Natural Frequencies Calculation of Composite Annular Circular Plates with Variable Thickness Using the Spline Method
Abstract
:1. Introduction
2. Formulation of the Problem
2.1. Thickness Variation
2.2. Method of Solution
3. Results and Discussion
Validation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
EGE | E-glass/epoxy |
GE | AS4/3501-6 graphite/epoxy |
KE | Kevlar-49/epoxy |
S−S | Both the ends are simply supported |
Symbols | |
Elastic coefficients representing the extensional rigidity | |
Variable thickness elastic coefficients representing the extensional rigidity of uniform thickness | |
Elastic coefficients representing the bending-stretching coupling rigidity | |
Variable thickness elastic coefficients representing the bending-stretching coupling rigidity of uniform thickness | |
Exponential, linear and sinusoidal variation, respectively | |
Elastic coefficients representing the bending rigidity | |
Variable thickness elastic coefficients representing the bending rigidity of uniform thickness | |
Side-to-thickness ratio | |
The Heaviside function | |
Normal inertia coefficient | |
Inertia coefficients | |
Shear correction factor | |
Length parameter | |
Differential operator occurring in the equations of motion | |
Moment resultants in the respective direction of annular circular plate | |
Stress resultants in the respective direction of annular circular plate | |
Number of intervals of spline interpolation | |
Elements of the stiffness matrix for the material of k-th layer | |
Elements of the transformed stiffness matrix for the material of k-th layer | |
Transverse shear resultants in the respective directions | |
Radial distance coordinate | |
Displacement functions in , , directions | |
Nondimensionalized displacement functions in , , directions | |
The equally spaced knots of spline interpolation | |
, | Length and width of the inner radius and the outer radius |
, | Spline coefficients |
Total thickness | |
Thickness of the k-th layer | |
General indices | |
Width of annular circular plate | |
Circumferential node number | |
Radius of reference surface of plate at a general point | |
The radius of the inner radius and the outer radius | |
, , displacements | |
The in-plane displacements of the reference surface | |
Normal coordinate of any point on the annular circular plate | |
Distance to the top of the k-th layer from the reference surface | |
The radii ratio | |
Relative layer thickness of the -th layer | |
Normal strain in the respective directions | |
Ratios of thickness to radius of inner circle | |
Shear strain in the respective directions | |
Angular frequency | |
Shear rotations of any point on the middle surface | |
Shear rotational functions | |
Nondimensionalized shear rotations | |
Mass density of the material | |
Normal stress in the respective directions | |
Shear stress at a point on the reference surface | |
Ply orientation angle |
References
- Heshmati, M.; Jalali, S. Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates. Eur. J. Mech.-A Solids 2019, 74, 417–430. [Google Scholar] [CrossRef]
- Yang, Y.; Kou, K.; Lam, C.C. In-Plane Free Vibration of Circular and Annular FG Disks. Int. J. Comput. Methods 2019, 16, 1840024. [Google Scholar] [CrossRef]
- Żur, K.K. Free-vibration analysis of discrete-continuous functionally graded circular plate via the Neumann series method. Appl. Math. Model. 2019, 73, 166–189. [Google Scholar] [CrossRef]
- Civalek, Ö.; Baltacıoglu, A.K. Free vibration analysis of laminated and FGM composite annular sector plates. Compos. Part B Eng. 2019, 157, 182–194. [Google Scholar] [CrossRef]
