Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
3. Results and Discussion
3.1. Mica/Graphene Oxide Composite Platelets
3.2. Graphene Oxide/Mica/Polypropylene Composites
3.3. Dielectric Properties of Graphene Oxide/Mica/Polypropylene Composites
3.4. Tensile Test of Graphene Oxide/Mica/Polypropylene Films
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borchardt, J.; Alexander, J.; Slenes, K.; De La Fuente, R. Ceramic-polymer composite for high energy density capacitors. In Proceedings of the 16th IEEE International Pulsed Power Conference, Albuquerque, NM, USA, 17–22 June 2007; Volume 1, pp. 294–297. [Google Scholar]
- Tummala, R.R.; Laskar, J. Gigabit Wireless: System-on-a-Package Technology. Proc. IEEE 2004, 92, 376–387. [Google Scholar] [CrossRef]
- Gray, F.M.; Armand, M. Energy Storage Systems for Electronics; Gordon and Breach Science Publications: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Karden, E.; Ploumen, S.; Fricke, B.; Miller, T.; Snyder, K. Energy storage devices for future hybrid electric vehicles. J. Power Sources 2007, 168, 2–11. [Google Scholar] [CrossRef]
- Fiedziuszko, S.; Hunter, I.; Itoh, T.; Kobayashi, Y.; Nishikawa, T.; Stitzer, S.; Wakino, K. Dielectric materials, devices, and circuits. IEEE Trans. Microw. Theory Tech. 2002, 50, 706–720. [Google Scholar] [CrossRef]
- Jillek, W.; Yung, W.K.C. Embedded components in printed circuit boards: A processing technology review. Int. J. Adv. Manuf. Technol. 2004, 25, 350–360. [Google Scholar] [CrossRef]
- Yoon, J.-R.; Han, J.-W.; Lee, K.-M. Dielectric Properties of Polymer-ceramic Composites for Embedded Capacitors. Trans. Electr. Electron. Mater. 2009, 10, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, M.T.; Jantunen, H. Polymer–ceramic composites of 0-3 connectivity for circuits in electronics: A review. Int. J. Appl. Ceram. Technol. 2010, 7, 415–434. [Google Scholar] [CrossRef]
- Newnham, R.; Skinner, D.; Cross, L. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Skinner, D.; Newnham, R.; Cross, L. Flexible composite transducers. Mater. Res. Bull. 1978, 13, 599–607. [Google Scholar] [CrossRef]
- Jayasundere, N.; Smith, B.V.; Dunn, J.R. Piezoelectric constant for binary piezoelectric 0-3 connectivity composites and the effect of mixed connectivity. J. Appl. Phys. 1994, 76, 2993–2998. [Google Scholar] [CrossRef]
- Wong, C.K.; Poon, Y.M.; Shin, F.G. Explicit formulas for effective piezoelectric coefficients of ferroelectric 0-3 composites. J. Appl. Phys. 2001, 90, 4690–4700. [Google Scholar] [CrossRef] [Green Version]
- Pilgrim, S.; Newnham, R. 3:0: A new composite connectivity. Mater. Res. Bull. 1986, 21, 1447–1454. [Google Scholar] [CrossRef]
- Nan, C.-W.; Shen, Y.; Ma, J. Physical Properties of Composites Near Percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151. [Google Scholar] [CrossRef]
- Newnham, R.E. Composite electroceramics. Ferroelectrics 1986, 68, 1–32. [Google Scholar] [CrossRef]
- Fang, D.-N.; Soh, A.K.; Li, C.-Q.; Jiang, B. Nonlinear behavior of 0-3 type ferroelectric composites with polymer matrices. J. Mater. Sci. 2001, 36, 5281–5288. [Google Scholar] [CrossRef]
- Komarneni, S. Nanocomposites. J. Mater. Chem. 1992, 2, 1219–1230. [Google Scholar] [CrossRef]
- Garboczi, E.J.; Snyder, K.A.; Douglas, J.F.; Thorpe, M.F. Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 1995, 52, 819–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toker, D.; Azulay, D.; Shimoni, N.; Balberg, I.; Millo, O. Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 2003, 68, 041403. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Yue, Z.; Li, M.; Nan, C.-W. Enhanced Initial Permeability and Dielectric Constant in a Double- Percolating Ni0.3Zn0.7Fe1.95O4-Ni- Polymer Composite. Adv. Funct. Mater. 2005, 15, 1100–1103. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, X.; Wang, H.; Wang, X.; Hao, C.; Fan, R.; Shi, Z. Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via construct-ing hollow-structured filler frameworks. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105814. [Google Scholar] [CrossRef]
