kim, Y. Fabrication of branched-TiO2 microrods on the FTO glass for photocatalytic reduction of Cr(VI) under visible-light irradiation. J. Ind. Eng. Chem. 2019, 73, 248–253. [Google Scholar] [CrossRef]
- Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.K.; Gholami, M.; Farzadkia, M. Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J. Ind. Eng. Chem. 2015, 22, 317–323. [Google Scholar] [CrossRef]
- Jiang, F.; Zheng, Z.; Xu, Z.; Zheng, S.; Guo, Z.; Chen, L. Aqueous Cr(VI) photoreduction catalyzed by TiO2 and sulfated TiO2. J. Hazard. Mater. 2006, 134, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Padhi, D.K.; Parida, K. Facile fabrication of α-FeOOH nanorod/RGO composite: A robust photocatalyst for reduction of Cr(vi) under visible light irradiation. J. Mater. Chem. A 2014, 2, 10300–10312. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Wang, P.; Zheng, Q.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Membrane Sci. 2007, 288, 231–238. [Google Scholar] [CrossRef]
- Stagi, L.; Carbonaro, C.M.; Corpino, R.; Chiriu, D.; Ricci, P.C. Light induced TiO2 phase transformation: Correlation with luminescent surface defects. Phys. Status Solidi Basic Res. 2015, 252, 124–129. [Google Scholar] [CrossRef]
- Bohdziewicz, J. Removal of chromium ions (VI) from underground water in the hybrid complexation-ultrafiltration process. Desalination 2000, 129, 227–235. [Google Scholar] [CrossRef]
Factors | Units | Low | High |
---|---|---|---|
pH (X1) | - | 2 | 5 |
[Cr(VI)] (X2) | mg L−1 | 5 | 15 |
Catalyst amount (X3) | mg L−1 | 500 | 1500 |
Exp No | Run Order | pH | Cr(VI), mg L−1 | Catalyst, mg L−1 | Photoreduction Efficiency, % | ||
---|---|---|---|---|---|---|---|
TiO2 | TiO2@H2Pp | TiO2@CuPp | |||||
1 | 1 | 2 | 5 | 500 | 37 | 37 | 41 |
2 | 7 | 5 | 5 | 500 | 21 | 18 | 23 |
3 | 6 | 2 | 15 | 500 | 17 | 16 | 31 |
4 | 5 | 5 | 15 | 500 | 12 | 14 | 16 |
5 | 4 | 2 | 5 | 1500 | 41 | 67 | 88 |
6 | 9 | 5 | 5 | 1500 | 38 | 28 | 48 |
7 | 2 | 2 | 15 | 1500 | 47 | 28 | 50 |
8 | 8 | 5 | 15 | 1500 | 17 | 15 | 22 |
9 | 3 | 3.5 | 10 | 1000 | 25 | 23 | 28 |
10 | 10 | 3.5 | 10 | 1000 | 27 | 28 | 32 |
11 | 11 | 3.5 | 10 | 1000 | 29 | 30 | 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pennetta, A.; Di Masi, S.; Piras, F.; Lü, X.; Li, J.; De Benedetto, G.E.; Mele, G. TiO2@lipophilic Porphyrin Composites: New Insights into Tuning the Photoreduction of Cr(VI) to Cr(III) in Aqueous Phase. J. Compos. Sci. 2020, 4, 82. https://doi.org/10.3390/jcs4020082
Pennetta A, Di Masi S, Piras F, Lü X, Li J, De Benedetto GE, Mele G. TiO2@lipophilic Porphyrin Composites: New Insights into Tuning the Photoreduction of Cr(VI) to Cr(III) in Aqueous Phase. Journal of Composites Science. 2020; 4(2):82. https://doi.org/10.3390/jcs4020082
Chicago/Turabian StylePennetta, Antonio, Sabrina Di Masi, Federica Piras, Xiangfei Lü, Jun Li, Giuseppe Edigio De Benedetto, and Giuseppe Mele. 2020. "TiO2@lipophilic Porphyrin Composites: New Insights into Tuning the Photoreduction of Cr(VI) to Cr(III) in Aqueous Phase" Journal of Composites Science 4, no. 2: 82. https://doi.org/10.3390/jcs4020082
APA StylePennetta, A., Di Masi, S., Piras, F., Lü, X., Li, J., De Benedetto, G. E., & Mele, G. (2020). TiO2@lipophilic Porphyrin Composites: New Insights into Tuning the Photoreduction of Cr(VI) to Cr(III) in Aqueous Phase. Journal of Composites Science, 4(2), 82. https://doi.org/10.3390/jcs4020082