- Wu, C.-P.; Yu, L.-T. Free vibration analysis of bi-directional functionally graded annular plates using finite annular prism methods. J. Mech. Sci. Technol. 2019, 33, 2267–2279. [Google Scholar] [CrossRef]
- Arefi, M.; Bidgoli, E.M.-R.; Zenkour, A.M. Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface. Mech. Adv. Mater. Struct. 2019, 26, 741–752. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ansari, R.; Rouhi, H. Free and forced vibration analysis of rectangular/circular/annular plates made of carbon fiber-carbon nanotube-polymer hybrid composites. Sci. Eng. Compos. Mater. 2019, 26, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zuo, Y.; Zheng, X.; Yang, J. Free-vibration modes of an annular mirror for the optical aberration representation. J. Astron. Telesc. Instrum. Syst. 2019, 5, 024002. [Google Scholar] [CrossRef]
- Emdadi, M.; Mohammadimehr, M.; Navi, B.R. Free vibration of an annular sandwich plate with CNTRC face sheets and FG porous cores using Ritz method. Adv. Nano Res. 2019, 7, 109–123. [Google Scholar]
- Zhao, J.; Xie, F.; Wang, A.; Shuai, C.; Tang, J.; Wang, Q. Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints. Compos. Part B Eng. 2019, 159, 20–43. [Google Scholar] [CrossRef]
- Rani, R.; Lal, R. Free vibrations of composite sandwich plates by Chebyshev collocation technique. Compos. Part B Eng. 2019, 165, 442–455. [Google Scholar] [CrossRef]
- Li, H.; Pang, F.; Miao, X.; Li, Y. Jacobi–Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: A unified formulation. Comput. Math. Appl. 2019, 77, 427–440. [Google Scholar] [CrossRef]
- Beni, N.N. Free vibration analysis of annular sector sandwich plates with FG-CNT reinforced composite face-sheets based on the Carrera’s Unified Formulation. Compos. Struct. 2019, 214, 269–292. [Google Scholar] [CrossRef]
- Katili, I.; Batoz, J.-L.; Maknun, I.J.; Katili, A.M. On static and free vibration analysis of FGM plates using an efficient quadrilateral finite element based on DSPM. Compos. Struct. 2021, 261, 113514. [Google Scholar] [CrossRef]
- Dhari, R.S. A numerical study on cross ply laminates subjected to stray fragments impact loading. Compos. Struct. 2021, 261, 113563. [Google Scholar] [CrossRef]
- Li, M.; Yan, R.; Xu, L.; Soares, C.G. A general framework of higher-order shear deformation theories with a novel unified plate model for composite laminated and FGM plates. Compos. Struct. 2021, 261, 113560. [Google Scholar] [CrossRef]
- Askari, E.; Jeong, K.-H.; Amabili, M. A novel mathematical method to analyze the free vibration of eccentric annular plates. J. Sound Vib. 2020, 484, 115513. [Google Scholar] [CrossRef]
- Amabili, M.; Frosali, G.; Kwak, M. Free vibrations of annular plates coupled with fluids. J. Sound Vib. 1996, 191, 825–846. [Google Scholar] [CrossRef]
- Azaripour, S.; Baghani, M. Vibration analysis of FG annular sector in moderately thick plates with two piezoelectric layers. Appl. Math. Mech.-Engl. Ed. 2019, 40, 783–804. [Google Scholar] [CrossRef]
- Si, W.; Lam, K.; Gong, S. Vibration Analysis of Rectangular Plates with One or More Guided Edges via Bicubic B-Spline Method. Shock Vib. 2005, 12, 363–376. [Google Scholar] [CrossRef]
- Singh, R.; Dhiman, N.; Tamsir, M. Splines in vibration analysis of non-homogeneous circular plates of quadratic thickness. J. Appl. Anal. 2022. [Google Scholar] [CrossRef]
- Grigorenko, Y.; Grigorenko, A.; Efimova, T. Spline-based investigation of natural vibrations of orthotropic rectangular plates of variable thickness within classical and refined theories. J. Mech. Mater. Struct. 2008, 3, 929–952. [Google Scholar] [CrossRef] [Green Version]
- Toorani, M.; Lakis, A. General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects. J. Sound Vib. 2000, 237, 561–615. [Google Scholar] [CrossRef]