- Mo, H.; Wang, G.; Liu, F.; Jiang, P. The influence of the interface between mica and epoxy matrix on properties of epoxy-based dielectric mate-rials with high thermal conductivity and low dielectric loss. RSC Adv. 2016, 6, 83163–83174. [Google Scholar] [CrossRef]
- Rabuffi, M.; Picci, G. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 2002, 30, 1939–1942. [Google Scholar] [CrossRef]
- Zheng, M.S.; Zheng, Y.T.; Zha, J.W.; Yang, Y.; Han, P.; Wen, Y.Q.; Dang, Z.M. Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 2018, 48, 144–151. [Google Scholar] [CrossRef]
- Yao, J.; Hu, L.; Zhou, M.; You, F.; Jiang, X.; Gao, L.; Wang, Q.; Sun, Z.; Wang, J. Synergistic enhancement of thermal conductivity and dielectric properties in Al2O3/BaTiO3/PP composites. Materials 2018, 11, 1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alig, I.; Lellinger, D.; Dudkin, S.M.; Pötschke, P. Conductivity spectroscopy on melt processed polypropylene–multiwalled carbon nanotube composites: Re-covery after shear and crystallization. Polymer 2007, 48, 1020–1029. [Google Scholar] [CrossRef]
- Xu, H.P.; Dang, Z.M.; Jiang, M.J.; Yao, S.H.; Bai, J. Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black. J. Mater. Chem. 2008, 18, 229–234. [Google Scholar] [CrossRef]
- Motori, A.; Montanari, G.C.; Saccani, A.; Patuelli, F. Electrical conductivity and polarization processes in nanocomposites based on isotactic polypropylene and modified synthetic clay. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 705–713. [Google Scholar] [CrossRef]
- Yu, C.-R.; Wu, D.-M.; Liu, Y.; Qiao, H.; Yu, Z.-Z.; Dasari, A.; Du, X.; Mai, Y.-W. Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos. Sci. Technol. 2011, 71, 1706–1712. [Google Scholar] [CrossRef]
- Li, Z.; Fredin, L.A.; Tewari, P.; DiBenedetto, S.A.; Lanagan, M.T.; Ratner, M.A.; Marks, T.J. In Situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: Dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem. Mater. 2010, 22, 5154–5164. [Google Scholar] [CrossRef]
- Takala, M.; Ranta, H.; Nevalainen, P.; Pakonen, P.; Pelto, J.; Karttunen, M.; Virtanen, S.; Koivu, V.; Pettersson, M.; Sonerud, B.; et al. Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1259–1267. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Wei, S.; Ryu, J.; Sun, L.; Guo, Z. Poly(propylene)/Graphene Nanoplatelet Nanocomposites: Melt Rheological Behavior and Thermal, Electrical, and Electronic Properties. Macromol. Chem. Phys. 2011, 212, 1951–1959. [Google Scholar] [CrossRef]
- Sui, G.; Jana, S.; Zhong, W.; Fuqua, M.; Ulven, C. Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites. Acta Mater. 2008, 56, 2381–2388. [Google Scholar] [CrossRef]
- Wan, Y.J.; Yang, W.H.; Yu, S.H.; Sun, R.; Wong, C.P.; Liao, W.H. Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol. 2016, 122, 27–35. [Google Scholar] [CrossRef]
- Li, M.; Deng, Y.; Wang, Y.; Zhang, Y.; Bai, J. High dielectric properties in a three-phase polymer composite induced by a parallel structure. Mater. Chem. Phys. 2013, 139, 865–870. [Google Scholar] [CrossRef]
- Yang, C.; Lin, Y.; Nan, C. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 2009, 47, 1096–1101. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Zhi, X.; Mao, Y.; Yu, Z.; Wen, S.; Li, Y.; Zhang, L.; Chan, T.W.; Liu, L. γ-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss. Compos. Part A 2015, 76, 194–202. [Google Scholar] [CrossRef]
- Yang, X.; Tu, Y.; Li, L.; Shang, S.; Tao, X.-M. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef]
- Zokaie, M.; Foroutan, M. Comparative study on confinement effects of graphene and graphene oxide on structure and dynamics of water. RSC Adv. 2015, 5, 39330–39341. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Zhu, Y.; James, D.K.; Tour, J.M. New routes to graphene, graphene oxide and their related applications. Adv. Mater. 2012, 24, 4924–4955. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the chemistry of graphene oxide. Chem. Soc. Rev. 2014, 43, 5288–5301. [Google Scholar] [CrossRef]
- Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.-K. Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2014, 26, 5480–5487. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, X.; Shen, X.; Sun, X.; Liu, X.; Wang, Z. Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride). Nanocompos. Carbon 2015, 89, 102–112. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Gong, L.-X.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. Part A Appl. Sci. Manuf. 2014, 64, 79–89. [Google Scholar] [CrossRef]
- Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M. One Step Synthesis of Graphene Oxide–Magnetic Nanoparticle Composite. J. Phys. Chem. C 2010, 114, 1498–1503. [Google Scholar] [CrossRef]
- Nam, W.H.; Kim, B.B.; Seo, S.G.; Lim, Y.S.; Kim, J.Y.; Seo, W.S.; Choi, W.K.; Park, H.H.; Lee, J.Y. Structurally nanocrystalline-electrically single crystalline zno-reduced graphene oxide composites. Nano Lett. 2014, 14, 5104–5109. [Google Scholar] [CrossRef]
- Standard, ASTM. D149-09, Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies; Research Report; ASTM International: West Conshohocken, PA, USA, 2009.
- Li, H.; Ren, L.; Zhou, Y.; Yao, B.; Wang, Q. Recent progress in polymer dielectrics containing boron nitride nanosheets for high energy density capacitors. High Volt. 2020, 5, 365–376. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage. Adv. Mater. 2016, 28, 6104–6135. [Google Scholar] [CrossRef]
- Mohan, V.B.; Jayaraman, K.; Bhattacharyya, D. Brunauer–Emmett–Teller (BET) specific surface area analysis of different graphene materials: A comparison to their structural regularity and electrical properties. Solid State Commun. 2020, 320, 114004. [Google Scholar] [CrossRef]
- Zhang, C.; Dang, Z.-M.; Yan, H.-D.; Li, W.-K.; Dang, Z.-M. High improvement in trap level density and direct current breakdown strength of block polypropylene by doping with a β-nucleating agent. Appl. Phys. Lett. 2018, 112, 091902. [Google Scholar] [CrossRef]
- Thakur, V.K.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Todd, M.G.; Shi, F.G. Characterizing the interface dielectric constant of polymer composite materials: Effect of chemical coupling agents. J. Appl. Phys. 2003, 94, 4551–4557. [Google Scholar] [CrossRef]
- Shugg, W. Handbook of electrical and electronic insulating materials, second edition. IEEE Electr. Insul. Mag. 1996, 12, 40. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
Sample | BET Surface Area(m2/g) |
---|---|
Mica | 3.18 |
Mica+silane | 16.2 |
0.5% mica + 0.05% GO + silane | 22.42 |
Sample | Area (cm2) | Thickness (mm) | Breakdown Voltage (KV) | Dielectric Strength (KV/mm) |
---|---|---|---|---|
PP | 133.0 | 1.25 | 40 | 32.1 |
0.1% mica/PP | 133.2 | 1.18 | 38.4 | 32.5 |
1% mica/PP | 133.0 | 1.18 | 43.2 | 36.3 |
0.5% mica/0.01% GO/PP | 133.4 | 1.17 | 45.1 | 38.5 |
0.5% mica/0.03% GO/PP | 133.3 | 1.19 | 41.7 | 35 |
0.5% mica/0.05% GO/PP | 133.3 | 1.13 | 32.6 | 28.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Chang, C.-W. Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites. J. Compos. Sci. 2021, 5, 52. https://doi.org/10.3390/jcs5020052
Lee C-Y, Chang C-W. Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites. Journal of Composites Science. 2021; 5(2):52. https://doi.org/10.3390/jcs5020052
Chicago/Turabian StyleLee, Chao-Yu, and Chia-Wei Chang. 2021. "Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites" Journal of Composites Science 5, no. 2: 52. https://doi.org/10.3390/jcs5020052
APA StyleLee, C. -Y., & Chang, C. -W. (2021). Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites. Journal of Composites Science, 5(2), 52. https://doi.org/10.3390/jcs5020052