- Hashemi, H.S.; Es’haghi, M.; Taher, H.R.D. An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory. Compos. Struct. 2010, 92, 1333–1351. [Google Scholar] [CrossRef]
- Duan, W.; Quek, S.; Wang, Q. Free vibration analysis of piezoelectric coupled thin and thick annular plate. J. Sound Vib. 2005, 281, 119–139. [Google Scholar] [CrossRef]
- Liu, C.-F.; Chen, T.-J.; Chen, Y.-J. A modified axisymmetric finite element for the 3-D vibration analysis of piezoelectric laminated circular and annular plates. J. Sound Vib. 2008, 309, 794–804. [Google Scholar] [CrossRef]
Circumferential Node Number | Modes | Present | Hashemi et al. (2010a) Exact Sol. | Duan et al. (2005) FSDT | Liu et al. (2008) FEM |
---|---|---|---|---|---|
1 | 1 | 1583 | 1584.65 | 1583 | 1551 |
2 | 5436 | 5437.61 | 5433 | 5328 | |
3 | 11,494 | 11,495.1 | 11,478 | 11,283 | |
2 | 1 | 2307 | 2308.11 | 2306 | 2260 |
2 | 6474 | 6475.13 | 6468 | 6348 | |
3 | 12,652 | 12,653.2 | 12,632 | 12,428 |
(KGE/EGE/EGE/KGE) | (KGE/EGE/EGE/KGE) | (EGE/EGE) | |
---|---|---|---|
0.5 | 0.71949 | 0.643041 | 0.402384 |
0.7 | 0.728127 | 0.672854 | 0.421916 |
0.9 | 0.734973 | 0.690198 | 0.447392 |
1.1 | 0.739494 | 0.700368 | 0.464501 |
1.3 | 0.741874 | 0.706052 | 0.476395 |
1.5 | 0.74287 | 0.709517 | 0.484848 |
1.7 | 0.742917 | 0.711673 | 0.490948 |
1.9 | 0.742298 | 0.711698 | 0.495378 |
2.1 | 0.741207 | 0.710538 | 0.498588 |
(KGE/EGE/EGE/KGE) | (KGE/EGE/EGE/KGE) | (EGE/EGE) | |
---|---|---|---|
−0.2 | 0.745785 | 0.713475 | 0.490829 |
−0.1 | 0.742443 | 0.70506 | 0.472436 |
0 | 0.737531 | 0.695956 | 0.456753 |
0.1 | 0.732985 | 0.687592 | 0.44392 |
0.2 | 0.729205 | 0.68026 | 0.433387 |
(KGE/EGE/EGE/KGE) | (KGE/EGE/EGE/KGE) | (EGE/EGE) | |
---|---|---|---|
−0.5 | 0.673905 | 0.637247 | 0.43449 |
−0.3 | 0.711461 | 0.677643 | 0.452291 |
−0.1 | 0.731285 | 0.692456 | 0.457029 |
0.1 | 0.74213 | 0.696611 | 0.455322 |
0.3 | 0.748382 | 0.693315 | 0.45001 |
0.5 | 0.751603 | 0.685991 | 0.442494 |
(KGE/EGE/EGE/KGE) | (AGE/EGE/EGE/AGE) | (KGE/EGE/EGE/KGE) | (KGE/EGE/EGE/KGE) | |
---|---|---|---|---|
0.5 | 0.71949 | 0.487129 | 0.643041 | 0.84425 |
0.7 | 0.728127 | 0.503465 | 0.672854 | 0.848355 |
0.9 | 0.734973 | 0.51629 | 0.690198 | 0.854028 |
1.1 | 0.739494 | 0.525374 | 0.700368 | 0.855654 |
1.3 | 0.741874 | 0.531657 | 0.706052 | 0.855741 |
1.5 | 0.74287 | 0.535933 | 0.709517 | 0.854683 |
1.7 | 0.742917 | 0.538766 | 0.711673 | 0.852878 |
1.9 | 0.742298 | 0.540549 | 0.711698 | 0.850596 |
2.1 | 0.741207 | 0.54156 | 0.710538 | 0.848079 |
Elastic Property | Young Modulus | Young Modulus | Shear Modulus | Shear Modulus | Shear Modulus | Major Poisson Ratio, υxy | |
---|---|---|---|---|---|---|---|
EGE | 1440 | 5.52 | 86.19 | 2.07 | 1.72 | 2.07 | 0.34 |
AGE | 2550 | 11.72 | 42.75 | 4.14 | 3.45 | 4.14 | 0.27 |
KGE | 1770 | 9.65 | 144.8 | 4.14 | 3.45 | 4.14 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, S. Natural Frequencies Calculation of Composite Annular Circular Plates with Variable Thickness Using the Spline Method. J. Compos. Sci. 2022, 6, 70. https://doi.org/10.3390/jcs6030070
Javed S. Natural Frequencies Calculation of Composite Annular Circular Plates with Variable Thickness Using the Spline Method. Journal of Composites Science. 2022; 6(3):70. https://doi.org/10.3390/jcs6030070
Chicago/Turabian StyleJaved, Saira. 2022. "Natural Frequencies Calculation of Composite Annular Circular Plates with Variable Thickness Using the Spline Method" Journal of Composites Science 6, no. 3: 70. https://doi.org/10.3390/jcs6030070
APA StyleJaved, S. (2022). Natural Frequencies Calculation of Composite Annular Circular Plates with Variable Thickness Using the Spline Method. Journal of Composites Science, 6(3), 70. https://doi.org/10.3390/jcs6030070